152
Views
12
CrossRef citations to date
0
Altmetric
Articles

A density functional theory outlook on the possible sensing ability of boron nitride nanotubes and their Al- and Si-doped derivatives for sulfonamide drugs

, , , &
Pages 82-95 | Received 14 Jun 2019, Accepted 22 Oct 2019, Published online: 26 Nov 2019

References

  • Dıaz-Cruz MS, L-Opez de Alda MAJ, Barcelo D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal Chem. 2003;22:340–351. doi: 10.1016/S0165-9936(03)00603-4
  • Unold M, Simunek J, Kasteel R, et al. Transport of manure-based applied sulfadiazine and its main transformation products in soil columns. Vadose Zone J. 2009;8:677–689. doi: 10.2136/vzj2008.0122
  • Chee-Sanford JC, Mackie RI, Koike S, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual. 2009;38:1086–1108. doi: 10.2134/jeq2008.0128
  • Thiele-Bruhn S, Aust MO. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Arch Environ Con Tox. 2004;47:31–39. doi: 10.1007/s00244-003-3120-8
  • Baran W, Adamek E, Ziemia-nska J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater. 2011;196:115. doi: 10.1016/j.jhazmat.2011.08.082
  • Białk-Bieli-nska A, Stolte S, Arning J, et al. Ecotoxicity evaluation of selected sulfonamides. Chemosphere. 2011;85:928–933. doi: 10.1016/j.chemosphere.2011.06.058
  • Heberer T. Occurrence fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol Lett. 2002;131:5–17. doi: 10.1016/S0378-4274(02)00041-3
  • Jones OAH, Voulvoulis N, Lester JN. The occurrence and re-moval of selected pharmaceutical compounds in a sewage treatment works utilising activated sludge treatment. Environ Pollut. 2007;145:738–744. doi: 10.1016/j.envpol.2005.08.077
  • Hu H, Zhang T, Yuan S. Tang S, functionalization of multi-walled carbon nanotubes with phenylendiamine for enhanced CO2 adsorption. Adsorption. 2017;23:73–85. doi: 10.1007/s10450-016-9820-y
  • Stafiej A, Pyrzynska K. Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol. 2007;58:49–52. doi: 10.1016/j.seppur.2007.07.008
  • Zhang D, Pan B, Zhang H, et al. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environ Sci Technol. 2010;44:3806–3811. doi: 10.1021/es903851q
  • Dehghani MH, Niasar ZS, Mehrnia MR, et al. Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes. Chem Eng J. 2017;310:22–32. doi: 10.1016/j.cej.2016.10.057
  • Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol. 2008;42:9005–9013. doi: 10.1021/es801777n
  • (a) Hasanzade Z, Raissi H, Investigation of graphene-based nanomaterial as nanocarrier for adsorption of paclitaxel anticancer drug: a molecular dynamics simulation study, J Mol Model. 2017;23:36; (b) Hasanzade Z, Raissi H, Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug Thioguanine on Graphene oxide surface as a nanocarrier: Density functional theory investigation and a molecular dynamics, Appl Surf Sci, 2017;422:1030–1041; (c) Hasanzade Z, Raissi H, Density functional theory calculations and molecular dynamics simulations of the adsorption of ellipticine anticancer drug on graphene oxide surface in aqueous medium as well as under controlled pH conditions, 2018;255:269–278; (d) Hasanzade Z, Raissi H, Assessment of the chitosan-functionalized graphene oxide as a carrier for loading thioguanine, an antitumor drug and effect of urea on adsorption process: Combination of DFT computational and molecular dynamics simulation studies, J Biomol Struct Dyn, 2019;37:2487–2497; (e) Dehneshin N, Raissi H, Hasanzade Z, Farzad F,Using molecular dynamics simulation to explore the binding of the three potent anticancer drugs sorafenib, streptozotocin, and sunitinib to functionalized carbon nanotubes, J Mol Model, 2019;25:159; (f) Hasanzade Z, Raissi H, Carbon and boron nanotubes as a template material for adsorption of 6-Thioguanine chemotherapeutic: a molecular dynamics and density functional approach, J Biomol Struct Dyn. 2019;22:1–11.
  • (a) Siadati SA, Kula K, Babanezhad E,The possibility of a two-step oxidation of the surface of C20 fullerene by a single molecule of nitric (V) acid, Chem Rev Lett, 2019;2:2–6; (b) Siadati SA, Rezazadeh S, Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene, Chem Rev Lett, 2018;1:78–81; (c) Babanezhad E, Beheshti A, The Possibility of Selective Sensing of the Straight-Chain Alcohols (Including Methanol to n-Pentanol) Using the C20 Fullerene and C18NB Nano Cage, Chem Rev Lett, 2018;1:82–88.
  • Hamada N, Sawada S–I, Oshiyama A. New one-dimensional conductors: Graphitic microtubules. Phys Rev Lett 1992;68:1579. doi: 10.1103/PhysRevLett.68.1579
  • Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules. Appl Phys Lett. 1992;60:2204. doi: 10.1063/1.107080
  • Blase X, Rubio A, Louie S, et al. Stability and band Gap Constancy of boron nitride nanotubes. EPL. 1994;28:335. doi: 10.1209/0295-5075/28/5/007
  • Golberg D, Bando Y, Huang Y, et al. Boron nitride nanotubes and Nanosheets. ACS Nano. 2010;4:2979. doi: 10.1021/nn1006495
  • Sajjad M, Feng P. Study the gas sensing properties of boron nitride nanosheets. Mater Res Bull. 2014;49:35–38. doi: 10.1016/j.materresbull.2013.08.019
  • Sha H, Faller R. A quantum chemistry study of curvature effects on boron nitride nanotubes/nanosheets for gas adsorption. Phys Chem Chem Phys. 2016;18:19944. doi: 10.1039/C6CP02540D
  • Eslami M, Vahabi V, Peyghan AA. Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: a computational study. Physica E. 2016;76:6–11. doi: 10.1016/j.physe.2015.09.043
  • Ghassemi HM, Lee CH, Yap YK, et al. In situ TEM monitoring of thermal decomposition in individual boron nitride nanotubes. JOM. 2010;62:69. doi: 10.1007/s11837-010-0063-1
  • Ciofani G, Danti S, Ricotti L, et al. Boron nitride nanotubes: production, properties, biological interactions and potential applications as therapeutic agents in brain diseases. Curr Nanosci. 2011;7:94–109. doi: 10.2174/157341311794480345
  • Zeng H, Zhi C, Zhang Z, et al. White graphenes: boron nitride nanoribbons via boron nitride nanotubeunwrapping. Nano Lett. 2010;10:5049–5055. doi: 10.1021/nl103251m
  • Ciofani G, Genchi GG, Liakos I, et al. A simple approach to covalent functionalization of boron nitridenanotubes. J Colloid Interface Sci. 2012;374:308–314. doi: 10.1016/j.jcis.2012.01.049
  • Duverger E, Gharbi T, Delabrousse E, et al. Quantum study of boron nitride nanotubes functionalized with anticancer molecules. PCCP. 2014;16:18425–32. doi: 10.1039/C4CP01660B
  • El Khalifi M, Bentin J, Duverger E, et al. Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube. PCCP. 2016;18:24994–25001. doi: 10.1039/C6CP01387B
  • Farmanzadeh D, Ghazanfary S. BNNTs under the influence of external electric field as potential new drug delivery vehicle of Glu, Lys, Gly and Ser amino acids: a first-principles study. Appl Surf Sci. 2014;320:391–399. doi: 10.1016/j.apsusc.2014.09.061
  • Alinezhad H, Ganji MD, Soleymani E, et al. A comprehensive theoretical investigation about the bio-functionalization capability of single walled CNT, BNNT and SiCNT using DNA/RNA nucleobases. Appl Surf Sci. 2017;422:56–72. doi: 10.1016/j.apsusc.2017.05.196
  • Peyghan AA, Baei MT, Moghimi M, et al. Adsorption and electronic structure study of imidazole on (6,0) zigzag single-walled boron nitride nanotube. J Cluster Sci. 2013;24:31–47.
  • Wang R, Zhu R, Zhang D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem Phys Lett. 2008;467:131–135. doi: 10.1016/j.cplett.2008.11.002
  • Soltani A, Ghafouri Raz S, Joveini Rezaei V, et al. Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl Surf Sci. 2012;263:619–625. doi: 10.1016/j.apsusc.2012.09.122
  • Deng ZY, Zhang JM, Xu KW. Adsorption of SO2 molecule on doped (8, 0) boron nitride nanotube: A first-principles study. Physica E: Low-Dimens Syst Nanostruct. 2016;76:47–51. doi: 10.1016/j.physe.2015.09.031
  • Wang R, Zhang D, Liu C. The germanium-doped boron nitride nanotube serving as a potential resource for the detection of carbon monoxide and nitric oxide. Comput Mater Sci. 2014;82:361–366. doi: 10.1016/j.commatsci.2013.09.064
  • Schmidt M, Baldridge K, Boatz J, et al. General atomic and molecular electronic structure system. J Comp Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112
  • Zhao Y, Schultz NE, Truhlar DG. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys. 2005;123:161103. doi: 10.1063/1.2126975
  • Zhao Y, Truhlar DG. Density functionals with Broad Applicability in Chemistry. Acc Chem Res. 2008;41:157. doi: 10.1021/ar700111a
  • O’Boyle N, Tenderholt A, Langner K. A library for package-independent computational chemistry algorithms. J Comput Chem. 2008;29:839–845. doi: 10.1002/jcc.20823
  • Boys SF, Bernardi FD. The calculation of small molecular interactions by the differences of separate total energies, Some procedures with reduced errors. Mol Phys. 1970;19:553–566. doi: 10.1080/00268977000101561
  • Solimannejad M, Noormohammadbeigi M. Boron nitride nanotube (BNNT) as a sensor of hydroperoxyl radical (HO2): A DFT study. J Iran Chem Soc. 2017;14:471–476. doi: 10.1007/s13738-016-0994-8
  • Hadipour NL, Peyghan AA, Soleymanabadi H. Theoretical study on the Al-doped ZnO Nanoclusters for CO chemical Sensors. J Phys Chem C. 2015;119:6398–6404. doi: 10.1021/jp513019z
  • Shakerzadeh E, Noorizadeh S. A first principles study of pristine and Al-doped boron nitride nanotubes interacting with platinum-based anticancer drugs. Physica E. 2014;57:47–55. doi: 10.1016/j.physe.2013.09.019
  • Muniyandi S, Sundaram R, Kar T. Aluminum doping makes boron nitride nanotubes (BNNTs) an attractive adsorbent of hydrazine (N2H4). Struct Chem. 2017;29(1):375–382. doi: 10.1007/s11224-017-1034-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.