129
Views
3
CrossRef citations to date
0
Altmetric
Articles

Applying Gewald reaction for the preparation of some novel aminothieno derivatives featuring noroxymorphone skeletal backbone

, ORCID Icon &
Pages 301-309 | Received 14 Dec 2019, Accepted 07 Feb 2020, Published online: 19 Feb 2020

References

  • Genilloud O, Vicente F, editors. Drug discovery from natural products. Cambridge: Royal Society of Chemistry; 2012.
  • Chin Y-W, Balunas MJ, Chai HB, et al. Drug discovery from natural sources. AAPS J. 2006;8:E239–E253. doi: 10.1007/BF02854894
  • Imperatori F, Barlozzari G, Scardigli A, et al. Leishmanicidal activity of green tea leaves and pomegranate peel extracts on L. infantum. Nat Prod Res. 2019;33:3465–3471. doi: 10.1080/14786419.2018.1481841
  • Werner L, Wernerova M, Machara A, et al. Unexpected N-demethylation of oxymorphone and oxycodone N-oxides mediated by the burgess reagent: direct synthesis of naltrexone, naloxone, and other antagonists from oxymorphone. Adv Synth Catal. 2012;354:2706–2712. doi: 10.1002/adsc.201200676
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 Years. J Nat Prod. 2007;70:461–477. doi: 10.1021/np068054v
  • Reed JW, Hudlicky T. The quest for a practical synthesis of morphine alkaloids and their derivatives by chemoenzymatic methods. Acc Chem Res. 2015;48:674–687. doi: 10.1021/ar500427k
  • Rice KC. Synthetic opium alkaloids and derivatives. A short total synthesis of (±)-dihydrothebainone, (±)-dihydrocodeinone, and (±)-nordihydrocodeinone as an approach to a practical synthesis of morphine, codeine, and congeners. J Org Chem. 1980;45:3135–3137. doi: 10.1021/jo01303a045
  • Kok GB, Scammells PJ. Improved synthesis of 14-hydroxy opioid pharmaceuticals and intermediates. RSC Adv. 2012;2:11318–11325. doi: 10.1039/c2ra21693k
  • Endoma-Arias MAA, Cox DP, Hudlicky T. General method of synthesis for naloxone, naltrexone, nalbuphone, and nalbuphine by the reaction of grignard reagents with an oxazolidine derived from oxymorphone. Adv Synth Catal. 2013;355:1869–1873. doi: 10.1002/adsc.201300284
  • Ronzoni S, Cerri A, Dondio G, et al. Synthesis and NMR characterization of a novel class of thienomorphinans. Org Lett. 1999;1:513–516. doi: 10.1021/ol990693s
  • Barton ED, Colwell CB, Wolfe T, et al. Efficacy of intranasal naloxone as a needleless alternative for treatment of opioid overdose in the prehospital setting. J Emerg Med. 2005;29:265–271. doi: 10.1016/j.jemermed.2005.03.007
  • Rinner U, Hudlicky T. Synthesis of morphine alkaloids and derivatives. In: Knölker HJ, editor. Alkaloid synthesis. Topics in current chemistry Vol. 309. Berlin: Springer; 2011. p. 33–66.
  • O’Brien CP, Volpicelli LA, Volpicelli JR. Naltrexone in the treatment of alcoholism: a clinical review. Alcohol. 1996;13:35–39. doi: 10.1016/0741-8329(95)02038-1
  • Olofson RA, Schnur RC, Bunes L, et al. Selective N-dealkylation of tertiary amines with vinyl chloroformate: an improved synthesis of naloxone. Tetrahedron. Lett. 1977;18:1567–1570. doi: 10.1016/S0040-4039(01)93104-1
  • Ninan A, Sainsbury M. An improved synthesis of noroxymorphone. Tetrahedron. 1992;48:6709–6716. doi: 10.1016/S0040-4020(01)80016-8
  • Ananthan S. Southern research institute, Pyridomorphinans, thienomorphinans and use thereof; United States Patent US 7,534,799 B2; [2009 May 19].
  • Abaee MS, Ehteshami F, Forghani S, et al. Facile one-pot synthesis of novel dicyanoanilines fused to dithiane ring via a pseudo-four-component reaction. J Iran Chem Soc. 2017;14:1151–1157. doi: 10.1007/s13738-017-1065-5
  • Pourabdi L, Osati F, Mojtahedi MM, et al. A convenient one-pot synthesis of thiopyrano[4,3-b]pyran derivatives under LiOH·H2O/EtOH/ultrasonic conditions. J Sulfur Chem. 2017;38:34–42. doi: 10.1080/17415993.2016.1223299
  • Abaee MS, Forghani S, Mojtahedi MM, et al. Efficient synthesis of novel bis(arylmethylidenes) of the 2,2-dimethyl-1,3-dithian-5-one system. J Sulfur Chem. 2016;37:683–691. doi: 10.1080/17415993.2015.1130131
  • Abaee MS, Hadizadeh A, Mojtahedi MM, et al. Exploring the scope of the Gewald reaction: expansion to a four-component process. Tetrahedron Lett. 2017;58:1408–1412. doi: 10.1016/j.tetlet.2017.02.071
  • Mojtahedi MM, Abaee MS, Mahmoodi P, et al. Convenient synthesis of 2-aminothiophene derivatives by acceleration of Gewald reaction under ultrasonic aqueous conditions. Synth Commun. 2010;40:2067–2074. doi: 10.1080/00397910903219435
  • Huang Y, Dömling A. The Gewald multicomponent reaction. Mol Diversity. 2011;15:3–33. doi: 10.1007/s11030-010-9229-6
  • Kavitha K, Srikrishna D, Dubey PK, et al. An efficient one-pot four-component Gewald reaction: synthesis of substituted 2-aminothiophenes with coumarin–thiazole scaffolds under environmentally benign conditions. J Sulfur Chem. 2019;40:195–208. doi: 10.1080/17415993.2018.1556275
  • Machara A, Cox DP, Hudlicky T. Direct synthesis of naltrexone by palladium-catalyzed N-demethylation/acylation of oxymorphone: the Benefit of C-H activation and the intramolecular acyl transfer from C-14 hydroxy. Adv Synth Catal. 2012;354:2713–2718. doi: 10.1002/adsc.201200677
  • Itov Z, Kuznetsov VF, Voitsekhovski I. Cody laboratories, Inc. Synthesis of oxycodone hydrochloride. United States Patent US 9,062,062 B1; [2015 Jun 23].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.