268
Views
3
CrossRef citations to date
0
Altmetric
Articles

Synthesis, structure and reactivity of some chiral benzylthio alcohols, 1,3-oxathiolanes and their S-oxides

, &
Pages 369-387 | Received 24 Feb 2020, Accepted 06 Apr 2020, Published online: 24 Apr 2020

References

  • Aitken RA, Thomas AW. Heterocyclic acyl and formyl anion equivalents. Adv Heterocycl Chem. 2001;79:89–114. doi: 10.1016/S0065-2725(01)79022-8
  • Isslieb K, Hannig H-J. 1,3-Thiaphosphorinane. Z Anorg Allgem Chem. 1973;402:189–192. doi: 10.1002/zaac.19734020209
  • Aitken RA, Henderson S, Slawin AMZ. Structure and thermal reactivity of some 2-substituted 1,3-oxathiolane S-oxides. J Sulfur Chem. 2018;39:422–434. doi: 10.1080/17415993.2018.1449844
  • Izumiya N, Nagamatsu A. Walden Inversion of amino acids. VI. The synthesis of D-Surinamine (N-Methyl-D-tyrosine). Bull Chem Soc Jpn. 1952;25:265–267. doi: 10.1246/bcsj.25.265
  • Levene PA, Mori T, Mikeska LA. On Walden inversion: X. On the oxidation of 2-thiolcarboxylic acids to the corresponding sulfonic acids and on the Walden inversion in the series of 2-hydroxycarboxylic acids. J Biol Chem. 1927;75:337–365.
  • Naksomboon K, Valderas C, Gómez-Martínez M, et al. S,O-Ligand-promoted palladium-catalyzed C–H functionalization reactions of nondirected arenes. ACS Catal. 2017;7:5342–6346. doi: 10.1021/acscatal.7b02356
  • Umezu S, Shindo M. α-Substituent effect on olefination of ester carbonyl groups with ynolates. Tetrahedron Lett. 2013;54:6871–6873. doi: 10.1016/j.tetlet.2013.10.027
  • Evans DA, Campos KR, Tedrow JS, et al. Application of chiral mixed phosphorus/sulfur ligands to palladium-catalyzed allylic substitutions. J Am Chem Soc. 2000;122:7905–7920. doi: 10.1021/ja992543i
  • Kurth MJ, Tahir SH, Olmtead MM. A thioxanone-based chiral template: asymmetric induction in the [2,3]-sigmatropic rearrangement of sulfur ylides. Enantioselective preparation of Cα-chiral pent-4-enoic acids. J Org Chem. 1990;55:2286–2288. doi: 10.1021/jo00295a010
  • Gokel GW, Gerdes HM, Miles DE, et al. Sulfur heterocycles 1. Use of 4,4-dimethyl-1,3-oxathiolane 3,3-dioxide as a carbonyl anion equivalent. Tetrahedron Lett. 1979;20:3375–3378. doi: 10.1016/S0040-4039(01)95413-9
  • Hojo M, Ishibashi N, Hosomi A. Versatile reactivities of carbonyl ylids toward unactivated alkenes and heterodipolarophiles, and their synthetic use. Synlett. 1996: 234–236. doi: 10.1055/s-1996-5396
  • Mloston G, Gendek T, Heimgartner H. Synthese von Trifluoromethyl-substituierten Schwefel-Heterocyclen unter Verwendung von 3,3,3-Trifluorobrenztraubensäure-Derivaten. Helv Chim Acta. 1996;79:1537–1548. doi: 10.1002/hlca.19960790604
  • Mloston G, Huisgen R, Polborn K. Cycloadditions of adamantanethione S-methylide to heteromultiple bonds. Tetrahedron. 1999;55:11475–11494. doi: 10.1016/S0040-4020(99)00664-X
  • Aitken RA, Hill L. 1,3-Dioxoles and 1,3-oxathioles. Compr Heterocycl Chem II. 1996;3:525–567.
  • Aitken RA, Power LA. 1,3-Dioxoles and 1,3-oxathioles. Compr Heterocycl Chem III. 2008;4:841–891. doi: 10.1016/B978-008044992-0.00410-7
  • Aitken RA, Power LA. Recent advances in the chemistry of 1,3-dioxoles and 1,3-oxathioles: an update. Adv Heterocycl Chem. 2013;108:163–193. doi: 10.1016/B978-0-12-404598-9.00002-X
  • Pasto DJ, Klein FM, Doyle TW. Analysis of the nuclear magnetic resonance spectra of 2-substituted 1,3-oxathiolanes. determination of the conformation of the oxathiolane ring system and the conformational free energy values for the 2-alkyl substituents. J Am Chem Soc. 1967;89:4368–4374. doi: 10.1021/ja00993a020
  • Wilson Jr GE, Huang MG, Bovey FA. Nuclear magnetic resonance studies on the conformations of 2-substituted 1,3-oxathiolanes. J Am Chem Soc. 1970;92:5907–5911. doi: 10.1021/ja00723a015
  • Pihlaja K, Nurmi T, Pasanen P. Conformational analysis. Part XVII. A simple application of the Karplus equation to study the preferred conformations of the ethyl group in some alkylsubstituted 4-ethyl-1,3-oxathiolanes. Acta Chem Scand B. 1977;31:895–898. doi: 10.3891/acta.chem.scand.31b-0895
  • Keskinen R, Nikkilä A, Pihlaja K, et al. Properties and reactions of 1,3-oxathiolanes. Part IV. conformational analysis of 2-alkyl-4-methyl- and 2-alkyl-2,4-dimethyl-1,3-oxathiolans with the aid of 1H nuclear magnetic resonance spectroscopy and chemical equilibration. J Chem Soc Perkin Trans 2. 1974: 466–472. doi: 10.1039/P29740000466
  • Teodori E, Melani F, Gualtieri F. 13C NMR spectra of 1,3-oxathiolane, 1,3-oxathiolane 3- oxide and 1,3-oxathiolane 3,3-dioxide derivatives. J Heterocycl Chem. 1986;23:1487–1490. doi: 10.1002/jhet.5570230546
  • Pihlaja K, Sinkkonen J, Stájer G. 3-Oxo-1,3-oxathiolanes - synthesis and stereochemistry. Magn Reson Chem. 2008;46:244–249. doi: 10.1002/mrc.2172
  • Skelton BW, Stick RV, Tilbrook DMG, et al. Investigations into the chemistry of some 1,6-epithio and 1,6-episeleno α-D-glucopyranoses. Aust J Chem. 2000;53:389–397. doi: 10.1071/CH99164
  • Budesinsky M, Polakova J, Hamernikova M, et al. 1,6-Anhydro-1-thio-α-D-glucopyranose (Thiolevoglucosan) and the corresponding sulfoxides and sulfone. Collect Czech Chem Commun. 2006;71:311–336. doi: 10.1135/cccc20060311
  • Sivapriya K, Hariharaputran S, Suhas VL, et al. Conformationally locked thiosugars as potent α-mannosidase inhibitors: synthesis, biochemical and docking studies. Bioorg Med Chem. 2007;15:5659–5665. doi: 10.1016/j.bmc.2007.06.011
  • Block E, Aslam M, Iyer R, et al. α-Haloalkanesulfonyl bromides in organic synthesis 3. α-Alkylidene ketones and 1,3-oxathiole 3,3-dioxides from trimethylsilyl enol ethers. J Org Chem. 1984;49:3664–3666. doi: 10.1021/jo00193a048
  • Block E, Aslam M, Eswarakrishnan V, et al. α-Haloalkanesulfonyl bromides in organic synthesis 5. Versatile reagents for the synthesis of conjugated polyenes, enones, and 1,3-oxathiol 1,1-dioxides. J Am Chem Soc. 1986;108:4568–4580. doi: 10.1021/ja00275a051
  • Friedrich M, Meichle W, Bernhard H, et al. Sulfogriseofulvin derivatives. synthesis by [4 + 2] cycloaddition, structure, properties, crystal structure analysis, and antifungal activity of spiro[1,3-benzoxathiole-2,1'-cyclohex-2'-en]-4'-one 3,3-dioxides. Arch Pharm (Weinheim Ger). 1996;329:361–370. doi: 10.1002/ardp.19963290706
  • Aitken RA, Gosney I, Cadogan JIG. Extrusion of SO2 from heterocyclic compounds, part 2: five-membered rings. Prog Heterocycl Chem. 1993;5:1–33. doi: 10.1016/B978-0-08-042074-5.50006-2
  • Aitken RA, Horsburgh CER. Flash vacuum pyrolysis of o-phenylene sulfite: formation and purification of cyclopentadienone dimer. In: Afonso CAM, Candeias NR, Simao DP, Trinidade AF, Coelho JAS, Tan B, Franzén R, editor. Comprehensive organic chemistry experiments for the laboratory classroom. Cambridge: RSC; 2017. p. 690–693.
  • Fischer E. Zur Kenntnis der Waldenschen Umkehrung. Ber Dtsch Chem Ges. 1907;40:489–508. doi: 10.1002/cber.19070400182
  • Watabe K, Chang S-C, Gil-Av E, et al. The determination of small amounts of enantiomeric impurities in α-halo carboxylic acids. Synthesis (Mass). 1987: 225–228. doi: 10.1055/s-1987-27896
  • Fischer E, Scheibler H. Zur Kenntnis der Waldenschen Umkehrung II. Ber Dtsch Chem Ges. 1908;41:2891–2902. doi: 10.1002/cber.190804102238
  • Schreiber H, Wheeler AS. Zur Kenntnis der Waldenschen Umkehrung VII. Optischaktiv Leucinsäure (α-Oxy-isocapronsäure) und ihre Verwandlung in α-Brom-isocapronsäure. Ber Dtsch Chem Ges. 1911;44:2684–2690. doi: 10.1002/cber.191104403100
  • Fischer E, Carl H. Zerlegung der α-Brom-isocapronsäure und der α-Brom-hydrozimtsäure in die optisch-activen Componenten. Ber Dtsch Chem Ges. 1906;39:3996–4003. doi: 10.1002/cber.19060390480
  • Abderhalden E, Zeisset W. Über die konfigurativen Beziehungen der aus den optischen Isomeren des Isoleucins und des Alloisoleucins gewinnbaren α-Bromsäuren zu den aus diesen bei der Aminierung hervorgehenden Aminosüauren. Ein Beitrag zum Problem der Waldenschen Umkehrung. Z Physiol Chem. 1931;200:179–190. doi: 10.1515/bchm2.1931.200.4-6.179
  • Millican RJ, Angelopoulos M, Bose A, et al. Uncatalyzed and general acid catalyzed decomposition of alkyl xanthates and monothiocarbonates in aqueous solutions. J Am Chem Soc. 1983;105:3622–3630. doi: 10.1021/ja00349a045
  • Levene PA, Mikeska LA. On Walden inversion: III. Oxidation of optically active thiosuccinic acid and thiosuccinimide to the corresponding sulfo acids. J Biol Chem. 1924;60:685–692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.