103
Views
2
CrossRef citations to date
0
Altmetric
Articles

Hydrogen sulfide gas detection by Au-decorated ZnO nanotube: a computational study and comparison to experimental observations

, , , &
Pages 40-50 | Received 10 Mar 2020, Accepted 15 Jul 2020, Published online: 29 Jul 2020

References

  • Reiffenstein R, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol. 1992;32:109–134. doi: 10.1146/annurev.pa.32.040192.000545
  • Gharakhani F, Vessally E, Esrafili MD, et al. The interaction energies between glycoluril clip and thiophenol derivatives using density functional theory calculations. J Sulfur Chem. 2015;36:351–357. doi: 10.1080/17415993.2015.1028941
  • Srimathi K, Hussain T, Panigrahi P, et al. Influence of sodium iodide doped polypyrrole on green synthesized aluminum doped ZnO for the enhanced charge separation at the interface. Opt Mater (Amst). 2020;99:109568–109575. doi: 10.1016/j.optmat.2019.109568
  • Jabarullah NH, Jermsittiparsert K, Melnikov PA, et al. Methods for the direct synthesis of thioesters from aldehydes: a focus review. J Sulfur Chem. 2020;41:96–115. doi: 10.1080/17415993.2019.1658764
  • Hussain T, Vovusha H, Umer R, et al. Superior sensing affinities of acetone towards vacancy induced and metallized ZnO monolayers. Appl Surf Sci. 2018;456:711–716. doi: 10.1016/j.apsusc.2018.06.155
  • Khaleghi Abbasabadi M, Rashidi A, Safaei-Ghomi J, et al. A new strategy for hydrogen sulfide removal by amido-functionalized reduced graphene oxide as a novel metal-free and highly efficient nanoadsorbent. J Sulfur Chem. 2015;36:660–671. doi: 10.1080/17415993.2015.1079711
  • Kaewmaraya T, Ngamwongwan L, Moontragoon P, et al. Drastic improvement in gas-sensing characteristics of phosphorene nanosheets under vacancy defects and elemental functionalization. J Phys Chem C. 2018;122:20186–20193. doi: 10.1021/acs.jpcc.8b06803
  • Shokuhi Rad A, Esfahanian M, Maleki S, et al. Application of carbon nanostructures toward SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations. J Sulfur Chem. 2016;37:176–188. doi: 10.1080/17415993.2015.1116536
  • Krishnaveni K, Subadevi R, Sivakumar M, et al. Synthesis and characterization of graphene oxide capped sulfur/polyacrylonitrile composite cathode by simple heat treatment. J Sulfur Chem. 2019;40:377–388. doi: 10.1080/17415993.2019.1582655
  • Baei MT, Peyghan AA, Bagheri Z. Carbon nanocone as an ammonia sensor: DFT studies. Struct Chem. 2013;24:1099–1103. doi: 10.1007/s11224-012-0139-3
  • Eslami M, Peyghan AA. DNA nucleobase interaction with graphene like BC3 nano-sheet based on density functional theory calculations. Thin Solid Films. 2015;589:52–56. doi: 10.1016/j.tsf.2015.04.086
  • Moradi M, Noei M, Peyghan AA. DFT studies of Si-and Al-doping effects on the acetone sensing properties of BC3 graphene. Mol Phys. 2013;111:3320–3326. doi: 10.1080/00268976.2013.783720
  • Siadati SA, Rezazadeh S. Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene. Chem Rev Lett. 2018;1:77–81.
  • Peyghan AA, Baei MT, Hashemian S. Zno nanocluster as a potential catalyst for dissociation of H2S molecule. J Cluster Sci. 2013;24:341–347. doi: 10.1007/s10876-013-0553-8
  • Peyghan AA, Soleymanabadi H. Computational study on ammonia adsorption on the X 12 Y 12 nano-clusters (X = B, Al and Y = N, P). Curr Sci. 2015;108:1910–1914.
  • Kamel M, Morsali A, Raissi H, et al. Theoretical insights into the intermolecular and mechanisms of covalent interaction of Flutamide drug with COOH and COCl functionalized carbon nanotubes: a DFT approach. Chem Rev Lett. 2020;3:23–37.
  • Sahay P. Zinc oxide thin film gas sensor for detection of acetone. J Mater Sci. 2005;40:4383–4385. doi: 10.1007/s10853-005-0738-0
  • Peyghan AA, Noei M. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies. Phys B. 2014;432:105–110. doi: 10.1016/j.physb.2013.09.051
  • Ghafur Rauf H, Majedi S, Abdulkareem Mahmood E, et al. Adsorption behavior of the Al-and Ga-doped B12N12 nanocages on COn (n = 1, 2) and HnX (n = 2, 3 and X = O, N): a comparative study. Chem Rev Lett. 2019;2:140–150.
  • Gu C, Huang H, Huang J, et al. Chlorobenzene sensor based on Pt-decorated porous single-crystalline ZnO nanosheets. Sens Actuat A. 2016;252:96–103. doi: 10.1016/j.sna.2016.11.004
  • Wei A, Pan L, Huang W. Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng B. 2011;176:1409–1421. doi: 10.1016/j.mseb.2011.09.005
  • Ramgir NS, Sharma PK, Datta N, et al. Room temperature H2S sensor based on Au modified ZnO nanowires. Sens Actuat B. 2013;186:718–726. doi: 10.1016/j.snb.2013.06.070
  • Hosseini Z, Mortezaali A, Fardindoost S. Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J Alloys Compd. 2015;628:222–229. doi: 10.1016/j.jallcom.2014.12.163
  • Xu K, Liao N, Xue W, et al. Predicting gases sensing performance of α-MoO3 from nano-structural and electronic properties. Appl Surf Sci. 2020;509:144913–144919. doi: 10.1016/j.apsusc.2019.144913
  • Rastegar SF, Peyghan AA, Soleymanabadi H. Ab initio studies of the interaction of formaldehyde with beryllium oxide nanotube. Phys E. 2015;68:22–27. doi: 10.1016/j.physe.2014.12.005
  • Miranda A, De Santiago F, Pérez L, et al. Silicon nanowires as potential gas sensors: a density functional study. Sens Actuat B. 2017;242:1246–1250. doi: 10.1016/j.snb.2016.09.085
  • Rostamoghli R, Vakili M, Banaei A, et al. Applying the B12N12 nanoparticle as the CO, CO2, H2O and NH3 sensor. Chem Rev Lett. 2018;1:31–36.
  • Liao N, Zheng B, Zhang M, et al. Numerical approach to evaluate performance of porous SiC5/4O3/2 as potential high temperature hydrogen gas sensor. Int J Hydrogen Energy. 2019;44:26679–26684. doi: 10.1016/j.ijhydene.2019.08.098
  • Peyghan AA, Rastegar SF, Bagheri Z. Selective detection of F2 in the presence of CO, N2, O2, and H2 molecules using a ZnO nanocluster. Monatshefte für Chemie-Chemical Monthly. 2015;146:1233–1239. doi: 10.1007/s00706-014-1378-3
  • Babanezhad E, Beheshti A. The possibility of selective sensing of the straight-chain alcohols (including methanol to n-pentanol) using the C20 fullerene and C18NB nano cage. Chem Rev Lett. 2018;1:82–88.
  • Beheshtian J, Peyghan AA, Bagheri Z. Formaldehyde adsorption on the interior and exterior surfaces of CN nanotubes. Struct Chem. 2013;24:1331–1337. doi: 10.1007/s11224-012-0172-2
  • Schmidt MW, et al. General atomic and molecular electronic structure system. J Comp Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112
  • O’Boyle N, Tenderholt A, Langner K. cclib: a library for package-independent computational chemistry algorithms. J Comput Chem. 2008;29:839–845. doi: 10.1002/jcc.20823
  • Wright JS, Rowley C, Chepelev L. A ‘universal’B3LYP-based method for gas-phase molecular properties: bond dissociation enthalpy, ionization potential, electron and proton affinity and gas-phase acidity. Mol Phys. 2005;103:815–823. doi: 10.1080/00268970412331333429
  • Kruse H, Goerigk L, Grimme S. Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J Org Chem. 2012;77:10824–10834. doi: 10.1021/jo302156p
  • Peng C, Bernhard Schlegel H. Combining synchronous transit and quasi-newton methods to find transition states. Isr J Chem. 1993;33:449–454. doi: 10.1002/ijch.199300051
  • Wang J, Sun X, Yang Y, et al. N–P transition sensing behaviors of ZONs exposed to NO2 gas. Nanotechnology. 2009;20:465501–465509. doi: 10.1088/0957-4484/20/46/465501
  • Hsueh T-J, Chang S-J, Hsu C-L, et al. ZON ethanol gas sensors. J Electrochem Soc. 2008;155:K152–K155. doi: 10.1149/1.2952535
  • An W, Wu X, Zeng XC. Adsorption of O2, H2, CO, NH3, and NO2 on ZON: a density functional theory study. J Phys Chem C. 2008;112:5747–5755. doi: 10.1021/jp711105d
  • Tusche C, Meyerheim H, Kirschner J. Observation of depolarized ZnO (0001) monolayers: formation of unreconstructed planar sheets. Phys Rev Lett. 2007;99:026102–026109. doi: 10.1103/PhysRevLett.99.026102
  • Tsoi S, Lu X, Ramdas A, et al. Isotopic-mass dependence of the A, B, and C excitonic band gaps in ZnO at low temperatures. Phys Rev B. 2006;74:165203–165208. doi: 10.1103/PhysRevB.74.165203
  • Yamazoe N. New approaches for improving semiconductor gas sensors. Sens Actuat B. 1991;5:7–19. doi: 10.1016/0925-4005(91)80213-4
  • Su Y, Meng Q-q, Wang J. A DFT study of the adhesion of Au clusters on ZnO SWNTs and adsorption of gas molecules on Au/ZnO SWNTs. J Phys Chem C. 2009;113:21338–21341. doi: 10.1021/jp907977q

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.