431
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Practical and efficient recyclable oxidative system for the preparation of symmetrical disulfides under aerobic conditions

, , ORCID Icon & ORCID Icon
Pages 281-294 | Received 24 Jul 2020, Accepted 19 Nov 2020, Published online: 09 Dec 2020

References

  • Yang JS, Kok LF, Lin YH, et al. Diallyl disulfide inhibits WEHI-3 leukemia cells in vivo. Anticancer Res. 2006;26:219–225. doi:10.1177/0960327109350670.
  • Dénès F, Pichowicz M, Povie G, et al. Thiyl radicals in organic synthesis. Chem Rev. 2014;114:2587–2693. doi:10.1021/cr400441m.
  • Zhu F, Zhang SQ, Chen Z, et al. Catalytic and photochemical strategies to stabilized radicals based on anomeric nucleophiles. J Am Chem Soc. 2020;142(25):11102–11113. doi:10.1021/jacs.0c03298.
  • Qin J, Zuo H, Ni Y, et al. Catalytic electrophilic C–H sulfenylation of indoles with disulfides under ball milling. ACS Sustain Chem Eng. 2020;8:12342–12347. doi:10.1021/acssuschemeng.0c03942.
  • Mandal B, Basu B. Recent advances in S–S bond formation. RSC Adv. 2014;4:13854–13881. doi:10.1039/C3RA45997G.
  • Sullivan D. The role of the Merox™ process in the era of ultra low sulfur transportation fuels. 5th EMEA Catalyst Technology Conference 3 & 4 March 2004. https://www.uop.com/?document=uop-the-role-of-the-merox-process-in-ultra-low-sulfur-transport-fuels-production-tech-paper&download=1.
  • Witt D. Recent developments in disulfide bond formation. Synthesis. 2008;16:2491–2509. doi:10.1055/s-2008-1067188.
  • Sengupta D, Basu B. An efficient metal-free synthesis of organic disulfides from thiocyanates using poly-ionic resin hydroxide in aqueous medium. Tetrahedron Lett. 2013;54:2277–2281. doi:10.1016/j.tetlet.2013.02.070.
  • Mampuys P, McElroy CR, Clark JH, et al. Thiosulfonates as emerging reactants: synthesis and applications. Adv Synth Catal. 2020;362:3–64. doi:10.1002/adsc.201900864.
  • Ling OC, Khaligh NG, Ching JJ. Recent catalytic advances in the synthesis of organic symmetric disulfides. Current Org Chem. 2020;24:550–581. doi:10.2174/1385272824666200221111120.
  • Abdel-Mohsen HT, Sudheendran K, Conrad J, et al. Synthesis of disulfides by laccase-catalyzed oxidative coupling of heterocyclic thiols. Green Chem. 2013;15:1490–1495. doi:10.1039/C3GC40106E.
  • Takahashi M, Handa A, Kodama R, et al. Anodic oxidative disulfide bond formation in egg protein. Electroanalysis. 2016;28:2737–2742. doi:10.1002/elan.201600204.
  • Xiao H, Chen J, Liu M, et al. An approach to disulfide synthesis promoted by sulfonyl chloride in sodium bicarbonate aqueous media. Phosphorus Sulfur Silicon Relat Elem. 2009;184:2553–2559. doi:10.1080/10426500802529051.
  • Shiri L, Ghorbani-Choghamarani A, Kazemi M. S–S Bond formation: nanocatalysts in the oxidative coupling of thiols. Aus J Chem. 2016;70:9–25. doi:10.1071/CH16318.
  • Sonavane SU, Chidambaram M, Khalil S, et al. Synthesis of cyclic disulfides using didecyldimethylammonium bromide as phase transfer catalyst. Tetrahedron Lett. 2008;49:520–522. doi:10.1016/j.tetlet.2007.11.075.
  • Misra AK, Agnihotri G. Nitric acid mediated oxidative transformation of thiols to disulfides. Synth Commun. 2004;34:1079–1085. doi:10.1081/SCC-120028640.
  • Natarajan P, Sharma H, Kaur M, et al. Haloacid/dimethyl sulfoxide-catalyzed synthesis of symmetrical disulfides by oxidation of thiols. Tetrahedron Lett. 2015;56:5578–5582. doi:10.1016/j.tetlet.2015.08.041.
  • Kesavan V, Bonnet-Delpon D, Bégué JP. Oxidation in fluoro alcohols: mild and efficient preparation of disulfides from thiols. Synthesis. 2000;2:223–225. doi:10.1055/s-2000-6262.
  • Golchoubian H, Hosseinpoor F. Aerobic oxidation of thiols to disulfides catalyzed by a manganese(III) Schiff-base complex. Catal Commun. 2007;8:697–700. doi:10.1016/j.catcom.2006.08.036.
  • Joshi AV, Bhusare S, Baidossi M, et al. Oxidative coupling of thiols to disulfides using a solid anhydrous potassium phosphate catalyst. Tetrahedron Lett. 2005;46:3583–3585. doi:10.1016/j.tetlet.2005.03.040.
  • Ruano JLG, Parra A, Alemán J. Efficient synthesis of disulfides by air oxidation of thiols under sonication. Green Chem. 2008;10:706–711. doi:10.1039/B800705E.
  • Cotton FA, Wilkinson G, Murillo CA, et al. Advanced inorganic chemistry. 6th ed. New York: Wiley-Interscience; 1999.
  • Samanta C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process. Appl Catal A. 2008;350:133–149. doi:10.1016/j.apcata.2008.07.043.
  • Wallace TJ, Schriesheim A. The base-catalysed oxidation of aliphatic and aromatic thiols and disulphides to sulphonic acids. Tetrahedron. 1965;21:2271–2280. doi:10.1016/S0040-4020(01)93881-5.
  • Wang H, Huang GJ, Sun Y, et al. Simple conversion of thiols to disulfides in EtOH under ambient aerobic conditions without using any catalyst or additive. J Chem Res. 2014;38:96–97. doi:10.3184/174751914X13892888669706.
  • Oba M, Tanaka K, Nishiyama K, et al. Aerobic oxidation of thiols to disulfides catalyzed by diaryl tellurides under photosensitized conditions. J Org Chem. 2011;76:4173–4177. doi:10.1021/jo200496r.
  • Habibi A, Baghersad MH, Bilabary M, et al. Dithioates of Meldrum’s acid, dimedone, and barbituric acid, novel sulfur transfer reagents for the one-pot copper-catalyzed conversion of aryl iodides into diaryl disulfides. Tetrahedron Lett. 2016;57:559–562. doi:10.1016/j.tetlet.2015.12.085.
  • Yang L, Li S, Dou Y, et al. TEMPO-catalyzed aerobic oxidative coupling of thiols for metal-free formation of S−N/S−S bonds. Asian J Org Chem. 2017;6:265–268. doi:10.1002/ajoc.201600588.
  • Vandavasi JK, Hu WP, Chen CY, et al. Efficient synthesis of unsymmetrical disulfides. Tetrahedron. 2011;67:8895–8901. doi:10.1016/j.tet.2011.09.071.
  • Firouzabadi H, Iranpoor N, Abbasi M. A one-pot, efficient, and odorless synthesis of symmetrical disulfides using organic halides and thiourea in the presence of manganese dioxide and wet polyethylene glycol (PEG-200). Tetrahedron Lett. 2010;51:508–509. doi:10.1016/j.tetlet.2009.11.060.
  • Cha SH, Kim KH, Kim JU, et al. Thermal behavior of gold(I)−thiolate complexes and their transformation into gold nanoparticles under heat treatment process. J Phys Chem C. 2006;112:13862–13868. doi:10.1021/jp803583n.
  • Eldjarn L, Pihl A. The equilibrium constants and oxidation-reduction potentials of some thiol-disulfide systems. The equilibrium constants and oxidation-reduction potentials of some thiol-disulfide systems. J Am Chem Soc. 1957;79:4589–4593. doi:10.1021/ja01574a005.
  • Wilson JM, Bayer RJ, Hupe DJ. Structure-reactivity correlations for the thiol-disulfide interchange reaction. J Am Chem Soc. 1977;99:7922–7926. doi:10.1021/ja00466a027.
  • Wallace TJ, Schriesheim A. Solvent effects in the base-catalyzed oxidation of mercaptans with molecular oxygen. J Org Chem. 1962;27:1514–1516. doi:10.1021/jo01052a005.
  • Hayyan M, Hashim MA, Al Nashef IM. Superoxide ion: generation and chemical implications. Chem Rev. 2016;116:3029–3085. doi:10.1021/acs.chemrev.5b00407.
  • Song C, Zhang L, Zhang J. Reversible one-electron electro-reduction of (O2−) to produce a stable superoxide catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. J Electroanal Chem. 2006;587:293–298. doi:10.1016/j.jelechem.2005.11.025.
  • Nanni EJ, Sawyer DT. Superoxide-ion oxidation of hydrophenazines, reduced flavins, hydroxylamine, and related substrates via hydrogen-atom transfer. J Am Chem Soc. 1980;102:7591–7593. doi:10.1021/ja00545a047.
  • Wallace TJ, Schriesheim A, Bartók W. The base-catalyzed oxidation of mercaptans. III. Role of the solvent and effect of mercaptan structure on the rate determining step. J Org Chem. 1963;285:1311–1314. doi:10.1021/jo01040a038.
  • Russell GA, Moye AJ, Nagpal K. Effect of structure on the rate of reaction of carbanions with molecular oxygen. J Am Chem Soc. 1962;84:4154–4155. doi:10.1021/ja00880a041.
  • Carloni P, Damiani E, Iacwsi M, et al. Unexpected deoxygenation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) by thiyl radicals through the formation of arylsulphinyl radicals. Tetrahedron. 1995;51:12445–12452. doi:10.1016/0040-4020(95)00800-N.
  • Soleiman-Beigi M, Arzehgar Z. An efficient one-pot method for the direct synthesis of organic disulfides from aryl/alkyl halides in the presence of CuCl using morpholin-4-ium morpholine-4-carbo-dithioate. J Sulfur Chem. 2015;36:395–402. doi:10.1080/17415993.2015.1031135.
  • Song LJ, Li WH, Duan WX, et al. Natural gallic acid catalyzed aerobic oxidative coupling with the assistance of MnCO3 for synthesis of disulfanes in water. Green Chem. 2019;21:1432–1438. doi:10.1039/C9GC00091G.
  • Bettanin L, Saba S, Galetto FZ, et al. Solvent- and metal-free selective oxidation of thiols to disulfides using I2/DMSO catalytic system. Tetrahedron Lett. 2017;58:4713–4716. doi:10.1016/j.tetlet.2017.11.009.
  • Yi SL, Li MC, Hu XO, et al. An efficient and convenient method for the preparation of disulfides from thiols using oxygen as oxidant catalyzed by tert-butyl nitrite. Chin Chem Lett. 2016;27:1505–1508. doi:10.1016/j.cclet.2016.03.016.
  • Arisawa M, Sugata C, Yamaguchi M. Oxidation/reduction interconversion of thiols and disulfides using hydrogen and oxygen catalyzed by a rhodium complex. Tetrahedron Lett. 2005;46:6097–6099. doi:10.1016/j.tetlet.2005.06.169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.