148
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An ionic liquid supported on magnetite nanoparticles as an efficient heterogeneous catalyst for the synthesis of alkyl thiocyanates in water

ORCID Icon &
Pages 335-345 | Received 18 May 2020, Accepted 25 Jan 2021, Published online: 16 Feb 2021

References

  • Castanheiro T, Suffert J, Donnard M, et al. Recent advances in the chemistry of organic thiocyanates. Chem Soc Rev. 2016;45(3):494–505.
  • Zarchi MAK, Bafghi AT. Synthesis of alkyl thiocyanates from alcohols using a polymer-supported thiocyanate ion promoted by cyanuric chloride/dimethylformamide. J Sulfur Chem. 2015;36(4):403–412.
  • Iranpoor N, Firouzabadi H, Shaterian HR. Efficient conversion of thiols to thiocyanates by in situ generated Ph3P(SCN)2. Tetrahedron Lett. 2002;43(18):3439–3441.
  • Banert K, Hagedorn M, Müller A. Synthesis of new vinyl thiocyanates by [3,3] sigmatropic rearrangement of isothiocyanates. Eur J Org Chem. 2001;2001(6):1089–1103.
  • Ohtani N, Murakawa S, Watanabe K, et al. Thiocyanation of alkyl halides with alkyl thiocyanates in the presence of quaternary phosphonium halides. J Chem Soc Perkin Trans 2; 2000(9):1851–1856.
  • Zarchi MAK. Polymer-supported thiocyanate as new, versatile and efficient polymeric reagent for conversion of alkyl halides to corresponding alkyl thiocyanates under mild conditions. J Chin Chem Soc. 2007;54(5):1299–1302.
  • Kiasat AR, Fallah-Mehrjardi M. Polyethylene glycol: A cheap and efficient medium for the thiocyanation of alkyl halides. Bull Korean Chem Soc. 2008;29(12):2346–2348.
  • Kiasat AR, Badri R, Sayyahi S. A facile and convenient method for synthesis of alkyl thiocyanates under homogeneous phase transfer catalyst conditions. Chin Chem Lett. 2008;19(11):1301–1304.
  • Tamami B, Ghasemi S. Nucleophilic substitution reactions using polyacrylamide-based phase transfer catalyst in organic and aqueous media. J Iran Chem Soc. 2008;5:S26–S32.
  • Gorjizadeh M, Sayyahi S. A novel and efficient synthesis of alkyl thiocyanates from alkyl halides in water using phase transfer catalysts. Chin Chem Lett. 2011;22(6):659–662.
  • Bound DJ, Bettadaiah BK, Srinivas P. Microwave-assisted synthesis of alkyl thiocyanates. Synth Commun. 2013;43(8):1138–1144.
  • Goodajdar BM, Akbari F, Davarpanah J. PEG-DIL-based MnCl42−: A novel phase transfer catalyst for nucleophilic substitution reactions of benzyl halides. Appl Organometal Chem. 2019;33:e4647.
  • Marsh KN, Boxall JA, Lichtenthaler R. Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib. 2004;93:219(1):93–98.
  • Yadav LDS, Singh S, Rai VK. A one-pot [Bmim]OH-mediated synthesis of 3-benzamidocoumarins. Tetrahedron Lett. 2009;50(19):2208–2212.
  • Rad MN S, Behrouz S. The base-free chemoselective ring opening of epoxides with carboxylic acids using [bmim]Br: a rapid entry into 1,2-diol mono-esters synthesis. Mol Divers. 2013;17(1):9–18.
  • Riisager A, Fehrmann R, Haumann M, et al. Supported ionic liquids: versatile reaction and separation media. Top Catal. 2006;40:91–102.
  • Zhang Y, Zhao Y, Xia C. Basic ionic liquids supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites: an efficient magnetic and recyclable heterogeneous catalyst for aqueous Knoevenagel condensation. J Mol Catal A Chem. 2009;306(1–2):107–112.
  • Wang T, Wang W, Lyu Y, et al. Highly recyclable polymer supported ionic liquids as efficient heterogeneous catalysts for batch and flow conversion of CO2 to cyclic carbonates. RSC Adv. 2017;7(5):2836–2841.
  • Askalany A, Olkis C, Bramanti E, et al. Silica-supported ionic liquids for heat-powered sorption desalination. ACS Appl Mater Interfaces. 2019;11(40):36497–36505.
  • Polesso BB, Bernard FL, Ferrari HZ, et al. Supported ionic liquids as highly efficient and low-cost material for CO2/CH4 separation process. Heliyon. 2019;5(7):e02183.
  • Huang Y, Xiao Y, Huang H, et al. Ionic liquid functionalized multi-walled carbon nanotubes/zeolitic imidazolate framework hybrid membranes for efficient H2/CO2 separation. Chem Commun. 2015;51(97):17281–17284.
  • Arghan M, Koukabi N, Kolvari E. Mizoroki–Heck and Suzuki–Miyaura reactions mediated by poly(2-acrylamido-2-methyl-1-propanesulfonic acid)-stabilized magnetically separable palladium catalyst. Appl Organomet Chem. 2018;32:e4346.
  • Polshettiwar V, Luque R, Fihri A, et al. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111(5):3036–3075.
  • Sun N, Swatloski RP, Maxim ML, et al. Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem. 2008;18:283–290.
  • Jiang Y, Guo C, Xia H, et al. Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. J Mol Catal B Enzym. 2009;58:103–109.
  • Bagheri M, Masteri-Farahani M, Ghorbani M. Synthesis and characterization of heteropolytungstate-ionic liquid supported on the surface of silica coated magnetite nanoparticles. J Magn Magn Mater. 2013;327:58–63.
  • Amini A, Sayyahi S, Saghanezhad SJ, et al. Integration of aqueous biphasic with magnetically recyclable systems: Polyethylene glycol-grafted Fe3O4 nanoparticles catalyzed phenacyl synthesis in water. Catal Commun. 2016;78:11–16.
  • Davarpanah J, Kiasat AR, Noorizadeh S, et al. Nanomagnetic double-charged diazoniabicyclo[2.2.2]octane dichloride silica hybrid: Synthesis, characterization, and application as an efficient and reusable organic–inorganic hybrid silica with ionic liquid framework for one-pot synthesis of pyran annulated heterocyclic compounds in water. J Mol Catal A Chem. 2013;376:78–89.
  • Kassaee MZ, Masrouri H, Movahedi F. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Appl Catal A Gen. 2011;395(1–2):28–33.
  • Iranpoor N, Firouzabadi H, Nowrouzi N. Preparation of thiocyanates and isothiocyanates from alcohols, thiols, trimethylsilyl-, and tetrahydropyranyl ethers using triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)/n-Bu4NSCN system. Tetrahedron. 2006;62(23):5498–5501.
  • Olia FK, Sayyahi S, Taheri N. An Fe3O4 nanoparticle-supported Mn (II)-azo Schiff complex acts as a heterogeneous catalyst in alcoholysis of epoxides. C. R. Chimie. 2017;20(4):370–376.
  • Kiasat AR, Davarpanah J. Fe3O4@silica sulfuric acid nanoparticles: An efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones. J Mol Catal A Chem. 2013;373:46–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.