345
Views
2
CrossRef citations to date
0
Altmetric
Review

Methods for the synthesis of N-aryl sulfonamides from nitroarenes: an overview

, &
Pages 692-710 | Received 22 Jul 2021, Accepted 29 Jul 2021, Published online: 17 Aug 2021

References

  • Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev 2003;23:146–189.
  • Ma X, Kexin Z, Yonggang W, et al. Investigation of low-temperature lipase production and enzymatic properties of Aspergillus Niger. Iran J Chem Chem Eng. 2021. DOI:https://doi.org/10.30492/IJCCE.2021.529010.4694.
  • Abdoli M, Angeli A, Bozdag M, et al. Synthesis and carbonic anhydrase I, II, VII, and IX inhibition studies with a series of benzo[d]thiazole-5-and 6-sulfonamides. J Enzyme Inhib Med Chem. 2017;32:1071–1078.
  • Devendar P, Yang GF. Sulfur-containing agrochemicals. Top Curr Chem. 2017;375:82.
  • Feng M, Tang B, Liang S H, et al. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem. 2016;16:1200–1216.
  • Scott KA, Njardarson JT. Analysis of US FDA-approved drugs containing sulfur atoms. Top Curr Chem. 2018;376:5.
  • Gareau Y, Pellicelli J, Laliberté S, et al. Oxidation of aromatic and aliphatic triisopropylsilanylsulfanyls to sulfonyl chlorides: preparation of sulfonamides. Tetrahedron Lett. 2003;44:7821–7824.
  • Deng X, Mani NS. A facile, environmentally benign sulfonamide synthesis in water. Green Chem. 2006;8:835–838.
  • Jafarpour M, Rezaeifard A, Aliabadi M. Catalytic activity of silica gel in the synthesis of sulfonamides under mild and solvent-free conditions. Appl Catal A-Gen. 2009;358:49–53.
  • Tang X, Huang L, Qi C, et al. Copper-catalyzed sulfonamides formation from sodium sulfinates and amines. ChemComm. 2013;49:6102–6104.
  • Chantarasriwong O, Jang DO, Chavasiri W. A practical and efficient method for the preparation of sulfonamides utilizing Cl3CCN/PPh3. Tetrahedron Lett. 2006;47:7489–7492.
  • De Luca L, Giacomelli G. An easy microwave-assisted synthesis of sulfonamides directly from sulfonic acids. J Org Chem. 2008;73:3967–3969.
  • Caddick S, Wilden JD, Judd DB. Direct synthesis of sulfonamides and activated sulfonate esters from sulfonic acids. J Am Chem Soc. 2004;126:1024–1025.
  • Mourya SK, Bose D, Durgbanshi A, et al. Determination of some banned aromatic amines in waste water using micellar liquid chromatography. Anal Methods. 2011;3:2032–2040.
  • Deng W, Liu L, Zhang C, et al. Copper-catalyzed cross-coupling of sulfonamides with aryl iodides and bromides facilitated by amino acid ligands. Tetrahedron Lett. 2005;46:7295–7298.
  • Wang X, Guram A, Ronk M, et al. Copper-catalyzed N-arylation of sulfonamides with aryl bromides under mild conditions. Tetrahedron Lett. 2012;53:7–10.
  • Shekhar S, Dunn TB, Kotecki BJ, et al. A general method for palladium-catalyzed reactions of primary sulfonamides with aryl nonaflates. J Org Chem. 2011;76:4552–4563.
  • Nasrollahzadeh M, Rostami-Vartooni A, Ehsani A, et al. Fabrication, characterization and application of nanopolymer supported copper (II) complex as an effective and reusable catalyst for the C-N bond cross-coupling reaction of sulfonamides with arylboronic acids in water under aerobic conditions. J Mol Catal A-Chem. 2014;387:123–129.
  • Nasrollahzadeh M, Ehsani A, Maham M. Copper-catalyzed N-arylation of sulfonamides with boronic acids in water under ligand-free and aerobic conditions. Synlett. 2014;25:505–508.
  • Dong W, Liu C, Ma X, et al. Copper-catalyzed denitrogenative N-arylation of sulfoximines and sulfonamides with arylhydrazines. Tetrahedron. 2019;75:3886–3893.
  • Li Y, Wang S, Xu T, et al. Novel designs for the reliability and safety of supercritical water oxidation process for sludge treatment. Proc Saf Environ Prot. 2021;149:385–398.
  • Moon SY, Koh M, Rathwell K, et al. Copper-catalyzed N-arylation of tert-butyl N-sulfonylcarbamates with diaryliodonium salts at room temperature. Tetrahedron. 2015;71:1566–1573.
  • Zhang W, Xie J, Rao B, et al. Iron-catalyzed N-arylsulfonamide formation through directly using nitroarenes as nitrogen sources. J Org Chem. 2015;80:3504–3511.
  • Jabarullah NH, Jermsittiparsert K, Melnikov PA, et al. Methods for the direct synthesis of thioesters from aldehydes: a focus review. J Sulfur Chem. 2020;4:96–115.
  • Lu X, Yi Q, Pan X, et al. Aryl sulfonyl chlorides and sodium aryl sulfinates: non-volatile, non-stench, and non-toxic aryl thiol surrogates for direct aryl-sulfenylation of C–H bonds. J Sulfur Chem. 2020;41:210–228.
  • Hassanpour A, Ghavidelaghdam E, Ebadi AG. Progress and recent trends in the direct selenocyanation of (hetero) aromatic C-H bonds. RSC Adv. 2021;11:22305–22316. DOI:https://doi.org/10.1039/D1RA01035B.
  • Wang X Ping W, Ebadi AG, et al. Hydroxymethylation of unsaturated hydrocarbons with CO2: An overview. J CO2 Util. 2021;50:101592.
  • Wang Q, Sun S, Zhang X. Influence of air oxidative and non-oxidative torrefaction on the chemical properties of corn stalk. Biores Technol. 2021. DOI:https://doi.org/10.1016/j.biortech.2021.125120.
  • Chen R, Cheng Y, Wang P. Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive selfassembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers metrics. The Sci Tot Environ. 2021;756:143871.
  • Ebrahimiasl S, Behmagham F, Abdolmohammadi S, et al. Recent advances in the application of nanometal catalysts for Glaser coupling. Curr Org Chem. 2019;23:2489–2503.
  • Wang J, Su P, Abdolmohammadi S, et al. A walk around the application of nanocatalysts for cross-dehydrogenative coupling of C–H bonds. RSC Adv. 2019;9:41684–41702.
  • Yang Y, Zhang D, Vessally E. Direct amination of aromatic C-H bonds with free amines. Top Curr Chem. 2020;378:37.
  • Sarhandi S, Daghagheleh M, Vali M, et al. New insight in Hiyama cross-coupling reactions: decarboxylative, denitrogenative and desulfidative couplings: a review. Chem Rev Lett. 2018;1:9–15.
  • Daghagheleh M, Vali M, Rahmani Z, et al. A review on the CO2 incorporation reactions using arynes. Chem Rev Lett. 2018;1:23–30.
  • Shahidi S, Farajzadeh P, Ojaghloo P, et al. Nanocatalysts for conversion of aldehydes/alcohols/amines to nitriles: a review. Chem Rev Lett. 2018;1:37–44.
  • Mohammadi S, Musavi M, Abdollahzadeh F, et al. Application of nanocatalysts in C-Te cross-coupling reactions: an overview. Chem Rev Lett. 2018;1:49–55.
  • Farshbaf S, Sreerama L, Khodayari T, et al. Propargylic ureas as powerful and versatile building blocks in the synthesis of various key medicinal heterocyclic compounds. Chem Rev Lett. 2018;1:56–67.
  • Majedi S, Majedi S, Behmagham F. Recent advances in decarboxylative nitration of carboxylic acids. Chem Rev Lett. 2019;2:187–192.
  • Mahmood E A, Azizi B, Majedi S. Decarboxylative cyanation and azidation of carboxylic acids: an overview. Chem Rev Lett. 2020;3:2–8.
  • Eid N, Karamé I, Andrioletti B. Straightforward and sustainable synthesis of sulfonamides in water under mild conditions. Eur J Org Chem. 2018: 5016–5022.
  • Li X, Chen F, Lu GP. Fe-based metal-organic frameworks for the synthesis of N-arylsulfonamides via the reactions of sodium arylsulfinates or arylsulfonyl chlorides with nitroarenes in water. Tetrahedron Lett. 2018;59:4226–4230.
  • Yang B, Lian C, Yue G, et al. Synthesis of N-arylsulfonamides through a Pd-catalyzed reduction coupling reaction of nitroarenes with sodium arylsulfinates. Org Biomol Chem. 2018;16:8150–8154.
  • Liu S, Chen R, Zhang J. Copper-catalyzed redox coupling of nitroarenes with sodium sulfinates. Molecules. 2019;24:1407.
  • Jiang J, Zeng S, Chen D, et al. Synthesis of N-arylsulfonamides via Fe-promoted reaction of sulfonyl halides with nitroarenes in an aqueous medium. Org Biomol Chem. 2018;16:5016–5020.
  • Zhang K, Zhang Y, Liu Q, et al. Metal-free one-pot synthesis of sulfonamides from nitroarenes and arylsulfonyl chlorides in water. Chem Select. 2019;4:7413–7415.
  • Zhao F, Li B, Huang H, et al. Palladium-catalyzed N-arylsulfonamide formation from arylsulfonyl hydrazides and nitroarenes. RSC Adv. 2016;6:13010–13013.
  • Mokhtari B, Nematollahi D, Salehzadeh H. Paired electrochemical conversion of nitroarenes to sulfonamides, diarylsulfones and bis (arylsulfonyl) aminophenols. Green Chem. 2018;20:1499–1505.
  • Mokhtari B, Nematollahi D, Salehzadeh H. A tunable pair electrochemical strategy for the synthesis of new benzenesulfonamide derivatives. Sci Rep. 2019;9:4537.
  • Marset X, Torregrosa-Crespo J, Martínez-Espinosa RM, et al. Multicomponent synthesis of sulfonamides from triarylbismuthines, nitro compounds and sodium metabisulfite in deep eutectic solvents. Green Chem. 2019;21:4127–4132.
  • Chen K, Chen W, Han B, et al. Sequential C–S and S–N coupling approach to sulfonamides. Organic Lett. 2020;22:1841–1845.
  • Wang X, Yang M, Kuang Y, et al. Copper-catalyzed synthesis of sulfonamides from nitroarenes via the insertion of sulfur dioxide. ChemComm. 2020;56:3437–3440.
  • Li Y, Wang M, Jiang X. Straightforward sulfonamidation via metabisulfite-mediated cross coupling of nitroarenes and boronic acids under transition-metal-free conditions. Chin J Chem. 2020;38:1521–1525.
  • Wang X, Lin Y, Liu JB, et al. Nitrosoarenes as the nitrogen source for the generation of sulfonamides with the insertion of sulfur dioxide under metal-free conditions. Chin J Chem. 2020;38:1098–1102.
  • Nguyen TB, Retailleau P. Redox-neutral access to sultams from 2-nitrochalcones and sulfur with complete atom economy. Org Lett. 2017;19:3879–3882.
  • Nguyen TB, Retailleau P. DIPEA-promoted reaction of 2-nitrochalcones with elemental sulfur: an unusual approach to 2-benzoylbenzothiophenes. Org Lett. 2017;19:4858–4860.
  • Nguyen TB. Recent advances in the synthesis of heterocycles via reactions involving elemental sulfur. Adv Synth Catal. 2020;362:3448–3484.
  • Vessally E, Mohammadi S, Abdoli M, et al. Convenient and robust metal-free synthesis of benzazole-2-ones through the reaction of aniline derivatives and sodium cyanate in aqueous medium. Iran J Chem Chem Eng. 2020;39:11–19.
  • Pan X, Wei J, Zou M, et al. Products distribution and contribution of (de)chlorination, hydroxylation and coupling reactions to 2,4-dichlorophenol removal in seven oxidation systems. Water Research (Oxford). 2021;194:116916.
  • Ahmadizadegan H. Polyester/SiO2 nanocomposites: gas permeation, mechanical, thermal and morphological study of membranes. Iran J Chem Chem Eng. 2020;39:33–47.
  • Zou M, Qi Y, Qu R, et al. Effective degradation of 2,4-dihydroxybenzophenone by zero–valent iron powder (Fe0)-activated persulfate in aqueous solution: kinetic study, product identification and theoretical calculations. Sci Total Environ. 2021;771:144743–144743.
  • Jamil M, Sultana N, Sarfraz M, et al. Diamines derived transition metal complexes of naproxen: synthesis, characterization and urease inhibition studies. Iran J Chem Chem Eng. 2020;39:45–57.
  • Cao W, Wu N, Qu R, et al. Oxidation of benzophenone-3 in aqueous solution by potassium permanganate: kinetics, degradation products, reaction pathways, and toxicity assessment. Environ Sci Pollut Res Int. 2021. DOI:https://doi.org/10.1007/s11356-021-12913-x
  • Gupta A, Dangi V, Baral M, et al. Development of a polyfunctional dipodal Schiff base: an efficient chelator and a potential zinc sensor. Iran J Chem Chem Eng. 2019;38:141–156.
  • Wang H, Cui J, Zhao Y, et al. Highly efficient separation of 5-hydroxymethylfurfural from imidazolium-based ionic liquids. Green Chem. 2021;23:405–411.
  • Ahmadi S, Hosseinian A, Kheirollahi Nezhad PD, et al. Nano-Ceria (CeO2): an efficient catalyst for the multi-component synthesis of a variety of key medicinal heterocyclic compounds. Iran J Chem Chem Eng. 2019;38:1–19.
  • Chen R, Cheng Y, Wang P, et al. Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions. Chem Eng J. 2021;421. DOI:https://doi.org/10.1016/j.cej.2021.129682
  • Yang Y, Chen H, Zou X, et al. Flexible carbon-fiber/semimetal bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts. ACS Appl Mat Inter. 2020;12:24845-24854.
  • Zhu Q, Liu L, Wang R, et al. A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. J Hazard Mat. 2021;403:123941.
  • Wang N, Sun X, Zhao Q, et al. Leachability and adverse effects of coal fly ash: A review. J Hazard Mat. 2020;396:122725.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.