100
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ultrasound accelerated solvent-free condensation reaction of rhodanines and carbonyls using Amberlyst 26 as a green and efficient base catalyst

, , , ORCID Icon &
Pages 447-461 | Received 20 Sep 2022, Accepted 13 Jan 2023, Published online: 02 Feb 2023

References

  • Zinglé C, Tritsch D, Grosdemange-Billiard C, et al. Catechol–rhodanine derivatives: Specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR). Bioorg Med Chem. 2014;22:3713–3719. doi:10.1016/j.bmc.2014.05.004.
  • Shafii N, Khoobi M, Amini M, et al. Synthesis and biological evaluation of 5-benzylidenerhodanine-3-acetic acid derivatives as AChE and 15-LOX inhibitors. J Enzyme Inhib Med Chem. 2015;30:389–395. doi:10.3109/14756366.2014.940935.
  • Krátký M, Vinšová J, Stolaříková J. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg Med Chem. 2017;25(6):1839–1845. doi:10.1016/j.bmc.2017.01.045.
  • Brvar M, Perdih A, Hodnik V, et al. In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B. Bioorg Med Chem. 2012;20:2572–2580. doi:10.1016/j.bmc.2012.02.052.
  • Tomašić T, Zidar N, Kovač A, et al. 5-benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial mur ligases. ChemMedChem. 2010;5:286–295. doi:10.1002/cmdc.200900449.
  • Smith TK, Young BL, Denton H, et al. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorganic Med Chem Lett. 2009;19:1749–1752. doi:10.1016/j.bmcl.2009.01.083.
  • Dolezel J, Hirsova P, Opletalova V, et al. Rhodanineacetic acid derivatives as potential drugs: preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic acids. Molecules. 2009;14:4197–4212. doi:10.3390/molecules14104197.
  • Alegaon SG, Alagawadi KR, Sonkusare PV, et al. Novel imidazo[2,1-b][1,3,4]thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agent. Bioorganic Med Chem Lett. 2012;22:1917–1921. doi:10.1016/j.bmcl.2012.01.052.
  • Singh AK, Tripathi AC, Tewari A, et al. Design and microwave facilitated green synthesis of 2-[4-(3-carboxymethyl, methoxy carbonylmethyl-2,4-dioxo and 4-oxo-2-thioxo-thiazolidin-5-ylidenemethyl)-phenoxy]−2 and 3-methylpropionic acid ethyl ester derivatives: a novel structural class of antidyslipidemic agents. Med Chem Res. 2017;26:1535–1549. doi:10.1007/s00044-017-1875-0.
  • Ben-Alloum A, Bakkas S, Bougrin K, Mohamed Soufiaoui E. Synthèse de nouvelles spiro-rhodanine-pyrazolines par addition dipolaire-1,3 de la diphénylnitrilimine sur quelques 5-arylidènerhodanines en ‘milieu sec’ et sous irradiation micro-ondeSynthèse de nouvelles spiro-rhodanine-pyrazolines par addition dipolaire-1,3 de la diphe′nylnitrilimine sur quelques 5-arylidènerhodanines en ‘milieu sec’ et sous irradiation micro-onde. New J Chem. 1998;22:809–812. doi:10.1039/a803447h
  • Sing WT, Lee CL, Yeo SL, et al. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorganic Med Chem Lett. 2001;11:91–94. doi:10.1016/S0960-894X(00)00610-7.
  • Zhou JF, Song YZ, Zhu FX, et al. Facile synthesis of 5-benzylidene rhodamine derivatives under microwave irradiation. Synth Commun. 2006;36:3297–3303. doi:10.1080/00397910600941166.
  • Wang H, Zeng J. Iodine catalysed synthesis of 5-(arylmethylidene)rhodanines by grinding under solvent-free conditions. J Chem Res. 2009;2009:374–376. doi:10.3184/030823409X460696.
  • Talele TT, Arora P, Kulkarni SS, et al. Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem. 2010;18:4630–4638. doi:10.1016/j.bmc.2010.05.030.
  • Opletalova V, Dolezel J, Kralova K, et al. Synthesis and characterization of (Z)-5-arylmethylidene-rhodanines with photosynthesis-inhibiting properties. Molecules. 2011;16:5207–5227. doi:10.3390/molecules16065207.
  • Suresh JSS. ZnO Nanobelts: An efficient catalyst for synthesis of 5-arylidine-2,4-thiazolidinediones and 5-arylidine-rhodanines. Int J Org Chem. 2012;02:305–310. doi:10.4236/ijoc.2012.223042.
  • Han L, Wu T, Zhou Z. A simple and green procedure for the synthesis of 5-arylidenerhodanines catalyzed by diammonium hydrogen phosphate in water. Sci World J. 2013;2013:1–4.
  • Shariati N, Baharfar R. An efficient one-pot synthesis of 2-amino-5-arylidenethiazol-4-ones catalyzed by MgO nanoparticles. J Chin Chem Soc. 2014;61:337–340. doi:10.1002/jccs.201300425.
  • Gadekar SP, Dipake SS, Gaikwad ST, et al. Solid acid TS-1 catalyst: an efficient catalyst in Knoevenagel condensation for the synthesis of 5-arylidene-2,4-thiazolidinediones/rhodanines in aqueous medium. Res Chem Intermed. 2018;44:7509–7518. doi:10.1007/s11164-018-3570-2.
  • Le ZG, Ni K, Guo LT, et al. The condensation reaction of 4-nitrobenzaldehyde and rhodanine catalyzed by papain. Adv Mater Res. 2014;830:111–114.
  • Zhou J-F, Zhu F-X, Song Y-Z, et al. Synthesis of 5-arylalkylidenerhodanines catalyzed by tetrabutylammonium bromine in water under microwave irradiation. Arkivoc. 2006;14:175–180.
  • Gong K, He Z-W, Xu Y, et al. Green synthesis of 5-benzylidene rhodanine derivatives catalyzed by 1-butyl-3-methyl imidazolium hydroxide in water. Monatsh Chem. 2008;139:913–915. doi:10.1007/s00706-008-0871-y.
  • Alizadeh A, Khodaei MM, Eshghi A. A solvent-free protocol for the green synthesis of arylalkylidene rhodanines in a task-specific ionic liquid. Can J Chem. 2010;88:514–518. doi:10.1139/V10-011.
  • Sandhu JS. Ultrasound-assisted synthesis of 2, 4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac]. Bioorganic Med Chem Lett. 2013;3:1–6. doi:10.1186/2191-2858-3-1.
  • Le HG, Ngo TTD, Thach UD, et al. Synthesis of 5-arylidene-3-methylrhodanines catalyzed by 1-butyl-3-methylimidazolium chloride in water under microwave irradiation condition. Sci Tech Dev J. 2016;19:58–63.
  • Subhedar DD, Shaikh MH, Nawale L, et al. Novel tetrazoloquinoline–rhodanine conjugates: highly efficient synthesis and biological evaluation. Bioorg Med Chem Lett. 2016;26:2278–2283. doi:10.1016/j.bmcl.2016.03.045.
  • Subhedar DD, Shaikh MH, Nawale L, et al. [Et3NH][HSO4] catalyzed efficient synthesis of 5-arylidene-rhodanine conjugates and their antitubercular activity. Res Chem Intermed. 2016;42:6607–6626. doi:10.1007/s11164-016-2484-0.
  • Molnar M, Brahmbhatt H, Rastija V, et al. Environmentally friendly approach to Knoevenagel condensation of rhodanine in choline chloride: Urea deep eutectic solvent and QSAR studies on their antioxidant activity. Molecules. 2018;23:1897. doi:10.3390/molecules23081897.
  • Veisi H, Vafajoo Z, Maleki B, et al. Facile and convenient synthesis of 5-arylalkylidenerhodanines by electrocatalytic crossed aldol condensation. Phosphorus Sulfur Silicon Relat Elem. 2013;188:672–677. doi:10.1080/10426507.2012.717134.
  • Tamaddon F, Pouramini F. Amberlyst A26 OH as a recyclable catalyst for hydration of nitriles and water-based synthesis of 4 (1H)-quinazolinones from 2-aminobenzonitrile and carbonyl compounds. Synlett. 2014;25:1127–1131. doi:10.1055/s-0033-1340986.
  • Di GM, Marchionna M. Acidic and basic ion exchange resins for industrial applications. J Mol Catal A Chem. 2001;177(1):33–40. doi:10.1016/S1381-1169(01)00307-7.
  • Pyrlik A, Hoelderich WF, Müler K, et al. Dimethyl carbonate via transesterification of propylene carbonate with methanol over ion exchange resins. Appl Catal B Environ. 2012;125:486–491. doi:10.1016/j.apcatb.2011.09.033.
  • Di Girolamo M, Marchionna M. Acidic and basic ion exchange resins for industrial applications. J Mol Catal A Chem. 2001;177:33–40. doi:10.1016/S1381-1169(01)00307-7.
  • Hardej D, Jr A, Khadtare CR, et al. The synthesis of phenylalanine-derived C5-substituted rhodanines and their activity against selected methicillin-resistant Staphylococcus aureus (MRSA) strains. Eur J Med Chem. 2010;45:5827–5832. doi:10.1016/j.ejmech.2010.09.045.
  • Singh SJ, Ahmad S, Chauhan SMS. 1-Butyl-3-methyl imidazolium acetate catalyzed synthesis of N-substituted-5-arylidene-rhodanines. J Heterocycl Chem. 2014;51:E129–E139. doi:10.1002/jhet.1904.
  • Singh SJ, Devib NS. Diacetoxyiodobenzene mediated oxidative dethionation of N-substituted 5-arylmethylidene rhodanines: an efficient synthesis of N-substituted 5-arylmethylidene thiazolidine-2, 4-diones. Arkivoc. 2017;4:137–144. doi:10.24820/ark.5550190.p009.848.
  • Volynets GP, Bdzhola VG, Golub AG, et al. Rational design of apoptosis signal-regulating kinase 1 inhibitors: Discovering novel structural scaffold. Eur J Med Chem. 2013;61:104–115. doi:10.1016/j.ejmech.2012.09.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.