54
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design of a fluorescent method by using ZnS QDs-gelatin nanocomposite for sensing toxic 2-mercaptobenzothiazole in water samples

ORCID Icon & ORCID Icon
Pages 408-421 | Received 14 Nov 2023, Accepted 15 Dec 2023, Published online: 22 Dec 2023

References

  • Liang SS, Shen PT, Shiue YL, et al. Development of a quantitative method for monitoring 2-mercaptobenzothiazole based on isotopic iodoacetamide and tandem MS. Current Anal Chem. 2020;16(7):947–954. doi:10.2174/1573411015666191114145109
  • Yu X, Liu Z, Wang Y, et al. Fabrication of corncob-derived biomass charcoal decorated g-C3N4 photocatalysts for removing 2-mercaptobenzothiazole. New J Chem. 2020;44:15908), doi:10.1039/D0NJ04057F
  • Asrariyan R, Elhami S. Development of a fast, simple, and sensitive colorimetric method to determine benzothiazole based on the plasmonic response of gold nanoparticles. Chem Pap. 2017;71:2301–2308. doi:10.1007/s11696-017-0224-6
  • Murawski A, Schmied-Tobies MIH, Schwedler G, et al. 2-Mercaptobenzothiazole in urine of children and adolescents in Germany–Human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Int J Hyg Environ Health. 2020;228:113540), doi:10.1016/j.ijheh.2020.113540
  • Dordievski S, Sovrlic Z, Urosevic T, et al. Preventing decomposition of 2-mercaptobenzothia-zole during gas chromatography analysis using programmable temperature vaporization injection. J Serb Chem Soc. 2017;82(10):1147–1153. doi:10.2298/JSC161114041D
  • Gries W, Küpper K, Leng G. Rapid and sensitive LC-MS-MS determination of 2-mercaptobenzothiazole a rubber additive in human urine. Anal Bioanal Chem. 2015;407:3417–3423. doi:10.1007/s00216-015-8533-5
  • Parham H, Khoshnam F. Solid phase extraction–preconcentration and high performance liquid chromatographic determination of 2-mercapto-(benzothiazole, benzoxazole and benzimidazole) using copper oxide nanoparticles. Talanta. 2013;114:90–94. doi:10.1016/j.talanta.2013.04.014
  • Qin W, Jiao F, Sun W, et al. Determination of mercaptobenzothiazole (MBT) in flotation liquors by solvent extraction and ultraviolet spectrometry. Ind Eng Chem Res. 2012;51(35):11538–11546. doi:10.1021/ie300410f
  • Jiang P, Qiu J, Gao Y, et al. Nontargeted identification and pre dicte d toxicity of new byproducts generated from UV treatment of water containing micropollutant 2-mercaptobenzothiazole. J Water Res. 2021;188:116542), doi:10.1016/j.watres.2020.116542
  • Parham H, Pourreza N, Marahel F. Resonance Rayleigh scattering method for determination of 2-mercaptobenzothiazole using gold nanoparticles probe. Spectrochim Acta A Mol Biomol Spectro. 2015;151:308–314. doi:10.1016/j.saa.2015.06.108
  • Marahel F. G-C3N4 nanosheets-based sensing interface for square-wave anodic stripping voltammetric detection of 2-mercaptobenzothiazole in water samples. Int J Environ Anal Chem. 2022;101:1–17. doi:10.1080/03067319.2021.1983557
  • Rafieipour P, Ghasempour Ardakani A, Jaafar Samimipour M, et al. Fabrication of a dye-based random laser using ZnS:Mn quantum dots and investigating the effects of their concentration. Iran J Phys Res. 2021;21(3):117–125. https://ijpr.iut.ac.ir/article_1712_c7ede9b3c67352491cd520238d147eeb.pdf.
  • Marahel F, Niknam L. Enhanced fluorescent sensing probe via PbS quantum dots functionalized with gelatin for sensitive determination of toxic bentazon in water samples. Drug Chem Toxicol. 2022;45(6):2245–2253. doi:10.1080/01480545.2021.1963761
  • Sh D, Marahel F. Determination of sulfacetamide in blood and urine using PbS quantum dots sensor and artificial neural networks. J Anal Chem. 2022;77(11):1448–1457. doi:10.1134/S1061934822110041
  • Salman BI, Hassan AI, Saraya RE, et al. Development of cysteine-doped MnO2 quantum dots for spectroluorimetric estimation of copper: applications in diferent matrices. Anal Bioanal Chem. 2023;415:5529–5538. doi:10.1007/s00216-023-04827-z
  • Qiu Z, Shu J, He Y, et al. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosens Bioelectron. 2017;87:18–24. doi:10.1016/j.bios.2016.08.003
  • Zh L, Sh L, Zhang K, et al. Optical transformation of a CdTe quantum dot-based paper sensor for a visual fluorescence immunoassay induced by dissolved silver ions. J Mater Chem B. 2017;5:826–833. doi:10.1039/C6TB03042D
  • Qiu Z, Shu J, Tang D. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum Dot-enzyme-impregnated paper. Anal Chem. 2017;89(9):5152–5160. doi:10.1021/acs.analchem.7b00989
  • Cai G, Yu Z, Ren R, et al. Exciton-plasmon interaction between AuNPs/graphene nanohybrids and CdS QDs/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen. ACS Sens. 2018;3(3):632–639. doi:10.1021/acssensors.7b00899
  • Vatanpour V, Karatas O, Amiri S, et al. Different metal-doped ZnS quantum dots photocatalysts for enhancing the permeability and antifouling performances of polysulfone membranes with and without UV irradiation. Chemosphere. 2022;294:133705), doi:10.1016/j.chemosphere.2022.133705
  • Sh L, Tang Y, Zhang K, et al. Wet NH3-triggered NH2-MIL-125(Ti) structural switch for visible fluorescence immunoassay impregnated on paper. Anal Chem. 2018;90(24):14121–14125. doi:10.1021/acs.analchem.8b04981
  • Sh C, Zh Y, Wang Y, et al. Block-polymer-restricted sub-nanometer Pt nanoclusters nanozyme-enhanced immunoassay for monitoring of cardiac troponin I. Anal Chem. 2023;95(38):14494–14501. doi:10.1021/acs.analchem.3c03249
  • Adel R, Sh E, Shokry A, et al. Nanocomposite of CuInS/ZnS and nitrogen-doped graphene quantum dots for cholesterol sensing. ACS Omega. 2021;6:2167–2176. doi:10.1021/acsomega.0c05416
  • Ghorbanian N, Abbasi F, Mani-Varnosfaderani A, et al. Novel hybrid ZnS: Mn2 + quantum dots/N-methylpolypyrrole fluorescence probe for determination of nitro-aromatic compounds in water samples by using multivariate chemometric methods. J Iran Chem Soc. 2023;20:10–16. doi:10.1007/s13738-023-02913-8
  • Ahmadi M, Geramizadegan A. Design of kinetic spectrophotometric method for sensing tartrazine color in real samples using sensor starch- capped ZnSNPs. J Appl Chem Res. 2023;17(3):82–96. https://journals.iau.ir/article_704526.html.
  • Jamalipour P, Choobkar N, Abrishamkar M, et al. Design of fluorescent method for sensing toxic diazinon in water samples using PbS quantum dots-based gelatin. J Environ Sci Health B. 2022;57(9):720–728. doi:10.1080/03601234.2022.2103936
  • Guo C, Cao K, Zhang Z, et al. Zns quantum dots/gelatin nanocomposites with a thermo-responsive Sol–Gel transition property produced by a facile and green One-Pot method. ACS Sustain Chem Eng. 2020;8(11):4346–4352. doi:10.1021/acssuschemeng.9b06395
  • Haque M, Konthoujam I, Lyndem S, et al. Formation of ZnS quantum dots using green tea extract: applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J Mater Chem B. 2023;11:1998–2015. doi:10.1039/D2TB02265F
  • Pournamdari E, Niknam L. Resonance Rayleigh scattering technique-using chitosan-capped gold nanoparticles, approaches spectrofluorimetric method for determination of bentazone residual in water samples. J Environ Sci Health B. 2023;58(10):628–636. doi:10.1080/03601234.2023.2262348
  • Can MHT, Kadam US, Trinh KH, et al. Engineering novel aptameric fluorescent biosensors for analysis of the neurotoxic environmental contaminant insecticide diazinon from real vegetable and fruit samples. Front Biosci (Landmark Ed). 2022;27(3):092–104. doi:10.31083/j.fbl2703092
  • Rajabi HR, Farsi M. Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: Synthesis, characterization, and application for dye decolorization. J Mol Catal A Chem. 2015;399:53–61. doi:10.1016/j.molcata.2015.01.029
  • Gao Y, Zh Y, Huang L, et al. Photoinduced electron transfer modulated photoelectric signal: toward an organic small molecule-based photoelectrochemical platform for formaldehyde detection. Anal Chem. 2023;95(23):9130–9137. doi:10.1021/acs.analchem.3c01690
  • Lin Y, Zhou Q, Tang D, et al. Silver nanolabels-assisted Ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-On photoelectrochemical immunoassay of mycotoxins. Anal. Chem. 2016;88(15):7858–7866. doi:10.1021/acs.analchem.6b02124
  • Huang L, Cai G, Zeng R, et al. Contactless photoelectrochemical biosensor based on the ultraviolet–assisted Gas sensing interface of three-dimensional SnS2 nanosheets: from mechanism reveal to practical application. Anal Chem. 2022;94(26):9487–9495. doi:10.1021/acs.analchem.2c02010
  • Esmaile N, Sohrabi MR, Motiee F. A simple, selective, and fast colorimetric assay using gold nanoparticles for trace determination of tolyltriazole in aqueous media. Iran J Chem Chem Eng. 2020;40(1):49–56. doi:10.30492/IJCCE.2019.37181
  • Esmaile N, Sh M, Shabaneh S, et al. A simple colorimetric method using gold nanoparticles for the detection of 2-mercaptobenzothiazole in aqueous solutions, soil and rubber. Int J Environ Anal Chem. 2020;100(6):1–17. doi:10.1080/03067319.2020.1779241

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.