560
Views
38
CrossRef citations to date
0
Altmetric
Review

Emerging site-specific bioconjugation strategies for radioimmunotracer development

, , &
Pages 1149-1163 | Received 01 Feb 2016, Accepted 05 Apr 2016, Published online: 13 May 2016

References

  • Rijpkema M, Boerman OC, Oyen WJG. Tumor targeting using radiolabeled antibodies for image-guided drug delivery. Curr Drug Targets. 2015;16:625–633.
  • Freise AC, Wu AM. In vivo imaging with antibodies and engineered fragments. Mol Immunol. 2015;67:142–152.
  • Viola-Villegas NT, Sevak KK, Carlin SD, et al. Noninvasive imaging of PSMA in prostate tumors with Zr-89-labeled huJ591 engineered antibody fragments: the faster alternatives. Mol Pharmaceutics. 2014;11:3965–3973.
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally-occuring antibodies devoid of light-chains. Nature. 1993;363:446–448.
  • De Vos J, Devoogdt N, Lahoutte T, et al. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert Opin Biol Ther. 2013;13:1149–1160.
  • Chakravarty R, Goel S, Cai WB. Nanobody: the “Magic Bullet” for molecular imaging? Theranostics. 2014;4:386–398.
  • Zheng F, Put S, Bouwens L, et al. Molecular imaging with macrophage CRIg-targeting nanobodies for early and preclinical diagnosis in a mouse model of rheumatoid arthritis. J Nucl Med. 2014;55:824–829.
  • Blykers A, Schoonooghe S, Xavier C, et al. PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments. J Nucl Med. 2015;56:1265–1271.
  • Bala G, Blykers A, Xavier C, et al. Targeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur Heart J Cardiovasc Imaging. 2016. Epub 2016 Jan 22. doi:10.1093/ehjci/jev346.
  • Keyaerts M, Xavier C, Heemskerk J, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57:27–33.
  • Houghton JL, Zeglis BM, Abdel-Atti D, et al. Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc Natl Acad Sci. 2015;112:15850–15855.
  • Lütje S, van Rij CM, Franssen GM, et al. Targeting human prostate cancer with 111In-labeled D2B IgG, F(ab′)2 and Fab fragments in nude mice with PSMA-expressing xenografts. Contrast Media Mol Imaging. 2015;10:28–36.
  • Tavaré R, Escuin-Ordinas H, Mok S, et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 2016;76:73–82.
  • Alt K, Paterson BM, Ardipradja K, et al. Single-chain antibody conjugated to a cage amine chelator and labeled with positron-emitting copper-64 for diagnostic imaging of activated platelets. Mol Pharmaceutics. 2014;11:2855–2863.
  • Massa S, Vikani N, Betti C, et al. Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities. Contrast Media Mol Imaging 2016: published online 5 May 2016, doi:10.1002/cmmi.1696.
  • Deonarain MP, Yahioglu G, Stamati I, et al. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov. 2015;10:463–481.
  • Agarwal P, Bertozzi CR. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem. 2015;26:176–192.
  • Panowksi S, Bhakta S, Raab H, et al. Site-specific antibody drug conjugates for cancer therapy. mAbs. 2014;6:34–45.
  • Wang LT, Amphlett G, Blattler WA, et al. Structural characterization of the maytansinoid - monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci. 2005;14:2436–2446.
  • Kijanka M, Warnders FJ, El Khattabi M, et al. Rapid optical imaging of human breast tumour xenografts using anti-HER2 VHHs site-directly conjugated to IRDye 800CW for image-guided surgery. Eur J Nucl Med Mol Imaging. 2013;40:1718–1729.
  • Sun MMC, Beam KS, Cerveny CG, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem. 2005;16:1282–1290.
  • Hamblett KJ, Senter PD, Chace DF, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10:7063–7070.
  • Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26:925–932.
  • Strop P, Liu S-H, Dorywalska M, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013;20:161–167.
  • Drake PM, Albers AE, Baker J, et al. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem. 2014;25:1331–1341.
  • Alley SC, Benjamin DR, Jeffrey SC, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem. 2008;19:759–765.
  • Shen B-Q, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol. 2012;30:184–189.
  • Tian F, Lu Y, Manibusan A, et al. A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci. 2014;111:1766–1771.
  • Dorywalska M, Strop P, Melton-Witt JA, et al. Effect of attachment site on stability of cleavable antibody drug conjugates. Bioconjug Chem. 2015;26:650–659.
  • Dorywalska M, Strop P, Melton-Witt JA, et al. Site-dependent degradation of a non-cleavable auristatin-based linker-payload in rodent plasma and its effect on ADC efficacy. PLoS One. 2015;10:e0132282.
  • Junutula JR, Bhakta S, Raab H, et al. Rapid identification of reactive cysteine residues for site-specific labeling of antibody-fabs. J Immunol Methods. 2008;332:41–52.
  • Tinianow JN, Gill HS, Ogasawara A, et al. Site-specifically Zr-89-labeled monoclonal antibodies for immunopet. Nucl Med Biol. 2010;37:289–297.
  • Boswell CA, Marik J, Elowson MJ, et al. Enhanced tumor retention of a radiohalogen label for site-specific modification of antibodies. J Med Chem. 2013;56:9418–9426.
  • Chatalic KLS, Veldhoven-Zweistra J, Bolkestein M, et al. A novel in-111-labeled anti-prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer. J Nucl Med. 2015;56:1094–1099.
  • Sadeqzadeh E, Rahbarizadeh F, Ahmadvand D, et al. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells. J Controlled Release. 2011;156:85–91.
  • Vugmeyster Y, Entrican CA, Joyce AP, et al. Pharmacokinetic, biodistribution, and biophysical profiles of TNF nanobodies conjugated to linear or branched poly(ethylene glycol). Bioconjug Chem. 2012;23:1452–1462.
  • Tavare R, Wu WH, Zettlitz KA, et al. Enhanced immunoPET of ALCAM-positive colorectal carcinoma using site-specific Cu-64-DOTA conjugation. Protein Eng, Des Sel. 2014;27:317–324.
  • Massa S, Xavier C, De Vos J, et al. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug Chem. 2014;25:979–988.
  • van Brussel ASA, Adams A, Oliveira S, et al. Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imaging Biol. 2015. Epub 2015 Nov 20. doi:10.1007/s11307-015-0909-6.
  • Pleiner T, Bates M, Trakhanov S, et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife. 2015;4:e11349.
  • Olafsen T, Cheung CW, Yazaki PJ, et al. Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng Des Sel. 2004;17:21–27.
  • White JB, Boucher DL, Zettlitz KA, et al. Development and characterization of an αvβ6-specific diabody and a disulfide-stabilized αvβ6-specific cys-diabody. Nucl Med Biol. 2015;42:945–957.
  • Lyon RP, Setter JR, Bovee TD, et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol. 2014;32:1059–1062.
  • Patterson JT, Asano S, Li X, et al. Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconjug Chem. 2014;25:1402–1407.
  • Badescu G, Bryant P, Bird M, et al. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem. 2014;25:1124–1136.
  • Nunes JPM, Morais M, Vassileva V, et al. Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC). Chem Commun. 2015;51:10624–10627.
  • Maruani A, Smith MEB, Miranda E, et al. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun. 2015;6:6645.
  • Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog. 2005;21:11–16.
  • Jeong JM, Lee J, Paik CH, et al. Site-specific Tc-99m-labeling of antibody using dihydrazinophthalazine (DHZ) conjugation to Fc region of heavy chain. Arch Pharm Res. 2004;27:961–967.
  • Bejot R, Goggi J, Moonshi SS, et al. Aminooxy-functionalized DOTA for radiolabeling of oxidized antibodies: evaluation of site-specific In-111-labeled trastuzumab. J Labelled Comp Radiopharm. 2012;55:346–353.
  • Zhou Q, Stefano JE, Manning C, et al. Site-specific antibody–drug conjugation through glycoengineering. Bioconjug Chem. 2014;25:510–520.
  • Beck A, Wagner-Rousset E, Ayoub D, et al. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85:715–736.
  • Boeggeman E, Ramakrishnan B, Pasek M, et al. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem. 2009;20:1228–1236.
  • Zeglis BM, Davis CB, Aggeler R, et al. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug Chem. 2013;24:1057–1067.
  • Zhu ZY, Ramakrishnan B, Li JY, et al. Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. mAbs. 2014;6:1190–1200.
  • Zeglis BM, Davis CB, Abdel-Atti D, et al. Chemoenzymatic strategy for the synthesis of site-specifically labeled immunoconjugates for multimodal PET and optical imaging. Bioconjug Chem. 2014;25:2123–2128.
  • van Geel R, Wijdeven MA, Heesbeen R, et al. Chemoenzymatic conjugation of toxic payloads to the globally conserved n-glycan of native mAbs provides homogeneous and highly efficacious antibody–drug conjugates. Bioconjug Chem. 2015;26:2233–2242.
  • Ramakrishnan B, Boeggeman E, Manzoni M, et al. Multiple site-specific in vitro labeling of single-chain antibody. Bioconjug Chem. 2009;20:1383–1389.
  • Ramakrishnan B, Boeggeman E, Qasba PK. Novel method for in vitro O-glycosylation of proteins: application for bioconjugation. Bioconjug Chem. 2007;18:1912–1918.
  • Fontana A, Spolaore B, Mero A, et al. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev. 2008;60:13–28.
  • Spolaore B, Raboni S, Molina AR, et al. Local unfolding is required for the site-specific protein modification by transglutaminase. Biochemistry. 2012;51:8679–8689.
  • Strop P. Versatility of microbial transglutaminase. Bioconjug Chem. 2014;25:855–862.
  • Feige MJ, Nath S, Catharino SR, et al. Structure of the murine unglycosylated IgG1 Fc fragment. J Mol Biol. 2009;391:599–608.
  • Jeger S, Zimmermann K, Blanc A, et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed. 2010;49:9995–9997.
  • Grunberg J, Jeger S, Sarko D, et al. DOTA-functionalized polylysine: a high number of DOTA chelates positively influences the biodistribution of enzymatic conjugated anti-tumor antibody chCE7agl. PLoS One. 2013;8:e60350.
  • Dennler P, Chiotellis A, Fischer E, et al. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody–drug conjugates. Bioconjug Chem. 2014;25:569–578.
  • Farias SE, Strop P, Delaria K, et al. Mass spectrometric characterization of transglutaminase based site-specific antibody-drug conjugates. Bioconjug Chem. 2014;25:240–250.
  • Dennler P, Bailey LK, Spycher PR, et al. Microbial transglutaminase and c-myc-tag: a strong couple for the functionalization of antibody-like protein scaffolds from discovery platforms. Chembiochem. 2015;16:861–867.
  • D’Huyvetter M, Vincke C, Xavier C, et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4:708–720.
  • Takazawa T, Kamiya N, Ueda H, et al. Enzymatic labeling of a single chain variable fragment of an antibody with alkaline phosphatase by mircobial transglutaminase. Biotechnol Bioeng. 2004;86:399–404.
  • Plagmann I, Chalaris A, Kruglov AA, et al. Transglutaminase-catalyzed covalent multimerization of camelidae anti-human TNF single domain antibodies improves neutralizing activity. J Biotechnol. 2009;142:170–178.
  • Siegmund V, Schmelz S, Dickgiesser S, et al. Locked by design: a conformationally constrained transglutaminase tag enables efficient site-specific conjugation. Angew Chem Int Ed. 2015;54:13420–13424.
  • Mazmanian SK, Liu G, Hung TT, et al. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science. 1999;285:760–763.
  • Ton-That H, Liu G, Mazmanian SK, et al. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci U S A. 1999;96:12424–12429.
  • Baer S, Nigro J, Madej MP, et al. Comparison of alternative nucleophiles for Sortase A-mediated bioconjugation and application in neuronal cell labelling. Org Biomol Chem. 2014;12:2675–2685.
  • Paterson BM, Alt K, Jeffery CM, et al. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. Angew Chem Int Ed. 2014;53:6115–6119.
  • Mohlmann S, Mahlert C, Greven S, et al. In vitro sortagging of an antibody fab fragment: overcoming unproductive reactions of sortase with water and lysine side chains. Chembiochem. 2011;12:1774–1780.
  • Rashidian M, Keliher EJ, Bilate AM, et al. Noninvasive imaging of immune responses. Proc Natl Acad Sci U S A. 2015;112:6146–6151.
  • Chen I, Dorr BM, Liu DR. A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A. 2011;108:11399–11404.
  • Alt K, Paterson BM, Westein E, et al. A versatile approach for the site-specific modification of recombinant antibodies using a combination of enzyme-mediated bioconjugation and click chemistry. Angew Chem Int Ed. 2015;54:7515–7519.
  • Rashidian M, Keliher EJ, Dougan M, et al. Use of 18F-2-fluorodeoxyglucose to label antibody fragments for immuno-positron emission tomography of pancreatic cancer. ACS Cent Sci. 2015;1:142–147.
  • Rashidian M, Wang L, Edens JG, et al. Enzyme-mediated modification of single-domain antibodies for imaging modalities with different characteristics. Angew Chem Int Ed. 2016;55:528–330.
  • Hallam TJ, Wold E, Wahl A, et al. Antibody conjugates with unnatural amino acids. Mol Pharmaceutics. 2015;12:1848–1862.
  • Yamaguchi A, Matsuda T, Ohtake K, et al. Incorporation of a doubly functionalized synthetic amino acid into proteins for creating chemical and light-induced conjugates. Bioconjug Chem. 2015;27:198–206.
  • Hutchins BM, Kazane SA, Staflin K, et al. Site-specific coupling and sterically controlled formation of multimeric antibody fab fragments with unnatural amino acids. J Mol Biol. 2011;406:595–603.
  • Hofer T, Skeffington LR, Chapman CM, et al. Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry. 2009;48:12047–12057.
  • Li X, Yang J, Rader C. Antibody conjugation via one and two C-terminal selenocysteines. Methods. 2014;65:133–138.
  • Johansson L, Gafvelin G, Arner ES. Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta. 2005;1726:1–13.
  • Hofer T, Thomas JD, Burke TR Jr., et al. An engineered selenocysteine defines a unique class of antibody derivatives. Proc Natl Acad Sci U S A. 2008;105:12451–12456.
  • Dierks T, Schmidt B, Borissenko LV, et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell. 2003;113:435–444.
  • Hanson SR, Best MD, Wong CH. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl. 2004;43:5736–5763.
  • Wu P, Shui WQ, Carlson BL, et al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc Natl Acad Sci U S A. 2009;106:3000–3005.
  • Carrico IS, Carlson BL, Bertozzi CR. Introducing genetically encoded aldehydes into proteins. Nat Chem Biol. 2007;3:321–322.
  • Hudak JE, Barfield RM, de Hart GW, et al. Synthesis of heterobifunctional protein fusions using copper-free click chemistry and the aldehyde tag. Angew Chem Int Ed. 2012;51:4161–4165.
  • Rabuka D, Rush JS, deHart GW, et al. Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat Protoc. 2012;7:1052–1067.
  • Agarwal P, Kudirka R, Albers AE, et al. Hydrazino-pictet-spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem. 2013;24:846–851.
  • Banerjee A, Panosian TD, Mukherjee K, et al. Site-specific orthogonal labeling of the carboxy terminus of alpha-tubulin. ACS Chem Biol. 2010;5:777–785.
  • Schumacher D, Helma J, Mann FA, et al. Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew Chem Int Ed. 2015;54:13787–13791.
  • Debets MF, Leenders WPJ, Verrijp K, et al. Nanobody-functionalized polymersomes for tumor-vessel targeting. Macromol Biosci. 2013;13:938–945.
  • Marshall CJ, Grosskopf VA, Moehling TJ, et al. An evolved mxe GyrA intein for enhanced production of fusion proteins. ACS Chem Biol. 2015;10:527–538.
  • Marshall CJ, Agarwal N, Kalia J, et al. Facile chemical functionalization of proteins through intein-linked yeast display. Bioconjug Chem. 2013;24:1634–1644.
  • Ta DT, Steen Redeker E, Billen B, et al. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Protein Eng, Des Sel. 2015;28:351–363.
  • Reulen S, van Baal I, Raats J, et al. Efficient, chemoselective synthesis of immunomicelles using single-domain antibodies with a C-terminal thioester. BMC Biotechnol. 2009;9:66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.