562
Views
21
CrossRef citations to date
0
Altmetric
Review

Multifunctional microbeads for drug delivery in TACE

&
Pages 1289-1300 | Received 02 Feb 2016, Accepted 27 Apr 2016, Published online: 01 Jun 2016

References

  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–1822.
  • Christodoulou L, Venables JD. Multifunctional material systems: the first generation. JOM. 2003;55:39–45.
  • Brown KR. Fatal pulmonary complications after arterial embolization with 40-120 μm tris-acryl gelatin microspheres. J Vasc Interv Radiol. 2004;15:197–200.
  • Lewis AL, Gonzalez MV, Lloyd AW, et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol. 2006;17:335–342.
  • Hehenkamp WJK, Volkers NA, Birnie E, et al. Symptomatic uterine fibroids: treatment with uterine artery embolization or hysterectomy–results from the randomized clinical Embolisation versus Hysterectomy (EMMY) trial. Radiology. 2008;246:823–832.
  • Osuga K, Hori S, Kitayoshi H, et al. Embolization of high flow arteriovenous malformations: experience with use of superabsorbent polymer microspheres. J Vasc Interv Radiol. 2002;13:1125–1133.
  • Basile A, Rand T, Lomoschitz F, et al. Trisacryl gelatin microspheres versus polyvinyl alcohol particles in the preoperative embolization of bone neoplasms. Cardiovasc Intervent Radiol. 2004;27:495–502.
  • Lin PP, Guzel VB, Moura MF, et al. Long-term follow-up of patients with giant cell tumor of the sacrum treated with selective arterial embolization. Cancer. 2002;95:1317–1325.
  • Held N, Lewis AL, Hendrich HJ, et al. A safety and toxicity assessment of the administration of multiple intracerebral injections of irinotecan or doxorubicin drug-eluting beads. Clin Transl Oncol. 2011;13:742–746.
  • Karaca C, Cizginer S, Konuk Y, et al. Feasibility of EUS-guided injection of irinotecan-loaded microspheres into the swine pancreas. Gastrointest Endosc. 2011;73:603–606.
  • Keese M, Gasimova L, Schwenke K, et al. Doxorubicin and mitoxantrone drug eluting beads for the treatment of experimental peritoneal carcinomatosis in colorectal cancer. Int J Cancer. 2009;124:2701–2708.
  • Marelli L, Stigliano R, Triantos C, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol. 2007;30:6–25.
  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
  • Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009;27:1485–1491.
  • Bosetti C, Levi F, Boffetta P, et al. Trends in mortality from hepatocellular carcinoma in Europe, 1980-2004. Hepatology. 2008;48:137–145.
  • Lewis AL, Holden RR. DC bead embolic drug-eluting bead: clinical application in the locoregional treatment of tumours. Expert Opin Drug Deliv. 2011;8:153–169.
  • Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–1236.
  • Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–1917.
  • Bruix J, Llovet JM. Prognostic prediction and treatment strategy in hepatocellular carcinoma. Hepatology. 2002;35:519–524.
  • Bruix J, Sherman M. Practice guidelines committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–1236.
  • Llovet JM, Lencioni R, Di Bisceglie AM, et al. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–943.
  • Llovet JM, Real MI, Montaña X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359:1734–1739.
  • Lo C-M, Ngan H, Tso W-K, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35:1164–1171.
  • Llovet JM, Bruix J, Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37:429–442.
  • Shiozawa S, Tsuchiya A, Shungo E, et al. Transradial approach for trasncatheter arterial chemoembolization in patients with hepatocellular carcinoma. J Clin Castroenterol. 2003;37:412–417.
  • Erichsen C, Bolmsjö M, Hugander A, et al. Blockage of the hepatic-artery blood flow by biodegradable microspheres (Spherex®) combined with local hyperthermia in the treatment of experimental liver tumors in rats. J Cancer Res Clin Oncol. 1985;109:38–41.
  • Lee DH, Yoon HK, Song HY, et al. Embolization of severe arterioportal shunts in the patients with hepatocellular carcinoma: safety and influence on patient survival. J Korean Radiol Soc. 1999;41:1117–1125.
  • Furuse J, Iwasaki M, Yoshino M, et al. Hepatocellular carcinoma with portal vein tumor thrombus: embolization of arterioportal shunts. Radiology. 1997;204:787–790.
  • Gunji T, Kawauchi N, Ohnishi S, et al. Treatment of hepatocellular carcinoma associated with advanced cirrhosis by transcatheter arterial chemoembolization using autologous blood clot: a preliminary report. Hepatology. 1992;15:252–257.
  • Lencioni R, de Baere T, Soulen MC, et al. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a systematic review of efficacy and safety data. Hepatol. 2016. doi:10.1002/hep.28453.
  • Patil RR, Guhagarkar SA, Devarajan PV. Engineered nanocarriers of doxorubicin: a current update. Crit Rev Ther Drug Carrier Syst. 2008;25:1–61.
  • Wan WK, Yang L, Padavan DT. Use of degradable and nondegradable nanomaterials for controlled release. Nanomedicine. 2007;2:483–509.
  • Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4:35–51.
  • Lewis AL, Gonzalez MV, Leppard SW, et al. Doxorubicin eluting beads-1: effects of drug loading on bead characteristics and drug distribution. J Mater Sci Med. 2007;18:1691–1699.
  • DEBDOX DC Bead. BTG; 2014 [cited 2015 Nov 23]. Available from: http://bead.btg-im.com/products/uk-322/dcbead-3/debdox-dc-bead
  • 2015 Buyer’s Guide. Endovascular today. Embolic Devices/Beads. [cited 2015 Nov 19]. Available from: http://evtoday.com/buyers-guide/2015/chart.asp?id=embolic_particles_beads
  • 2015 Buyer’s Guide. Endovascular today Europe. Embolic Devices/Beads. [cited 2015 Nov 19]. Available from: http://evtoday.com/buyers-guide/2015-europe/chart.asp?id=embolic_particles_beads_EU
  • Dhanasekaran R, Kooby DA, Staley CA, et al. Comparison of conventional transarterial chemoembolization (TACE) and chemoembolization with doxorubicin drug eluting beads (DEB) for unresectable hepatocelluar carcinoma (HCC). J Surg Oncol. 2010;101:476–480.
  • Song MJ, Chun HJ, Song DS, et al. Comparative study between doxorubicin-eluting beads and conventional transarterial chemoembolization for treatment of hepatocellular carcinoma. J Hepatol. 2012;57:1244–1250.
  • Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol. 2010;33:41–52.
  • Sacco R, Bargellini I, Bertini M, et al. Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol. 2011;22:1545–1552.
  • Golfieri R, Giampalma E, Renzulli M, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Brit J Cancer. 2014;111:255–264.
  • Varela M, Real MI, Burrel M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46:474–481.
  • Lewis AL, Dreher MR. Locoregional drug delivery using image-guided intra-arterial drug eluting bead therapy. J Control Release. 2012;161:338–350.
  • Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.
  • Siegel RW, Hu E, Cox DM, et al. Nanostructure science and technology [Internet]. A worldwide study. World Technology Evaluation Center, Loyyola College in Maryland [cited 2016 May 25]; 1999. Available from: http://www.wtec.org/loyola/pdf/nano.pdf
  • Sharma KV, Dreher MR, Tang Y, et al. Development of “Imageable” beads for transcatheter embolotherapy. J Vasc Interv Radiol. 2010;21:865–876.
  • Lencioni R, de Baere T, Burrel M, et al. Transcatheter treatment of hepatocellular carcinoma with doxorubicin-loaded DC bead (DEBDOX): technical recommendations. Cardiovasc Intervent Radiol. 2012;35:980–985.
  • Deray G. Dialysis and iodinated contrast media. Kidney Int. 2006;69:S25–9.
  • Bartling SH, Budjan J, Aviv H, et al. First multimodal embolization particles visible on X-ray/computed tomography and magnetic resonance imaging. Invest Radiol. 2011;46:178–186.
  • Dreher MR, Sharma KV, Woods DL, et al. Radiopaque drug-eluting beads for transcatheter embolotherapy: experimental study of drug penetration and coverage in swine. J Vasc Interv Radiol. 2012;23:257–264.
  • Oh JS, Chun HJ, Choi BG, et al. Transarterial chemoembolization with drug-eluting beads in hepatocellular carcinoma: usefulness of contrast saturation features on cone-beam computed tomography imaging for predicting short-term tumor response. J Vasc Interv Radiol. 2013;24:483–489.
  • Tacher V, Duran R, Lin M, et al. Multimodality imaging of ethiodized oil-loaded radiopaque microspheres during transarterial embolization of rabbits with VX2 liver tumors. Radiology. 2015. doi:10.1148/radiol.2015141624.
  • Duran R, Sharma K, Dreher MR, et al. A novel inherently radiopaque bead for transarterial embolization to treat liver cancer – A pre-clinical study. Theranostics. 2016;6:28–39.
  • Lee K-H, Liapi E, Vossen JA, et al. Distribution of iron oxide-containing embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy. J Vasc Interv Radiol. 2008;19:1490–1496.
  • Hong K, Khwaja A, Liapi E, et al. New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res. 2006;12:2563–2567.
  • Sommer CM, Stampfl U, Bellemann N, et al. Multimodal visibility (radiography, computed tomography, and magnetic resonance imaging) of microspheres for transarterial embolization tested in porcine kidneys. Invest Radiol. 2013;48:213–222.
  • Cilliers R, Song Y, Kohlmeir EK, et al. Modification of embolic-PVA particles with MR contrast agents. Magn Reson Med. 2008;59:898–902.
  • Negussie AH, Dreher MR, Gacchina C, et al. Synthesis and characterization of image-able polyvinyl alcohol microspheres for image-guided chemoembolization. J Mater Sci Mater Med. 2015;26:1–10.
  • Choi SY, Kwak BK, Shim HJ, et al. MRI traceability of superparamagnetic iron oxide nanoparticle-embedded chitosan microspheres as an embolic material in rabbit uterus. Diagnostic Interv Radiol. 2015;21:47–53.
  • Chung E-Y, Kim H-M, Lee G-H, et al. Design of deformable chitosan microspheres loaded with superparamagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging. Carbohydr Polym. 2012;90:1725–1731.
  • van Elk M, Ozbakir B, Barten-Rijbroek AD, et al. Alginate microspheres containing temperature sensitive liposomes (TSL) for MR-guided embolization and triggered release of doxorubicin. PLoS One. 2015;10:e0141626.
  • Martin R, Irurzun J, Munchart J, et al. Optimal technique and response of doxorubicin beads in hepatocellular cancer: bead size and dose. Korean J Hepatol. 2011;17:51–60.
  • Lewis AL, Dreher MR, O’Byrne V, et al. DC Bead M1: towards an optimal transcatheter hepatic tumor therapy. J Mater Sci Mater Med. 2016;27:13.
  • Illum L, Davis SS. The targeting of drugs parenterally by use of microspheres. J Parenter Sci Technol. 1982;36:242–248.
  • Pouponneau P, Leroux J-C, Martel S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials. 2009;30:6327–6332.
  • Giunchedi P, Maestri M, Gavini E, et al. Transarterial chemoembolization of hepatocellular carcinoma - agents and drugs: an overview. Part 2. Expert Opin Drug Deliv. 2013;10:799–810.
  • Goodwin S, Peterson C, Hoh C, et al. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. J Magn Magn Mater. 1999;194:132–139.
  • Goodwin SC, Bittner CA, Peterson CL, et al. Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci. 2001;60:177–183.
  • Wilson MW, Kerlan RK, Fidelman NA, et al. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite - Initial experience with four patients. Radiology. 2004;230:287–293.
  • Rudge SR, Kurtz TL, Vessely CR, et al. Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials. 2000;21:1411–1420.
  • Grief AD, Richardson G. Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater. 2005;293:455–463.
  • Amirfazli A. Nanomedicine: magnetic nanoparticles hit the target. Nat Nanotechnol. 2007;2:467–468.
  • Shapiro B. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. J Magn Magn Mater. 2009;321:1594–1599.
  • Mathieu J-B, Martel S. Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI scanner. Magn Reson Med. 2010;63:1336–1345.
  • Pouponneau P, Leroux JC, Soulez G, et al. Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials. 2011;32:3481–3486.
  • Pouponneau P, Soulez G, Beaudoin G, et al. MR imaging of therapeutic magnetic microcarriers guided by magnetic resonance navigation for targeted liver chemoembolization. Cardiovasc Intervent Radiol. 2014;37:784–790.
  • Liapi E, Geschwind JH. Transcatheter arterial chemoembolization for liver cancer: is it time to distinguish conventional from drug-eluting chemoembolization? Cardiovasc Intervent Radiol. 2011;34:37–49.
  • Wang J, Murata S, Kumazaki T. Liver microcirculation after hepatic artery embolization with degradable starch microspheres in vivo. World J Gastroenterol. 2006;12:4214–4218.
  • Basciano CA, Kleinstreuer C, Kennedy AS, et al. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann Biomed Eng. 2010;38:1862–1879.
  • Murata S, Tajima H, Ichikawa K, et al. Oily chemoembolization combined with degradable starch microspheres for HCC with cirrhosis. Hepatogastroenterology. 2008;55:1041–1046.
  • Pieper CC, Meyer C, Vollmar B, et al. Temporary arterial embolization of liver parenchyma with degradable starch microspheres (EmboCept®S) in a swine model. Cardiovasc Intervent Radiol. 2015;38:435–441.
  • Wiggermann P, Wohlgemuth WA, Heibl M, et al. Dynamic evaluation and quantification of microvascularization during degradable starch microspheres transarterial chemoembolisation (DSM-TACE) of HCC lesions using contrast enhanced ultrasound (CEUS): a feasibility study. Clin Hemorheol Microcirc. 2013;53:337–348.
  • Furuse J, Ishii H, Satake M, et al. Pilot study of transcatheter arterial chemoembolization with degradable starch microspheres in patients with hepatocellular carcinoma. Am J Clin Oncol. 2003;26:159–164.
  • Meyer C, Pieper CC, Ezziddin S, et al. Feasibility of temporary protective embolization of normal liver tissue using degradable starch microspheres during radioembolization of liver tumours. Eur J Nucl Med Mol Imaging. 2014;41:231–237.
  • Wang Y, Benzina A, Molin DGM, et al., Preparation and structure of drug-carrying biodegradable microspheres designed for transarterial chemoembolization therapy. J Biomater Sci Ed. 2015;26:77–91.
  • Pawlik TM, Reyes DK, Cosgrove D, et al. Phase II trial of sorafenib combined with concurrent transarterial chemoembolization with drug-eluting beads for hepatocellular carcinoma. J Clin Oncol. 2011;29:3960–3967.
  • Liang B, Zheng C-S, Feng G-S, et al. Correlation of hypoxia-inducible factor 1 alpha with angiogenesis in liver tumors after transcatheter arterial embolization in an animal model. Cardiovasc Intervent Radiol. 2010;33:806–812.
  • Bai W, Wang YJ, Zhao Y, et al. Sorafenib in combination with transarterial chemoembolization improves the survival of patients with unresectable hepatocellular carcinoma: a propensity score matching study. J Dig Dis. 2013;14:181–190.
  • Chen J, Sheu AY, Li WG, et al. Poly(lactide-co-glycolide) microspheres for MRI-monitored transcatheter delivery of sorafenib to liver tumors. J Control Release. 2014;184:10–17.
  • Chen JN, White SB, Harris KR, et al. Poly(lactide-co-glycolid) microspheres for MRI-monitored delivery of sorafenib in a rabbit VX2 model. Biomaterials. 2015;61:299–306.
  • Fuchs K, Bize PE, Dormond O, et al. Drug-eluting beads loaded with antiangiogenic agents for chemoembolization: in vitro sunitinib loading and release and in vivo pharmacokinetics in an animal model. J Vasc Interv Radiol. 2014;25:379–387e372.
  • Fuchs K, Bize PE, Denys A, et al. Sunitinib-eluing beads for chemoembolization: methods for in vitro evaluation of drug release. Int J Pharm. 2015;482:68–74.
  • Forster REJ, Tang Y, Bowyer C, et al. Development of a combination drug-eluting bead. Anticancer Drugs. 2012;23:355–369.
  • van der Zee J. Heating the patient: a promising approach? Ann Oncol. 2002;13:1173–1184.
  • Moroz P, Jones SK, Gray BN. Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth. 2002;18:267–284.
  • Shildkopf P, Ott OJ, Frey B, et al. Biological rationales and clinical applications of temperature controlled hyperthermia - implications for multimodal cancer treatments biological rationales and clinical applications of temperature controlled hyperthermia - implications for multimodal can. Curr Med Chem. 2010;17:3045–3057.
  • Ortega D, Pankhurst QA. Magnetic hyperthermia. In: O’Brien P, editor. Nanoscience: volume 1: nanostructures through chemistry. Cambridge: Royal Society of Chemistry; 2013. p. 60–88.
  • Yu H, Zhu G-Y, Xu R-Z, et al. Arterial embolization hyperthermia using As2O3 nanoparticles in VX2 carcinoma-induced liver tumors. PLoS One. 2011;6:e17926.
  • Moroz P, Jones SK, Winter J, et al. Targeting liver tumors with hyperthermia: ferromagnetic embolization in a rabbit liver tumor model. J Surg Oncol. 2001;78:22–29.
  • Xu R, Yu H, Zhang Y, et al. Three-dimensional model for determining inhomogeneous thermal dosage in a liver tumor during arterial embolization hyperthermia incorporating magnetic nanoparticles. IEEE Trans Magn. 2009;45:3085–3091.
  • Matsuki H, Yanada T, Sato T, et al. Temperature-sensitive amorphous magnetic flakes for intratissue hyperthermia. Mater Sci Eng A Struct Mater. 1994;181:1366–1368.
  • Mitsumori M, Hiraoka M, Shibata T, et al. Development of intra-arterial hyperthermia using a dextran-magnetite complex. Int J Hyperthermia. 1994;10:785–793.
  • Jones SK, Winter JG, Gray BN. Treatment of experimental rabbit liver tumours by selectively targeted hyperthermia. Int J Hyperthermia. 2002;18:117–128.
  • Li Z, Kawashita M, Araki N, et al. Magnetic SiO2 gel microspheres for arterial embolization hyperthermia. Biomed Mater. 2010;5:65010.
  • Miyazaki T, Anan S, Ishida E, et al. Carboxymethyldextran/magnetite hybrid microspheres designed for hyperthermia. J Mater Sci Mater Med. 2013;24:1125–1129.
  • Liu G, Kawashita M, Li Z, et al. Sol–gel synthesis of magnetic TiO2 microspheres and characterization of their in vitro heating ability for hyperthermia treatment of cancer. J Sol-Gel Sci Technol. 2015;75:90–97.
  • Salem R, Mazzaferro V, Sangro B. Yttrium 90 radioembolization for the treatment of hepatocellular carcinoma : biological lessons, current challenges and clinical perspectives. Hepatology. 2013;58:1–18.
  • Kobeiter H, Georgiades CS, Leakakos T, et al. Targeted transarterial therapy of Vx-2 rabbit liver tumor with Yttrium-90 labeled ferromagnetic particles using an external magnetic field. Anticancer Res. 2007;27:755–760.
  • Gordon AC, Lewandowski RJ, Salem R, et al. Localized hyperthermia with iron oxide-doped yttrium microparticles: steps toward image-guided thermoradiotherapy in liver cancer. J Vasc Interv Radiol. 2014;25:397–404.
  • Moroz P, Jones SK, Gray BN. Arterial embolization hyperthermia in porcine renal tissue. J Surg Res. 2002;105:209–214.
  • Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroentero. 2015;12:681–700.
  • Kerr SH, Kerr DJ. Novel treatments for hepatocellular cancer. Cancer Lett. 2009;286:114–120.
  • Murua A, Portero A, Orive G, et al. Cell microencapsulation technology: towards clinical application. J Control Release. 2008;132:76–83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.