636
Views
45
CrossRef citations to date
0
Altmetric
Review

The role of the carrier in the formulation of pharmaceutical solid dispersions. Part I: crystalline and semi-crystalline carriers

&
Pages 1583-1594 | Received 14 Mar 2016, Accepted 24 May 2016, Published online: 20 Jun 2016

References

  • Di L, Kerns EH, Carter GT. Drug-like property concepts in pharmaceutical design. Curr Pharm Des. 2009;15(19):2184–2194.
  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.
  • Singh A, Worku ZA, Van den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv. 2011;8(10):1361–1378.
  • Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):e79–e85.
  • Al-Obaidi H, Ke P, Brocchini S, et al. Characterization and stability of ternary solid dispersions with PVP and PHPMA. Int J Pharm. 2011;419(1):20–27.
  • Six K, Verreck G, Peeters J, et al. Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers. J Pharm Sci. 2004;93(1):124–131.
  • Tran TT-D, Tran PH-L, Lim J, et al. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther Deliv. 2010;1(1):51–62.
  • Higuchi WI. Diffusional models useful in biopharmaceutics. Drug release rate processes. J Pharm Sci. 1967;56(3):315–324.
  • Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–144.
  • Moore MD, Wildfong PL. Aqueous solubility enhancement through engineering of binary solid composites: pharmaceutical applications. J Pharm Innov. 2009;4(1):36–49.
  • Sjökvist E, Nyström C. Physicochemical aspects of drug release. VI. Drug dissolution rate from solid particulate dispersions and the importance of carrier and drug particle properties. Int J Pharm. 1988;47(1):51–66.
  • Saers ES, Craig DQ. An investigation into the mechanisms of dissolution of alkyl p-aminobenzoates from polyethylene glycol solid dispersions. Int J Pharm. 1992;83(1):211–219.
  • Corrigan OI. Mechanisms of dissolution of fast release solid dispersions. Drug Dev Ind Pharm. 1985;11(2–3):697–724.
  • Dubois JL, Ford JL. Similarities in the release rates of different drugs from polyethylene glycol 6000 solid dispersions. J Pharm Pharmacol. 1985;37(7):494–495.
  • Craig D, Newton J. The dissolution of nortriptyline HCl from polyethylene glycol solid dispersions. Int J Pharm. 1992;78(1):175–182.
  • Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–1302.
  • Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23):1068–1075.
  • Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3):799–813.
  • Meng F, Gala U, Chauhan H. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev Ind Pharm. 2015;41(9):1401–1415.
  • Ford JL. The current status of solid dispersions. Pharm Acta Helv. 1985;61(3):69–88.
  • Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9(11):866–872.
  • Goldberg AH, Gibaldi M, Kanig JL, et al. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: chloramphenicol—urea system. J Pharm Sci. 1966;55(6):581–583.
  • Chiou WL, Niazi S. Phase diagram and dissolution‐rate studies on sulfathiazole‐urea solid dispersions. J Pharm Sci. 1971;60(9):1333–1338.
  • Chiou WL. Mechanism of increased rates of dissolution and oral absorption of chloramphenicol from chloramphenicol‐urea solid dispersion system. J Pharm Sci. 1971;60(9):1406–1408.
  • Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures I. Theoretical considerations and discussion of the literature. J Pharm Sci. 1965;54(8):1145–1148.
  • Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures II: experimental evaluation of a eutectic mixture: urea‐acetaminophen system. J Pharm Sci. 1966;55(5):482–487.
  • Ford JL, Rubinstein MH. The effect of composition and ageing on the dissolution rates of chlorpropamide‐urea solid dispersions. J Pharm Pharmacol. 1977;29(1):688–694.
  • Elbanna H, Elghomy Z, Hammouda Y. Phase diagram and dissolution rate studies on hydrochlorothiazide-urea solid dispersions. Pharm Acta Helv. 1980;55(9):244–248.
  • Gidwani R, Anderson A. In vitro evaluation of methisazone solid dispersions. Can J Pharm Sci. 1976;11(4):117–120.
  • Kreuschner K, Grewe R, Hosemann R, et al. Herstellung von harnstoff-schmelzeinbettungen mit nichtkristallinem arzneistoff durch sprueherstarrung. Pharm Ind. 1980;42:843–846.
  • Sekiguchi K, Obi N, Ueda Y. Studies on absorption of eutectic mixture. II. Absorption of fused conglomerates of chloramphenicol and urea in rabbits. Chem Pharm Bull. 1964;12(2):134–144.
  • Collett J, Flood B, Sale F. Some factors influencing dissolution from salicylic acid‐urea solid dispersions. J Pharm Pharmacol. 1976;28(4):305–308.
  • Ford JL, Steward AF, Rubinstein MH. The assay and stability of chlorpropamide in solid dispersion with urea. J Pharm Pharmacol. 1979;31(1):726–729.
  • McGinity JW, Maness DD, Yakatan GJ. The influence of various dispersion methods on the rate of dissolution of sulfabenzamide. Drug Dev Commun. 1974;1(5):369–387.
  • Chiou WL, Riegelman S. Preparation and dissolution characteristics of several fast‐release solid dispersions of griseofulvin. J Pharm Sci. 1969;58(12):1505–1510.
  • Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III: experimental evaluation of griseofulvin—succinic acid solid solution. J Pharm Sci. 1966;55(5):487–492.
  • Chiou WL, Niazi S. Differential thermal analysis and X‐ray diffraction studies of griseofulvin—succinic acid solid dispersions. J Pharm Sci. 1973;62(3):498–501.
  • Chiou WL, Niazi S. Pharmaceutical applications of solid dispersion systems: dissolution of griseofulvin–succinic acid eutectic mixture. J Pharm Sci. 1976;65(8):1212–1214.
  • Summers M, Enever R. Preparation and properties of solid dispersion system containing citric acid and primidone. J Pharm Sci. 1976;65(11):1613–1617.
  • Summers M, Enever R. Effect of primidone concentration on glass transition temperature and dissolution of solid dispersion systems containing primidone and citric acid. J Pharm Sci. 1977;66(6):825–828.
  • Lu Q, Zografi G. Properties of citric acid at the glass transition. J Pharm Sci. 1997;86(12):1374–1378.
  • Lu Q, Zografi G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res. 1998;15(8):1202–1206.
  • Hoppu P, Jouppila K, Rantanen J, et al. Characterisation of blends of paracetamol and citric acid. J Pharm Pharmacol. 2007;59(3):373–381.
  • Schantz S, Hoppu P, Juppo A. A solid‐state NMR study of phase structure, molecular interactions, and mobility in blends of citric acid and paracetamol. J Pharm Sci. 2009;98(5):1862–1870.
  • Timmermans J. Plastic crystals: a historical review. J Phys Chem Solids. 1961;18(1):1–8.
  • Kanig JL. Properties of fused mannitol in compressed tablets. J Pharm Sci. 1964;53(2):188–192.
  • Sirenius I, Krogerus VE, Leppänen T. Dissolution rate of p-aminobenzoates from solid xylitol dispersions. J Pharm Sci. 1979;68(6):791–792.
  • Allen LV, Levinson RS, De Martono D. Dissolution rates of hydrocortisone and prednisone utilizing sugar solid dispersion systems in tablet form. J Pharm Sci. 1978;67(7):979–981.
  • Zajc N, Obreza A, Bele M, et al. Physical properties and dissolution behaviour of nifedipine/mannitol solid dispersions prepared by hot melt method. Int J Pharm. 2005;291(1):51–58.
  • Okonogi S, Oguchi T, Yonemochi E, et al. Improved dissolution of ofloxacin via solid dispersion. Int J Pharm. 1997;156(2):175–180.
  • Arias M, Gines J, Moyano J, et al. Influence of the preparation method of solid dispersions on their dissolution rate: study of triamterene-D-mannitol system. Int J Pharm. 1995;123(1):25–31.
  • Allen LV, Yanchick VA, Maness DD. Dissolution rates of corticosteroids utilizing sugar glass dispersions. J Pharm Sci. 1977;66(4):494–497.
  • Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm. 2008;10(6):665–668.
  • McNamara DP, Childs SL, Giordano J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res. 2006;23(8):1888–1897.
  • Miroshnyk I, Mirza S, Sandler N. Pharmaceutical co-crystals–an opportunity for drug product enhancement. Expert Opin Drug Deliv. 2009;6(4):333–341.
  • Vishweshwar P, Mcmahon JA, Bis JA, et al. Pharmaceutical co‐crystals. J Pharm Sci. 2006;95(3):499–516.
  • Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9(6):2950–2967.
  • Vippagunta SR, Maul KA, Tallavajhala S, et al. Solid-state characterization of nifedipine solid dispersions. Int J Pharm. 2002;236(1):111–123.
  • Goddeeris C, Van den Mooter G. Free flowing solid dispersions of the anti-HIV drug UC 781 with Poloxamer 407 and a maximum amount of TPGS 1000: investigating the relationship between physicochemical characteristics and dissolution behaviour. Eur J Pharm Sci. 2008;35(1):104–113.
  • Damian F, Blaton N, Naesens L, et al. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur J Pharm Sci. 2000;10(4):311–322.
  • Damian F, Blaton N, Kinget R, et al. Physical stability of solid dispersions of the antiviral agent UC-781 with PEG 6000, Gelucire® 44/14 and PVP K30. Int J Pharm. 2002;244(1):87–98.
  • Asada M, Takahashi H, Okamoto H, et al. Theophylline particle design using chitosan by the spray drying. Int J Pharm. 2004;270(1):167–174.
  • Bikiaris DN, Papageorgiou GZ, Papadimitriou SA, et al. Novel biodegradable polyester poly (propylene succinate): synthesis and application in the preparation of solid dispersions and nanoparticles of a water-soluble drug. AAPS PharmSciTech. 2009;10(1):138–146.
  • Tadokoro H, Chatani Y, Yoshihara T, et al. Structural studies on polyethers,[-(CH2)m-O-]n. II. Molecular structure of polyethylene oxide. Macromol Chem Phys. 1964;73(1):109–127.
  • Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38(13):3151–3212.
  • Koenig J, Angood A. Raman spectra of poly(ethylene glycols) in solution. J Polymer Sci 2 Polymer Phys. 1970;8(10):1787–1796.
  • Buckley C, Kovacs A. Melting behaviour of low molecular weight poly(ethylene-oxide) fractions. Colloid Polym Sci. 1976;254(8):695–715.
  • Faucher J, Koleske J, Santee E Jr, et al. Glass transitions of ethylene oxide polymers. J Appl Phys. 1966;37(11):3962–3964.
  • Schachter DM, Xiong J, Tirol GC. Solid state NMR perspective of drug–polymer solid solutions: a model system based on poly (ethylene oxide). Int J Pharm. 2004;281(1):89–101.
  • Khalil S, Mortada L. Decreased dissolution of phenylbutazone-PEG 6000 solid dispersions upon storage. J Drug Res. 1978;10:141–150.
  • Lin C-W, Cham T-M. Effect of particle size on the available surface area of nifedipine from nifedipine-polyethylene glycol 6000 solid dispersions. Int J Pharm. 1996;127(2):261–272.
  • Ford JL, Rubinstein MH. Phase equilibria and dissolution rates of indomethacin-polyethylene glycol 6000 solid dispersions. Pharm Acta Helv. 1978;53(11):327.
  • Ford JL, Stewart AF, Dubois J-L. The properties of solid dispersions of indomethacin or phenylbutazone in polyethylene glycol. Int J Pharm. 1986;28(1):11–22.
  • Corrigan O, Timoney R. Influence of polyethylene glycol on dissolution properties of hydroflumethiazide. Pharm Acta Helv. 1976;51(9):268–271.
  • Miralles M, McGinty J, Martin A. Combined water-soluble carriers for coprecipitates of tolbutamide. J Pharm Sci. 1982;71(3):302–304.
  • Betageri G, Makarla K. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int J Pharm. 1995;126(1):155–160.
  • Draguet-Brughmans M, Azibi M, Bouche R. Solubilité et vitesse de dissolution du méprobamate; des cas significatifs. J Pharm Belg. 1979;34:267–271.
  • Mura P, Faucci M, Manderioli A, et al. Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. Drug Dev Ind Pharm. 1999;25(3):257–264.
  • Vippagunta SR, Wang Z, Hornung S, et al. Factors affecting the formation of eutectic solid dispersions and their dissolution behavior. J Pharm Sci. 2007;96(2):294–304.
  • Lacoulonche F, Chauvet A, Masse J, et al. An investigation of FB interactions with poly (ethylene glycol) 6000, poly (ethylene glycol) 4000, and poly‐ϵ‐caprolactone by thermoanalytical and spectroscopic methods and modeling. J Pharm Sci. 1998;87(5):543–551.
  • Dordunoo SK, Ford JL, Rubinstein MH. Physical stability of solid dispersions containing triamterene or temazepam in polyethylene glycols. J Pharm Pharmacol. 1997;49(4):390–396.
  • Corrigan O, Murphy C, Timoney R. Dissolution properties of polyethylene glycols and polyethylene glycol-drug systems. Int J Pharm. 1979;4(1):67–74.
  • Corrigan OI. Retardation of polymeric carrier dissolution by dispersed drugs: factors influencing the dissolution of solid dispersions containing polyethlene glycols. Drug Dev Ind Pharm. 1986;12(11–13):1777–1793.
  • Sjökvist E, Nyström C, Alden M. Physicochemical aspects of drug release. IX. Investigation of some factors that impair dissolution of drugs from solid particulate dispersion systems. Int J Pharm. 1989;54(2):161–170.
  • Papageorgiou GZ, Bikiaris D, Karavas E, et al. Effect of physical state and particle size distribution on dissolution enhancement of nimodipine/PEG solid dispersions prepared by melt mixing and solvent evaporation. AAPS J. 2006;8(4):E623–E31.
  • Docoslis A, Huszarik KL, Papageorgiou GZ, et al. Characterization of the distribution, polymorphism, and stability of nimodipine in its solid dispersions in polyethylene glycol by micro-Raman spectroscopy and powder X-ray diffraction. AAPS J. 2007;9(3):E361–E70.
  • Save T, Venkitachalam P. Studies on solid dispersions of nifedipine. Drug Dev Ind Pharm. 1992;18(15):1663–1679.
  • McGinity JW, Maincent P, Steinfink H. Crystallinity and dissolution rate of tolbutamide solid dispersions prepared by the melt method. J Pharm Sci. 1984;73(10):1441–1444.
  • Gines J, Arias M, Moyano J, et al. Thermal investigation of crystallization of polyethylene glycols in solid dispersions containing oxazepam. Int J Pharm. 1996;143(2):247–253.
  • Chiou WL. Pharmaceutical applications of solid dispersion systems: X-ray diffraction and aqueous solubility studies on griseofulvin-polyethylene glycol 6000 systems. J Pharm Sci. 1977;66(7):989–991.
  • Ford J, Rubinstein M. Formulation and ageing of tablets prepared from indomethacin-polyethylene glycol 6000 solid dispersions. Pharm Acta Helv. 1979;55(1):1–7.
  • Dordunoo SK, Ford JL, Rubinstein MH. Solidification studies of polyethylene glycols, gelucire 44/14 or their dispersions with triamterene or temazepam. J Pharm Pharmacol. 1996;48(8):782–789.
  • Zhu Q, Taylor LS, Harris MT. Evaluation of the microstructure of semicrystalline solid dispersions. Mol Pharm. 2010;7(4):1291–1300.
  • Zhu Q, Toth SJ, Simpson GJ, et al. Crystallization and dissolution behavior of naproxen/polyethylene glycol solid dispersions. J Phys Chem B. 2013;117(5):1494–1500.
  • Yang M, Gogos C. Crystallization of poly (ethylene oxide) with acetaminophen–a study on solubility, spherulitic growth, and morphology. Eur J Pharm Biopharm. 2013;85(3):889–897.
  • Zhu Q, Harris MT, Taylor LS. Modification of crystallization behavior in drug/polyethylene glycol solid dispersions. Mol Pharm. 2012;9(3):546–553.
  • Chen Z, Liu Z, Qian F. Crystallization of bifonazole and acetaminophen within the matrix of semicrystalline, PEO–PPO–PEO triblock copolymers. Mol Pharm. 2015;12(2):590–599.
  • Unga J, Matsson P, Mahlin D. Understanding polymer–lipid solid dispersions—the properties of incorporated lipids govern the crystallisation behaviour of PEG. Int J Pharm. 2010;386(1):61–70.
  • Duong TV, Van Humbeeck J, Van den Mooter G. Crystallization kinetics of indomethacin/polyethylene glycol dispersions containing high drug loadings. Mol Pharm. 2015;12(7):2493–2504.
  • Augustijns P, Brewster ME. Supersaturating drug delivery systems: fast is not necessarily good enough. J Pharm Sci. 2012;101(1):7–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.