678
Views
48
CrossRef citations to date
0
Altmetric
Review

Rational excipient selection for co-amorphous formulations

, &
Pages 551-569 | Received 16 Mar 2016, Accepted 01 Jun 2016, Published online: 20 Jun 2016

References

  • Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65:315−499.
  • Alam MA, Al-Jenoobi FI, Al-mohizea AM. Commercially bioavailable proprietary technologies and their marketed products. Drug Discov Today. 2013;18;936−949.
  • Kaushal AM, Gupta P, Bansal AK. Amorphous drug delivery systems: molecular aspects, design and performance. Crit Rev Ther Drug Carrier Syst. 2004;21:133−193.
  • Yu L. Amorphous pharmaceutical solids; preparation, characterization and stabilization. Adv Drug Delivery Rev. 2001;48:27−42.
  • Zhang GGZ, Law D, Scmitt EA, et al. Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Delivery Rev. 2004;56:371−90.
  • Aaltonen J, Rades T. Towards physico-relevant dissolution testing: the importance of solid-state analysis in dissolution. Dissolution Technol. 2009;16:47−54.
  • Zheng E, Jain A, Papoutsakis D, et al. Selection of oral bioavailability enhancing formulations during drug discovery. Drug Dev Ind Pharm. 2012;38:235−47.
  • Grohganz H, Priemel PA, Löbmann K, et al. Refining stability and dissolution rate of amorphous drug formulations. Expert Opin Drug Deliv. 2014;11:977–989.
  • Qian F, Huang J, Hussain MA. Drug−polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99:2941−47.
  • Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101:1355–1377.
  • Janssens S, Van Den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61:1571–1586.
  • Srinarong P, De Waard H, Frijlink HW, et al. Improved dissolution behavior of lipophilic drugs by solid dispersions: the production process as starting point for formulation considerations. Expert Opin Drug Deliv. 2011;8:1121–1140.
  • Laitinen R, Löbmann K, Strachan CH, et al. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453:65–79.
  • Dengale SJ, Grohganz H, Rades T, et al. Recent advances in co-amorphous drug formulations. Adv Drug Delivery Rev. 2016;100:116–125.
  • Allesø M, Chieng N, Rehder S, et al. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen–cimetidine mixtures prepared by mechanical activation. J Control Release. 2009;136:45–53.
  • Löbmann K, Laitinen R, Grohganz H, et al. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin. Int J Pharm. 2013;30:80–87.
  • Löbmann K, Strachan C, Grohganz H, et al. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm. 2012;81:159–169.
  • Laitinen R, Priemel PA, Surwase S, et al. Theoretical considerations in developing amorphous solid dispersions. In: Shah N, Sandhu H, Choi DS, et al., editors. Amorphous solid dispersions. New York: Springer; 2014. 35–90.
  • Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64:396–421.
  • Nair R, Nyamweya N, Gönen S, et al. Influence of various drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int J Pharm. 2001;225:83–96.
  • Forster A, Hempenstall J, Tucker I, et al. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm. 2001;226:147–161.
  • Greenhalgh DJ, Williams AC, Timmins P, et al. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999;88:1182–1190.
  • Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;1:471–477.
  • Marsac PJ, Konno H, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23:2417–2426.
  • Marsac PJ, Li T, Taylor LS. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26:139–151.
  • Yoo SU, Krill SL, Wang Z, et al. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci. 2009;98:4711–4723.
  • Liu H, Zhang X, Suwardie H, et al. Miscibility studies of indomethacin and Eudragit® E PO by thermal, rheological, and spectroscopic analysis. J Pharm Sci. 2012;101:2204–2212.
  • Paudel A, Humbeeck JV, Van Den Mooter G. Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly(vinylpyrrolidone). Mol Pharm. 2010;7:1133–1148.
  • Wiranidchapong C, Tucker IG, Rades T, et al. Miscibility and interactions between 17-estradiol and eudragit (R) RS in solid dispersion. J Pharm Sci. 2008;97:4879–4888.
  • Ivanisevic I, Bates S, Chen P. Novel methods for the assessment of miscibility of amorphous drug-polymer dispersions. J Pharm Sci. 2009;98:3373–3386.
  • Zhao Y, Inbar P, Chokshi HP, et al. Prediction of the thermal phase diagram of amorphous solid dispersions by Flory–Huggins theory. J Pharm Sci. 2011;100:3196–3207.
  • Pajula K, Taskinen M, Lehto VP, et al. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol Pharm. 2010;7:795–804.
  • Löbmann K, Jensen KT, Laitinen R, et al. Stabilized amorphous solid dispersions with small molecule excipients. In: Shah N, Sandhu H, Choi DS, et al., editors. Amorphous solid dispersions. New York: Springer; 2014. 613–636.
  • Yamamura S, Momose M, Takahashi K, et al. Solid-state interaction between cimetidine and naproxen. Drug Stability. 1996;50:173–178.
  • Yamamura S, Gotoh H, Sakamoto Y, et al. Physicochemical properties of amorphous salt of cimetidine and diflunisal system. Int J Pharm. 2002;241:213–221.
  • Masuda T, Yoshihashi Y, Yonemochi E, et al. Cocrystallization and amorphization induced by drug–excipient interaction improves the physical properties of acyclovir. Int J Pharm. 2012;422:160–169.
  • Lu Q, Zografi G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid and PVP. Pharm Res. 1998;15:1202–1206.
  • Hoppu P, Jouppila K, Rantanen J, et al. Characterisation of blends of paracetamol and citric acid. J Pharm Pharmacol. 2007;59:373–381.
  • Hoppu P, Hietala S, Schantz S, et al. Rheology and molecular mobility of amorphous blends of citric acid and paracetamol. Eur J Pharm Biopharm. 2009;71:55–63.
  • Descamps M, Willart JF, Dudognon E, et al. Transformation of pharmaceutical compounds upon milling and comilling: the role of Tg. J Pharm Sci. 2007;96:1398–1407.
  • Lim A, Löbmann K, Grohganz H, et al. Investigation of physical properties and stability of indomethacin–cimetidine and naproxen–cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling. J Pharm Pharmacol. 2016;68:36–45.
  • Chieng N, Aaltonen J, Saville D, et al. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur J Pharm Biopharm. 2009;71:47–54.
  • Löbmann K, Laitinen R, Grohganz H, et al. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8::1919–1928.
  • Löbmann K, Grohganz H, Laitinen R, et al. Amino acids as co-amorphous stabilizers for poorly water soluble drugs — part 1: preparation, stability and dissolution enhancement. Eur J Pharm Biopharm. 2013;85:873–881.
  • Löbmann K, Laitinen R, Strachan C, et al. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs — part 2: molecular interactions. Eur J Pharm Biopharm. 2013;85:882–888.
  • Jensen KT, Blaabjerg LI, Lenz E, et al. Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. J Pharm Pharmacol. Forthcoming 2016. doi:10.1111/jphp.12458
  • Laitinen R, Löbmann K, Grohganz H, et al. Amino acids as co-amorphous excipients for simvastatin and glibenclamide: physical properties and stability. Mol Pharm. 2014;11:2381−9.
  • Heikkinen AT, DeClerck L, Löbmann K, et al. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media. Pharmazie. 2015;70:452–457.
  • Jensen KT, Larsen FH, Cornett C, et al. Formation mechanism of coamorphous drug−amino acid mixtures. Mol Pharm. 2015;12:2484–2492.
  • Jensen KT, Löbmann K, Rades T, et al. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid, proline. Pharmaceutics. 2014;6:416–435.
  • Ueda H, Muranushi N, Sakuma S, et al. A strategy for co-former selection to design stable co-amorphous formations based on physicochemical properties of non-steroidal inflammatory drugs. Pharm Res. 2016;33:1018–1029.
  • Shayanfar A, Ghavimi H, Hamishehkar H, et al. Coamorphous atorvastatin calcium to improve its physicochemical and oharmacokinetic properties. J Pharm Pharm Sci. 2013;16:577–587.
  • Gao Y, Liao J, Qi X, et al. Coamorphous repaglinide–saccharin with enhanced dissolution. Int J Pharm. 2013;450:290–295.
  • Paluch KJ, McCabe T, Müller-Bunz H, et al. Formation and physicochemical properties of crystalline and amorphous salts with different stoichiometries formed between ciprofloxacin and succinic acid. Mol Pharm. 2013;10:3640–3654.
  • Russo MG, Sancho MI, Silva LMA, et al. Looking for the interactions between omeprazole and amoxicillin in a disordered phase. An experimental and theoretical study. Spectrochim Acta A Mol Biomol Spectrosc. 2016;156:70–77.
  • Hu Y, Gniado K, Erxleben A, et al. Mechanochemical reaction of sulfathiazole with carboxylic acids: formationof a cocrystal, a salt, and coamorphous solids. Crystal Growth Des. 2014;14:803–813.
  • Knapik J, Wojnarowska Z, Grzybowska K, et al. Molecular dynamics and physical stability of coamorphous ezetimibe and indapamide mixtures. Mol Pharm. 2015;12:3610–3619.
  • Dengale SJ, Ranjan OP, Hussen SS, et al. Preparation and characterization of co-amorphous ritonavir–indomethacin systems by solvent evaporation technique: improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur J Pharm Sci. 2014;62:57–64.
  • Shayanfar A, Jouyban A. Drug–drug coamorphous systems: characterization and physicochemical properties of coamorphous atorvastatin with carvedilol and glibenclamide. J Pharm Innov. 2013;8:218–228.
  • Martínez LM, Videa M, López-Silva GA. Stabilization of amorphous paracetamol based systems using traditional and novel strategies. Int J Pharm. 2014;477:294–305.
  • Renuka, Singh SK, Gulati M, et al., Stable amorphous binary systems of glipizide and atorvastatin powders with enhanced dissolution profiles: formulation and characterization. Pharm Dev Technol. Forthcoming 2016. doi:10.3109/10837450.2015.1125921.
  • Qian S, Heng W, Wei Y. Coamorphous lurasidone hydrochloride−saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior. Cryst Growth Des. 2015;15:2920–2928.
  • Suresh K, Mannava MKC, Nangia A. A novel curcumin-artemisinin coamorphous solid: physicalproperties and pharmacokinetic profile. RSC Adv. 2014;4:58357–58361.
  • Tantishaiyakul V, Songkro S, Suknuntha K. Crystal structure transformations and dissolution studies of cimetidine–piroxicam coprecipitates and physical mixtures. AAPS PharmSciTech. 2009;10:789–795.
  • Telang C, Mujumdar S, Mathew M. Improved physical stability of amorphous state through acid base interactions. J Pharm Sci. 2009;98:2149–2159.
  • Dengale SJ, Hussen SS, Krishna BSM. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of ritonavir with quercetin. Eur J Pharm Biopharm. 2015;89:329–338.
  • Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci. 2010;99:4005–4012.
  • Marsac PJ, Rumondor AC, Nivens DE, et al. Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). J Pharm Sci. 2010;99:169–185.
  • Hildebrand J. Solubility. XIV. Experimental tests of a general equation for solubility. J Am Chem Soc. 1935;57:866–871.
  • Just S, Sievert F, Thommes M, et al. Improved group contribution parameter set for the application of solubility parameters to melt extrusion. Eur J Pharm Biopharm. 2013;85:1191–1199.
  • Icoz DZ, Kokini JL. Examination of the validity of the Flory-Huggins solution theory in terms of miscibility in dextran systems. Carbohydr Polym. 2007;68:59–67.
  • Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328:119–129.
  • Huynh L, Grant J, Leroux JC, et al. Predicting the solubility of the anti-cancer agent docetaxel in small molecule excipients using computational methods. Pharm Res. 2008;25:147–157.
  • Li X, Winnik MA, Guillet JE. A fluorescence method to determine the solubility parameters dH of soluble polymers at infinite dilution. cyclization dynamics of polymers. Macromolecules. 1983;16:992–995.
  • Adamska K, Voelkel A. Inverse gas chromatographic determination of solubility parameters of excipients. Int J Pharm. 2005;304:11–17.
  • Liu Y, Shi B. Determination of flory interaction parameters between polyimide and organic solvents by HSP theory and IGC. Polymer Bulletin. 2008;61:501–509.
  • Stefanis E, Panayiotou C. Prediction of Hansen solubility parameters with a new group-contribution method. Int J Thermophys. 2008;29:568–585.
  • Thakral S, Thakral NK. Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci. 2013;102:2254–2263.
  • Hansen CM. Hansen solubility parameters: a user’s handbook. Boca Raton, Florida: CRC Press; 2000.
  • Albers J, Matthée K, Knop K, et al. Evaluation of predictive models for stable solid solution formation. J Pharm Sci. 2011;100:667–680.
  • Alhalaweh A, Alzghoul A, Kaialy W. Data mining of solubility parameters for computational prediction of drug-excipient miscibility. Drug Dev Ind Pharm. 2014;40:904–909.
  • Kitak T, Dumicic A, Planinšek O, et al. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules. 2015;20:21549–21568.
  • Viswanathan S, Dadmun MD. Guidelines to creating a true molecular composite: inducing miscibility in blends by optimizing intermolecular hydrogen bonding. Macromolecules. 2002;35:5049–5060.
  • Santos JMRCA, Guthrie JT. Analysis of interactions in multicomponent polymeric systems: the key-role of inverse gas chromatography. Mat Sci Eng R: Rep. 2005;50:79–107.
  • Yang M, Wang P, Gogos C. Prediction of acetaminophen’s solubility in poly(ethylene oxide) at room temperature using the Flory-Huggins theory. Drug Dev Ind Pharm. 2013;39:102–108.
  • Pina MF, Zhao M, Pinto JF, et al. The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine. J Pharm Sci. 2014;103:1214–1223.
  • Tian Y, Booth J, Meehan E, et al. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm. 2013;10:236–248.
  • Jawalkar SS, Raju KVSN, Halligudi SB, et al. Molecular modeling simulations to predict compatibility of poly(vinyl alcohol) and chitosan blends: a comparison with experiments. J Phys Chem B. 2007;111:2431–2439.
  • Pajula K, Wittoek L, Lehto VP, et al. Phase separation in coamorphous systems: in silico prediction and the experimental challenge of detection. Mol Pharm. 2014;11:2271–2279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.