1,128
Views
97
CrossRef citations to date
0
Altmetric
Review

Application of lipid nanoparticles to ocular drug delivery

, , , , , & show all
Pages 1743-1757 | Received 01 Mar 2016, Accepted 08 Jun 2016, Published online: 24 Jun 2016

References

  • Sah AK, Suresh PK. Recent advances in ocular drug delivery, with special emphasis on lipid based nanocarriers. Recent Pat Nanotechnol. 2015;9(2):94–105.
  • Pignatello R, Carbone C, Puglia C, et al. Ophthalmic applications of lipid-based drug nanocarriers: an update of research and patenting activity. Ther Deliv. 2015;6(11):1297–1318.
  • Puglia C, Offerta A, Carbone C, et al. Lipid nanocarriers (LNC) and their applications in ocular drug delivery. Curr Med Chem. 2015;22(13):1589–1602.
  • Malhotra A, Minja FJ, Crum A. Ocular anatomy and cross-sectional imaging of the eye. Semin Ultrasound CT MRI. 2011;32(1):2–13.
  • Patil BB, Dowd TC. Physiological functions of the eye. Curr Anaesth Crit Care. 2000;11(6):293–298.
  • Presland A. Applied ocular physiology and anatomy. Anaesth Intens Care Med. 2007;8(9):379–382.
  • Presland A, Price J. Ocular anatomy and physiology relevant to anaesthesia. Anaesth Intens Care Med. 2014;15(1):20–25.
  • Wichmann W, Müller-Forell W. Anatomy of the visual system. Eur J Radiol. 2004;49(1):8–30.
  • Hodges RR, Dartt DA. Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract Mucins. Exp Eye Res. 2013;117:62–78.
  • Bron AJ, Tiffany JM, Gouveia SM, et al. Functional aspects of the tear film lipid layer. Exp Eye Res. 2004;78:347–360.
  • Dartt DA. Interaction of EGF family growth factors and neurotransmitters in regulating lacrimal gland secretion. Exp Eye Res. 2004;78:337–345.
  • Gan L, Wang J, Jiang M, et al. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today. 2013;18:290–297.
  • Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;3(4):52–59.
  • Meek KM. The cornea and Sclera. In: Fratzl P, editor. Collagen: structure and mechanics. New York (NY): Springer Science+Business Media, LLC; 2008.
  • Presland A, Myatt J. Ocular anatomy and physiology relevant to anaesthesia. Anaesth Intens Care Med. 2010;11:438–443.
  • Murthy KR, Goel R, Subbannayya Y, et al. Proteomic analysis of human vitreous humor. Clin Proteomics. 2014;11(1):29.
  • Souto EB, Doktorovova S, Gonzalez-Mira E, et al. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr Eye Res. 2010;35(7):537–552.
  • Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21:S3–S9.
  • Campbell M, Humphries P. The blood-retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol. 2012;763:70–84.
  • Eljarrat-Binstock E, Pe’er J, Domb AJ. New techniques for drug delivery to the posterior eye segment. Pharm Res. 2010;27:530–543.
  • Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13:135–143.
  • Mannermaa E. In Vitro model of retinal pigment epithelium for use in drug delivery studies. Kuopio: University of Eastern Finland; 2010.
  • Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther. 2003;3:45–56.
  • Hsu J. Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol. 2007;18:235–239.
  • Wadhwa S, Paliwal R, Paliwal SR, et al. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des. 2009;15:2724–2750.
  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182–195.
  • Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012;3:2002–2004.
  • Thrimawithana TR, Young S, Bunt CR, et al. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16:271–277.
  • Bäckström G, Lundberg B, Behndig A. Intracameral acetylcholine effectively contracts pupils after dilatation with intracameral mydriatics. Acta Ophthalmol. 2013;91(2):123–126.
  • Wadhwa S, Paliwal R, Paliwal SR, et al. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des. 2009;15:2724–2750.
  • Ausayakhun S, Yuvaves P, Ngamtiphakom S, et al. Treatment of cytomegalovirus retinitis in AIDS patients with intravitreal ganciclovir. J Med Assoc Thai. 2005;88:S15–S20.
  • Mikhail M, Sallam A. Novel intraocular therapy in non-infectious uveitis of the posterior segment of the eye. Med Hypothesis Discov Innov Ophthalmol. 2013;2(4):113–120.
  • Solinís MÁ, Del Pozo-Rodríguez A, Apaolaza PS, et al. Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm. 2015;95(Pt B):331–342.
  • Bloquel C, Bourges JL, Touchard E, et al. Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliver Rev. 2006;58:1224–1242.
  • Bucolo C, Drago F. Carbon monoxide and the eye: implications for glaucoma therapy. Pharmacol Ther. 2011;130(2):191–201.
  • Zhou HY, Hao JL, Wang S, et al. Nanoparticles in the ocular drug delivery. Int J Ophthalmol. 2013;6(3):390–396.
  • Elbadawy HM, Gailledrat M, Desseaux C, et al. Targeting herpetic keratitis by gene therapy. J Ophthalmol. 2012;2012:594869.
  • Cho YK, Uehara H, Young JR, et al. Flt23k nanoparticles offer additive benefit in graft survival and anti-angiogenic effects when combined with triamcinolone. Invest Ophthalmol Vis Sci. 2012;53(4):2328–2336.
  • Hattori M, Shimizu K, Katsumura K, et al. Effects of all-trans retinoic acid nanoparticles on corneal epithelial wound healing. Graefes Arch Clin Exp Ophthalmol. 2012;250(4):557–563.
  • Kim NJ, Harris A, Gerber A, et al. Nanotechnology and glaucoma: a review of the potential implications of glaucoma nanomedicine. Br J Ophthalmol. 2014;98:427–431.
  • Bucolo C, Platania CB, Reibaldi M, et al. Controversies in glaucoma: current medical treatment and drug development. Curr Pharm Des. 2015;21(32):4673–4681.
  • Bucolo C, Salomone S, Drago F, et al. Pharmacological management of ocular hypertension: current approaches and future prospective. Curr Opin Pharmacol. 2013;13(1):50–55.
  • Musumeci T, Bucolo C, Carbone C, et al. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in Rabbits. Int J Pharm. 2013;440(2):135–140.
  • Jo DH, Lee TG, Kim JH. Nanotechnology and nanotoxicology in retinopathy. Int J Mol Sci. 2011;12:8288–8301.
  • Preeti K, Suresh M, Abhishek K. Nanocarriers for ocular delivery for possible benefits in the treatment of anterior uveitis: focus on current paradigms and future directions. Expert Opin Drug Deliv. 2014;11(11):1747–1768.
  • Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin. 1992;10:505–512.
  • Schalnus R. Topical nonsteroidal anti-inflammatory therapy in ophthalmology. Ophthalmologica. 2003;217:89–98.
  • Solanki S, Rathi M, Khanduja S, et al. Recent trends: medical management of infectious keratitis. Oman J Ophthalmol. 2015;8(2):83–85.
  • Keynan Y, Finkelman Y, Lagacé-Wiens P. The microbiology of endophthalmitis: global trends and a local perspective. Eur J Clin Microbiol Infect Dis. 2012;31:2879–2886.
  • Camber O. Studies on corneal permeability and an evaluation of prostaglandin F(2α) pro-drugs and sodium hyaluronate. Acta Pharm Suec. 1988;25(3):181.
  • Surajit D. Corneal cell culture models: a tool to study corneal drug absorption. Expert Opin Drug Metab Toxicol. 2011;7(5):529–532.
  • Sarmento B, Andrade F, Baptista Da Silva S, et al. Cell-based in vitro models for predicting drug permeability. Expert Opin Drug Metab Toxicol. 2012;8(5):607–621.
  • Vinardell MP, Mitjans M. Alternative methods for eye and skin irritation tests: an overview. J Pharm Sci. 2008;97:46–59.
  • Marcondes PF, Rodrigues EB, Maia M. Retinal and ocular toxicity in ocular application of drugs and chemicals – part I: animal models and toxicity assays. Ophthalmic Res. 2010;44:82–104.
  • Grossniklaus HE, Kang SJ, Berglin L. Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res. 2010;29:500–519.
  • Weber BH, Schrewe H, Molday LL, et al. Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure. Proc Natl Acad Sci USA. 2002;99:6222–6227.
  • Veleri S, Lazar CH, Chang B, et al. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech. 2015;8:109–129.
  • Mowat FM, Breuwer AR, Bartoe JT, et al. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Ther. 2013;20(5):545–555.
  • Rivas MA, Vecino E. Animal models and different therapies for treatment of retinitis pigmentosa. Histol Histopathol. 2009;24(10):1295–1322.
  • Ako-Adounvo AM, Nagarwal RC, Oliveira L, et al. Recent patents on ophthalmic nanoformulations and therapeutic implications. Recent Pat Drug Deliv Formul. 2014;8:193–201.
  • Almeida H, Amaral MH, Lobão P, et al. Applications of polymeric and lipid nanoparticles in ophthalmic pharmaceutical formulations: present and future considerations. J Pharm Pharm Sci. 2014;17(3):278–293.
  • Kothuri MK, Pinnamaneni S, Das NG, et al. Microparticles and nanoparticles in ocular drug delivery. In: Mitra AK editor. Ophthalmic drug delivery systems. New York (NY): Informa Healthcare; 2003. p. 437–466.
  • Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010;17:467–489.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–196.
  • Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv. 2012;9(5):497–508.
  • Müller RH, Olbrich C. Lipid matrix-drug conjugates particle for controlled release of active ingredient. US6770299. 2004.
  • Cavalli R, Gasco MR, Chetoni P, et al. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm. 2002;238:241–245.
  • JHao J, Fang X, Zhou Y, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a box-behnken design. Int J Nanomedicine. 2011;6:683–692.
  • Kalam MA, Sultana Y, Ali A, et al. Part I: development and optimization of solid-lipid nanoparticles using box-behnken statistical design for ocular delivery of gatifloxacin. J Biomed Mater Res A. 2013;101A(6:1813–1827.
  • Kalam MA, Sultana Y, Ali A, et al. Part II: enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles in comparison to commercial aqueous eye drops. J Biomed Mater Res A. 2013;101A(6:1828–1836.
  • Kalam MA, Sultana Y, Ali A, et al. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J Drug Targ. 2010;18(3):191–204.
  • Salman M, Ahad A, Aslam M, et al. Application of box–behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery : optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J Biol Macromolec. 2016;85:258–270.
  • Mohanty B, Majumdar D, Mishra S, et al. Development and characterization of itraconazole loaded solid lipid nanoparticles for ocular delivery. Pharm Dev Technol. 2015;20(4):458–464.
  • Kakkar S, Karuppayil SM, Raut JS, et al. Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int J Pharm. 2015;495(1):276–289.
  • Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm. 2013;39(4):508–519.
  • Attama AA, Reichl S, Muller-Goymann CC. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm. 2008;355:307–313.
  • Xiang L, Nie S-F, Kong J, et al. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm. 2008;363:177–182.
  • Gonzalez-Mira E, Egea MA, Garcia ML, et al. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces. 2010;81:412–421.
  • Qiuhua L, Junming Z, Xiangrong Z. Nanostructured lipid carrier (NLC) coated with chitosan oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm. 2011;403:185–191.
  • Hippalgaonkar K, Adelli GR, Hippalgaonkar K, et al. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J Ocul Pharmacol Ther. 2013;29(2):216–228.
  • Araújo J, Gonzalez-Mira E, Egea MA, et al. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm. 2010;393:167–175.
  • Araujo J, Nikoli S, Egea MA, et al. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B Biointerfaces. 2011;88:150–157.
  • Liu Z, Zhang X, Haoyun W, et al. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev Ind Pharm. 2011;37(4):475–481.
  • Liu C-H, Huang Y-C, Jhang J-W, et al. Quercetin delivery to porcine cornea and sclera by solid lipid nanoparticles and nanoemulsion. RSC Adv. 2015;5:100923–100933.
  • Fangueiro JF, Calpena AC, Clares B, et al. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): in vivo, in vitro and EX Vivo studies. Int J Pharm. 2016;502(1–2):161–169.
  • Arana L, Salado C, Vega S, et al. Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids Surf B Biointerfaces. 2015;135:18–26.
  • Shen J, Deng Y, Jin X, et al. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: improving in vivo ocular distribution. Int J Pharm. 2010;402:248–253.
  • Başaran E, Demirel M, Sırmagül B, et al. Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul. 2010;27(1):37–47.
  • Battaglia L, D’Addino I, Peira E, et al. Solid lipid nanoparticles prepared by coacervation method as vehicles for ocular cyclosporine. J Drug Del Sci Tech. 2012;22(2):125–130.
  • Gokce EH, Sandri G, Bonferoni MC, et al. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm. 2008;364:76–86.
  • Niu M, Shi K, Sun Y, et al. Preparation of CyA-loaded solid lipid nanoparticles and application on ocular preparations. J Drug Del Sci Tech. 2008;18(4):293–297.
  • Shen J, Wang Y, Ping Q et al. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release. 2009;137:217–223.
  • Attama AA, Reichl S, Müller-Goymann CC. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Curr Eye Res. 2009;34:698–705.
  • Wang F, Chen L, Zhang D, et al. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J Drug Target. 2014;22(9):849–858.
  • Cavalli R, Morel S, Gasco MR, et al. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int J Pharm. 1995;117:243–246.
  • Leonardi A, Bucolo C, Drago F, et al. Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in Rabbit. Int J Pharm. 2015;478(1):180–186.
  • El-Salamouni NS, Farid RM, El-Kamel AH, et al. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm. 2015;496(2):976–983.
  • Delgado D, Del Pozo-Rodríguez A, Solinís MÁ, et al. Dextran and protamine-based solid lipid nanoparticles as potential vectors for the treatment of X-linked juvenile retinoschisis. Hum Gene Ther. 2011 ;23(4):345–355.
  • Apaolaza PS, Delgado D, Del Pozo-Rodríguez A, et al. A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int J Pharm. 2014;465:413–426.
  • Apaolaza PS, Del Pozo-Rodríguez A, Torrecilla J, et al. Solid lipid nanoparticle-based vectors intended for the treatment of X-linked juvenile retinoschisis by gene therapy: in vivo approaches in Rs1h-deficient mouse model. J Control Release. 2015;217:273–283.
  • Apaolaza, Del Pozo-Rodríguez A, Solinís MA, et al. Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials. 2016;90:40–49.
  • Hao J, Wang X, Bi Y, et al. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf B Biointerfaces. 2014;114:111–120.
  • Leonardi A, Bucolo C, Romano GL, et al. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Intl J Pharm. 2014;470:133–140.
  • Lallemand F, Felt-Baeyens O, Besseghir K, et al. Cyclosporine A delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm. 2003;56:307–318.
  • Jonas JB. Intravitreal triamcinolone acetonide: a change in a paradigm. Ophthalmic Res. 2006;38:218–245.
  • Del Pozo-Rodríguez A, Delgado D, Gascón AR, et al. Lipid nanoparticles as drug/gene delivery systems to the retina. J Ocul Pharmacol Ther. 2013;29(2):173–188.
  • EMA. Guideline on the quality, non-clinical and clinical aspects of gene therapy medicinal products. Draft. EMA/CAT/80183/2014. London: European Medicines Agency; 2015.
  • Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–2239.
  • Banin E, Bandah-Rozenfeld D, Obolensky A, et al. Molecular anthropology meets genetic medicine to treat blindness in the North African Jewish population: human gene therapy initiated in Israel. Hum Gene Ther. 2010;21:1749–1757.
  • Cideciyan AV, Aleman TS, Boye SL, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA. 2008;105:15112–15117.
  • Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–2248.
  • Kumar-Singh R. Barriers for retinal gene therapy: separating fact from fiction. Vis Res. 2008;48:1671–1680.
  • Provost N, Le Meur G, Weber M, et al. Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain. Mol Ther. 2005;11:275–283.
  • Cai X, Conley S, Naash M. Nanoparticle applications in ocular gene therapy. Vision Res. 2008;48:319–324.
  • Rodríguez-Gascón A, Solinís MA, Del Pozo-Rodríguez A, et al. Lipid nanoparticles for gene therapy. US 20120183589 A1. 2012.
  • Rodríguez-Gascón A, Solinís MA, Del Pozo-Rodríguez A, et al. Lipid nanoparticles for treating ocular diseases. WO 2012085318 A1. 2012.
  • Lim SB, Banerjee A, Önyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release. 2012;163:34–45.
  • Beloqui A, Má S, Rodríguez-Gascón A, et al. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomed. 2016;12:143–161.
  • Böhm M, Avgitidou G, El Hassan E, et al. Liposomes: a new non-pharmacological therapy concept for seasonal-allergic-rhinoconjunctivitis. Eur Arch Otorhinolaryngol. 2012;269:495–502.
  • Hofauer B, Bas M, Manour N, et al. Effekt liposomaler lokaltherapie auf die Sicca-Symptomatik des primären Sjögren-Syndroms. HNO. 2013;61:921–927.
  • Díaz-Llopis M, Martos MJ, España E, et al. Liposomally entrapped ganciclovir for the treatment of cytomegalovirus retinitis in AIDS patients. Experimental toxicity and pharmacokinetics, and clinical trial. Doc Ophthalmol. 1992;82:297–305.
  • Kalita D, Shome D, Jain VG, et al. In vivo intraocular distribution and safety of periocular nanoparticle carboplatin for treatment of advanced retinoblastoma in humans. Am J Ophthalmol. 2014;157:1109–1115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.