200
Views
21
CrossRef citations to date
0
Altmetric
Review

Nanotechnology applied to treatment of mucopolysaccharidoses

, &
Pages 1709-1718 | Received 29 Feb 2016, Accepted 13 Jun 2016, Published online: 30 Jun 2016

References

  • Giugliani R. Mucopolysacccharidoses: from understanding to treatment, a century of discoveries. Genet Mol Biol. 2012;35(4):924–931.
  • Baldo G, Giugliani R, Matte U. Gene delivery strategies for the treatment of mucopolysaccharidoses. Expert Opin Drug Deliv. 2014;11(3):449–459.
  • Giugliani R, Federhen A, Rojas MVM, et al. Mucopolysaccharidosis I, II, and VI: brief review and guidelines for treatment. Genet Mol Biol. 2010;33(4):589–604.
  • Morille M, Passirani C, Vonarbourg A, et al. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24–5):3477–3496.
  • Zorzi GK, Seijo B, Sanchez A. Endogenous polymers as biomaterials for nanoparticulate gene therapy. In: Thakur VK, Thakur MK, editors. Handbook of polymers for pharmaceutical technologies. Hoboken (NJ): John Wiley & Sons, Inc.; 2015. p. 237–259.
  • Fenske DB, Chonn A, Cullis PR. Liposomal nanomedicines: an emerging field. Toxicol Pathol. 2008;36(1):21–29.
  • Bouchemal K, Briancon S, Perrier E, et al. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280(1–2):241–251.
  • Schuh RS, Bruxel F, Teixeira HF. Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high-pressure homogenization. Quim Nova. 2014;37:1193–1198.
  • Ravi Kumar M, Hellermann G, Lockey RF, et al. Nanoparticle-mediated gene delivery: state of the art. Expert Opin Biol Ther. 2004;4(8):1213–1224.
  • Ditto AJ, Shah PN, Yun YH. Non-viral gene delivery using nanoparticles. Expert Opin Drug Deliv. 2009;6(11):1149–1160.
  • Fraga M, Bruxel F, Diel D, et al. PEGylated cationic nanoemulsions can efficiently bind and transfect pIDUA in a mucopolysaccharidosis type I murine model. J Control Release. 2015;209:37–46.
  • Zhang Y, Wang Y, Boado RJ, et al. Lysosomal enzyme replacement of the brain with intravenous non-viral gene transfer. Pharm Res. 2008;25(2):400–406.
  • Mayer FQ, Adorne MD, Bender EA, et al. Laronidase-functionalized multiple-wal l lipid-core nanocapsules: promising formulation for a more effective treatment of mucopolysaccharidosis Type I. Pharm Res. 2015;32:941–954.
  • Muhlstein A, Gelperina S, Kreuter J. Development of nanoparticle-bound arylsulfatase B for enzyme replacement therapy of mucopolysaccharidosis VI. Pharmazie. 2013;68(7):549–554.
  • Fraga M, De Carvalho TG, Diel D Da S, et al. Cationic nanoemulsions as a gene delivery system: proof of concept in the mucopolysaccharidosis I murine model. J Nanosci Nanotechnol. 2015;15(1):810–816.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522.
  • Kwon SM, Nam HY, Nam T, et al. In vivo time-dependent gene expression of cationic lipid-based emulsion as a stable and biocompatible non-viral gene carrier. J Control Release. 2008;128(1):89–97.
  • Rao NM, Gopal V. Cationic lipids for gene delivery in vitro and in vivo. Expert Opin Ther Pat. 2006;16(6):825–844.
  • Nordling-David MM, Golomb G. Gene delivery by liposomes. Isr J Chem. 2013;53(9–10, (SI)):737–747.
  • Lu C, Stewart DJ, Lee JJ, et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One. 2012;7(4):e34833.
  • Lavigne MD, Górecki DC. Emerging vectors and targeting methods for nonviral gene therapy. Expert Opin Emerg Drugs. 2006;11(3):541–557.
  • Bruxel F, Vilela JMC, Andrade MS, et al. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes. Colloids Surf B. 2013;112:530–536.
  • Zhou X, Huang L. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta. 1994;1189(2):195–203.
  • Nam HY, Park JH, Kim K, et al. Lipid-based emulsion system as non-viral gene carriers. Arch Pharm Res. 2009;32(5):639–646.
  • McNeil SE, Perrie Y. Gene delivery using cationic liposomes. Expert Opin Ther Pat. 2006;16(10):1371–1382.
  • Verissimo LM, Lima LFA, Egito LCM, et al. Pharmaceutical emulsions: a new approach for gene therapy. J Drug Target. 2010;18(5):333–342.
  • Liu C-H, Yu S-Y. Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery. Colloids Surf B. 2010;79(2):509–515.
  • Romøren K, Thu BJ, Bols NC, et al. Transfection efficiency and cytotoxicity of cationic liposomes in salmonid cell lines of hepatocyte and macrophage origin. Biochim Biophys Acta - Biomembr. 2004;1663(1):127–134.
  • Bruxel F, Laux M, Wild LB, et al. Nanoemulsões como sistemas de liberação parenteral de fármacos. Quim Nova. 2012;35:1827–1840.
  • Wilkinson FL, Sergijenko A, Langford-Smith KJ, et al. Busulfan conditioning enhances engraftment of hematopoietic donor-derived cells in the brain compared with irradiation. Mol Ther. 2013;21(4):868–876.
  • Gref R, Couvreur P. Nanocapsules: preparation, characterization and therapeutic applications. In: Torchilin VP, editor. Nanoparticulates as drug carriers. London: Imperial College Press; 2006. p. 720.
  • Kim SH, Jeong JH, Lee SH, et al. PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J Control Release. 2006;116(2SPEC. ISS.):123–129.
  • Bhattarai N, Ramay HR, Gunn J, et al. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release. 2005;103(3):609–624.
  • Filion MC, Phillips NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta - Biomembr. 1997;1329(2):345–356.
  • Kim TW, Chung H, Kwon IC, et al. Optimization of lipid composition in cationic emulsion as in vitro and in vivo transfection agents. Pharm Res. 2001;18(1):54–60.
  • Vasir JK, Labhasetwar V. Polymeric nanoparticles for gene delivery. Expert Opin Drug Deliv. 2006;3(3):325–344.
  • Mundargi RC, Babu VR, Rangaswamy V, et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125:193–209.
  • Dziublaa TD, Shuvaeva VV, Honga NK, et al. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials. 2008;29:215–227.
  • Wilson B. Brain targeting PBCA nanoparticles and the blood-brain barrier. Nanomedicine (Lond). 2009;4(5):499–502.
  • Sinha VR, Bansal K, Kaushik R, et al. Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278(1):1–23.
  • Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release. 2012;158(1):15–33.
  • Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B. 2007;59(1):24–34.
  • Sinha VR, Singla AK, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274(1–2):1–33.
  • Matte U, Yogalingam G, Brooks D, et al. Identification and characterization of 13 new mutations in mucopolysaccharidosis type I patients. Mol Genet Metab. 2016;78(1):37–43. doi:10.1016/S1096-7192(02)00200-7.
  • Hollak CEM, Wijburg FA. Treatment of lysosomal storage disorders: successes and challenges. J Inherit Metab Dis. 2014;37(4):587–598.
  • Giugliani R. Newborn screening for lysosomal diseases: current status and potential interface with population medical genetics in Latin America. J Inherit Metab Dis. 2012;35(5):871–877.
  • Lund TC. Hematopoietic stem cell transplant for lysosomal storage diseases. Pediatr Endocrinol Rev. 2013;11(Suppl 1):91–98.
  • Aldenhoven M, Jones SA, Bonney D, et al. Hematopoietic cell transplantation for mucopolysaccharidosis patients is safe and effective: results after implementation of international guidelines. Biol Blood Marrow Transplant. 2015;21(6):1106–1109.
  • Patel P, Suzuki Y, Tanaka A, et al. Impact of enzyme replacement therapy and hematopoietic stem cell therapy on growth in patients with Hunter syndrome. Mol Genet Metab Reports. 2014;1:184–196.
  • Araya K, Sakai N, Mohri I, et al. Localized donor cells in brain of a Hunter disease patient after cord blood stem cell transplantation. Mol Genet Metab. 2009;98(3):255–263.
  • Chinen Y, Higa T, Tomatsu S, et al. Long-term therapeutic efficacy of allogenic bone marrow transplantation in a patient with mucopolysaccharidosis IVA. Mol Genet Metab Reports. 2014;1:31–41.
  • Tanjuakio J, Suzuki Y, Patel P, et al. Activities of daily living in patients with Hunter syndrome: impact of enzyme replacement therapy and hematopoietic stem cell transplantation. Mol Genet Metab. 2015;114(2):161–169.
  • Yabe H, Tanaka A, Chinen Y, et al. Hematopoietic stem cell transplantation for Morquio A syndrome. Mol Genet Metab. 2016;117(2):84–94.
  • Gabrielli O, Clarke LA, Ficcadenti A, et al. 12 year follow up of enzyme-replacement therapy in two siblings with attenuated mucopolysaccharidosis I: the important role of early treatment. BMC Med Genet. 2016;17(1):1–7.
  • Giugliani R, Federhen A, Vairo F, et al. Emerging drugs for the treatment of mucopolysaccharidoses. Expert Opin Emerg Drugs. 2016;21(1):9–26.
  • Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology. 2011;50(5):49–59.
  • Giugliani R, Federhen A, Silva A, et al. Emerging treatment options for the mucopolysaccharidoses. Res Reports Endocr Disord. 2012;2:53–64.
  • Meikle PJ, Fuller M, Hopwood JJ. Lysosomal degradation of heparin and heparan sulfate. In: Garg HG, Linhardt RJ, Hales CA, editors. Chemistry and biology of heparin and heparan sulfate. London: Elsevier Ltd.; 2011. p. 792.
  • Hawkins-Salsbury JA, Reddy AS, Sands MS. Combination therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet. 2011;20(1):54–60.
  • Kakkis ED, Muenzer J, Tiller GE, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med. 2001;344(3):182–188.
  • Fuller M, Meikle PJ, Hopwood JJ. Glycosaminoglycan degradation fragments in mucopolysaccharidosis I. Glycobiology. 2004;14(5):443–450.
  • Ali J, Fazil M, Qumbar M, et al. Colloidal drug delivery system: amplify the ocular delivery. Drug Deliv. 2016;23(3):710–726.
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002;10(4):317–325.
  • Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 2006;317(3):1246–1253.
  • Boado RJ, Zhou Q-H, Lu JZ, et al. Pharmacokinetics and brain uptake of a genetically engineered bi-functional fusion antibody targeting the mouse transferrin receptor. Mol Pharm. 2010;7(1):237–244.
  • Boado RJ, Zhang Y, Zhang Y, et al. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng. 2007;96(2):381–391.
  • Boado RJ, Hui EK-W, Lu JZ, et al. AGT-181: expression in CHO cells and pharmacokinetics, safety, and plasma iduronidase enzyme activity in rhesus monkeys. J Biotechnol. 2009;144(2):135–141.
  • Osborn MJ, McElmurry RT, Peacock B, et al. Targeting of the CNS in MPS-IH using a nonviral transferrin-alpha-L-iduronidase fusion gene product. Mol Ther. 2008;16(8):1459–1466.
  • Acosta W, Ayala J, Dolan MC, et al. RTB Lectin: a novel receptor-independent delivery system for lysosomal enzyme replacement therapies. Sci Rep. 2015;5:141–144.
  • Chen Z-L, Huang M, Wang X-R, et al. Transferrin-modified liposome promotes alpha-mangostin to penetrate the blood-brain barrier. Nanomedicine. 2016;12(2):421–430.
  • Malinowska M, Wilkinson FL, Bennett W, et al. Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Mol Genet Metab. 2009;98(3):235–242.
  • Friso A, Tomanin R, Salvalaio M, et al. Genistein reduces glycosaminoglycan levels in a mouse model of mucopolysaccharidosis type II. Br J Pharmacol. 2010;159(5):1082–1091.
  • Boado RJ, Hui EK-W, Lu JZ, et al. Reversal of lysosomal storage in brain of adult MPS-I mice with intravenous Trojan horse-iduronidase fusion protein. Mol Pharm. 2011;8(4):1342–1350.
  • Salvalaio M, Rigon L, Belletti D, et al. Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders. PLoS One. 2016;11(5):e0156452.
  • Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol. 2007;18(1):26–30.
  • Tomatsu S, Alméciga-Díaz CJ, Montaño AM, et al. Therapies for the bone in mucopolysaccharidoses. Mol Genet Metab. 2015;114(2):94–109.
  • Grubb JH, Vogler C, Levy B, et al. Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc Natl Acad Sci U S A. 2008;105(7):2616–2621.
  • Rowan DJ, Tomatsu S, Grubb JH, et al. Long circulating enzyme replacement therapy rescues bone pathology in mucopolysaccharidosis VII murine model. Mol Genet Metab. 2012;107(1–2):161—172.
  • Wang G, Mostafa NZ, Incani V, et al. Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases. J Biomed Mater Res A. 2012;100(3):684–693.
  • Kasugai S, Fujisawa R, Waki Y, et al. Selective drug delivery system to bone: small peptide (Asp)6 conjugation. J Bone Miner Res. 2000;15(5):936–943.
  • Xinluan W, Yuxiao L, Helena NH, et al. Systemic drug delivery systems for bone tissue regeneration- a mini review. Curr Pharm Des. 2015;21(12):1575–1583.
  • Baldo G, Mayer FQ, Martinelli BZ, et al. Enzyme replacement therapy started at birth improves outcome in difficult-to-treat organs in mucopolysaccharidosis I mice. Mol Genet Metab. 2016;109(1):33–40.
  • Gurda BL, De Guilhem De Lataillade A, Bell P, et al. Evaluation of AAV-mediated gene therapy for central nervous system disease in canine mucopolysaccharidosis VII. Mol Ther. 2016;24(2):206–216.
  • Ruzo A, Marco S, Garcia M, et al. Correction of pathological accumulation of glycosaminoglycans in central nervous system and peripheral tissues of MPSIIIA mice through systemic AAV9 gene transfer. Hum Gene Ther. 2012;23(12):1237–1246.
  • Hinderer C, Bell P, Gurda BL, et al. Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I. Mol Ther. 2014;22(12):2018–2027.
  • Sorrentino NC, D’Orsi L, Sambri I, et al. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol Med. 2013;5(5):675–690.
  • Vance M, Llanga T, Bennett W, et al. AAV gene therapy for MPS1-associated corneal blindness. Sci Rep. 2016;6:22131.
  • Fein DE, Limberis MP, Maloney SF, et al. Cationic lipid formulations alter the in vivo tropism of AAV2/9 vector in lung. Mol Ther. 2009;17(12):2078–2087.
  • Carvalho TG, Silveira Matte U, Giugliani R, et al. Genome editing: potential treatment for lysosomal storage diseases. Curr Stem Cell Reports. 2015;1(1):9–15.
  • Tan WS, Carlson DF, Walton MW, et al. Precision editing of large animal genomes. Adv Genet. 2012;80:37–97.
  • Esvelt KM, Wang HH. Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641.
  • Aronovich EL, Bell JB, Khan SA, et al. Systemic correction of storage disease in MPS I NOD/SCID mice using the sleeping beauty transposon system. Mol Ther. 2009;17(7):1136–1144.
  • Aronovich EL, Hall BC, Bell JB, et al. Quantitative analysis of alpha-L-iduronidase expression in immunocompetent mice treated with the sleeping beauty transposon system. PLoS One. 2013;8(10):e78161.
  • Fraga M, Bruxel F, Lagranha VL, et al. Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells. Int J Nanomedicine. 2011;6:2213–2220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.