581
Views
38
CrossRef citations to date
0
Altmetric
Review

Advances in the use of prodrugs for drug delivery to the eye

, &
Pages 49-63 | Received 12 Feb 2016, Accepted 29 Jun 2016, Published online: 21 Jul 2016

References

  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–1135.
  • Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol. 1986;2(1):67–108.
  • Achouri D, Alhanout K, Piccerelle P, et al. Recent advances in ocular drug delivery. Drug Dev Ind Pharm. 2013;39(11):1599–1617.
  • Mitra. Ophthalmic drug delivery systems. 2nd ed. London: Taylor & Francis; 2003.
  • Maurice DM, Mishima S. Ocular Pharmacokinetics. In: Sears ML, ed. Pharmacology of the Eye. Berlin: Springer; 1984. p. 19–116.
  • Khurana. Ophthalmology. New Delhi: New Age International; 2003.
  • Fangueiro JF, Veiga F, Silva AM, et al. Ocular drug delivery - new strategies for targeting anterior and posterior segments of the eye. Curr Pharm Des. 2015;22(9):1135–1146.
  • Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–59.
  • Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Rev. 1995;16(1):3–19.
  • Becker B. Chemical composition of human aqueous humor: effects of acetazoleamide. AMA Arch Ophthalmol. 1957;57(6):793–800.
  • Lee VH, Li VH. Prodrugs for improved ocular drug delivery. Adv Drug Deliv Rev. 1989;3(1):1–38.
  • Lund‐Andersen H, Sebag J, Sander B, et al. The vitreous. Adv Organ Biol. 2005;10:181–194.
  • Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Eur J Pharm Biopharm. 2005;60(2):207–225.
  • Lee VH-L, Robinson JR. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci. 1979;68(6):673–684.
  • Dartt D, Hodges R, Zoukhri D. Tears and their secretion. Adv Organ Biol. 2005;10:21–82.
  • Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279–296.
  • Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5(5):567–581.
  • Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol. 2010;72(1):463–493.
  • Klyce SD, Crosson CE. Transport processes across the rabbit corneal epithelium: a review. Curr Eye Res. 1985;4(4):323–331.
  • Ehlers N, Hjortdal J. The cornea: epithelium and stroma. Adv Organ Biol. 2005;10:83–111.
  • Wang W, Sasaki H, Chien DS, et al. Lipophilicity influence on conjunctival drug penetration in the pigmented rabbit: a comparison with corneal penetration. Curr Eye Res. 1991;10(6):571–579.
  • Ahmed I, Gokhale RD, Shah MV, et al. Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. J Pharm Sci. 1987;76(8):583–586.
  • Huang H-S, Schoenwald RD, Lach JL. Corneal penetration behavior of β-blocking agents II: assessment of barrier contributions. J Pharm Sci. 1983;72(11):1272–1279.
  • Saha P, Yang JJ, Lee VH. Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Vis Sci. 1998;39(7):1221–1226.
  • Mannermaa E, Vellonen K-S, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58(11):1136–1163.
  • Rautio J. Prodrugs and Targeted delivery: towards better ADME properties. Weinheim (Germany): John Wiley & Sons; 2011.
  • Hosoya K-I, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull. 2005;28(1):1–8.
  • Ahmed T, Patton I. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985;26:584–587.
  • Rizzolo LJ. Polarity and the development of the outer blood-retinal barrier. Histol Histopathol. 1997;12(4):1057–1067.
  • Ban Y, Rizzolo LJ. Differential regulation of tight junction permeability during development of the retinal pigment epithelium. Am J Physiol Cell Physiol. 2000;279(3):C744–50.
  • Bauer HC, Krizbai IA, Bauer H, et al. “You Shall Not Pass”—tight junctions of the blood brain barrier. Front Neurosci. 2014;8:392.
  • Stella V, Borchardt R, Hageman M, et al. eds. Prodrugs: challenges and rewards. New York (NY): Springer Science + Business Media; 2007.
  • Attar M, Schiffman R, Borbridge L, et al. Ocular pharmacokinetics of 0.45% ketorolac tromethamine. Clin Ophthalmol. 2010;4:1403–1408.
  • Rácz P, Ruzsonyi MR, Nagy ZT, et al. Maintained intraocular pressure reduction with once-a-day application of a new prostaglandin F2 alpha analogue (PhXA41). An in-hospital, placebo-controlled study. Arch Ophthalmol. 1993;111(5):657–661.
  • Gerald WB, Carl BC. Commercially available prostaglandin analogs for the reduction of intraocular pressure: similarities and differences. Surv Ophthalmol. 2008;53:S69–S84.
  • Kikuchi H, Carlsson A, Yachi K, et al. Possibility of heat sterilization of liposomes. Chem Pharm Bull (Tokyo). 1991;39(4):1018–1022.
  • Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm Sci. 1997;154(2):123–140.
  • Puglia C, Offerta A, Carbone C, et al. Lipid nanocarriers (LNC) and their applications in ocular drug delivery. Curr Med Chem. 2015;22(13):1589–1602.
  • Hippalgaonkar K, Adelli GR, Hippalgaonkar K, et al. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in-vitro evaluation. J Ocul Pharmacol Ther. 2013;29(2):216–228.
  • Lee V. Mechanisms and facilitation of corneal drug penetration. J Control Release. 1990;11(1–3):79–90.
  • Hussain A, Truelove JE. Prodrug approaches to enhancement of physicochemical properties of drugs IV: novel epinephrine prodrug. J Pharm Sci. 1976;65(10):1510–1512.
  • Hariharan S, Minocha M, Mishra GP, et al. Interaction of ocular hypotensive agents (PGF2 alpha analogs-bimatoprost, latanoprost, and travoprost) with MDR efflux pumps on the rabbit cornea. J Ocul Pharmacol Ther. 2009;25(6):487–498.
  • Hingorani T, Gul W, Elsohly M, et al. Effect of ion pairing on in-vitro transcorneal permeability of a Δ9-tetrahydrocannabinol prodrug: potential in glaucoma therapy. J Pharm Sci. 2012;101(2):616–626.
  • Hingorani T, Adelli GR, Punyamurthula N, et al. Ocular disposition of the hemiglutarate ester prodrug of ∆⁹-Tetrahydrocannabinol from various ophthalmic formulations. Pharm Res. 2013;30(8):2146–2156.
  • Farag HH, Wu WM, Barros MD, et al. Ocular-specific chemical delivery systems of betaxolol for safe local treatment of glaucoma. Drug Des Discov. 1997;15(2):117–130.
  • Polgar P, Bodor N. Minimal cardiac electro-physiological activity of alprenoxime, a site-activated ocular β-blocker, in dogs. Life Sci. 1995;56(14):1207–1213.
  • Prokai L, Wu W-M, Somogyi G, et al. Ocular delivery of the beta-adrenergic antagonist alprenolol by sequential bioactivation of its methoxime analog. J Med Chem. 1995;38(11):2018–2020.
  • Anand BS, Mitra AK. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res. 2002;19(8):1194–1202.
  • Suresh K, Xiadong Z, Ravi TS, et al. Small neutral amino acid ester prodrugs of acyclovir targeting amino acid transporters on the cornea: possible antiviral agents against ocular HSV-1 infections. Ophthalmol Eye Dis. 2010;2:43–56.
  • Anand BS, Hill JM, Dey S, et al. In-vivo antiviral efficacy of a dipeptide acyclovir prodrug, val-val-acyclovir, against HSV-1 epithelial and stromal keratitis in the rabbit eye model. Invest Ophthalmol Vis Sci. 2003;44(6):2529–2534.
  • Anand BS, Katragadda S, Gunda S, et al. In-vivo ocular pharmacokinetics of acyclovir dipeptide ester prodrugs by microdialysis in rabbits. Mol Pharm. 2006;3(4):431–440.
  • Lallemand F, Furrer P, Felt-Baeyens O, et al. A novel water-soluble cyclosporine A prodrug: ocular tolerance and in-vivo kinetics. Int J Pharm Sci. 2005;295(1–2):7–14.
  • Lallemand F, Felt-Baeyens O, Rudaz S, et al. Conversion of cyclosporine A prodrugs in human tears vs rabbits tears. Eur J Pharm Biopharm. 2005;59(1):51–56.
  • Lallemand F, Perottet P, Felt-Baeyens O, et al. A water-soluble prodrug of cyclosporine A for ocular application: a stability study. Eur J Pharm Sci. 2005;26(1):124–129.
  • Lallemand F, Varesio E, Felt-Baeyens O, et al. Biological conversion of a water-soluble prodrug of cyclosporine A. Eur J Pharm Biopharm. 2007;67(2):555–561.
  • Rodriguez-Aller M, Kaufmann B, Guillarme D, et al. In-vivo characterisation of a novel water-soluble cyclosporine A prodrug for the treatment of dry eye disease. Eur J Pharm Biopharm. 2012;80(3):544–552.
  • Berger AS, Cheng CK, Pearson PA, et al. Intravitreal sustained release corticosteroid-5-fluoruracil conjugate in the treatment of experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 1996;37(11):2318–2325.
  • Kim JS, Beadle JR, Freeman WR, et al. A novel cytarabine crystalline lipid prodrug: hexadecyloxypropyl cytarabine 3′, 5′-cyclic monophosphate for proliferative vitreoretinopathy. Mol Vis. 2012;18:1907.
  • Lane SS, Modi SS, Lehmann RP, et al. Nepafenac ophthalmic suspension 0.1% for the prevention and treatment of ocular inflammation associated with cataract surgery. J Cataract Refract Surg. 2007;33(1):53–58.
  • Ke TL, Graff G, Spellman JM, et al. Nepafenac, a unique nonsteroidal prodrug with potential utility in the treatment of trauma-induced ocular inflammation: II. In-vitro bioactivation and permeation of external ocular barriers. Inflammation. 2000;24(4):371–384.
  • Escalona-Benz E, Jockovich M-E, Murray TG, et al. Combretastatin A-4 prodrug in the treatment of a murine model of retinoblastoma. Invest Ophthalmol Vis Sci. 2005;46(1):8.
  • Chaplin DJ, Pettit GR, Hill SA. Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res. 1999;19(1A):189–195.
  • Dark GG, Hill SA, Prise VE, et al. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 1997;57(10):1829–1834.
  • Griggs J, Skepper JN, Smith GA, et al. Inhibition of proliferative retinopathy by the anti-vascular agent combretastatin-A4. Am J Pathol. 2002;160(3):1097–1103.
  • Moorthy SSP, Akiyama H, Campochiaro P, et al. Development of prodrug 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy) phenyl] amino}-1,2,4-benzotriazin-7-yl) phenyl benzoate (tG100801): a topically administered therapeutic candidate in clinical trials for the treatment of age-related macular degeneration. J Med Chem. 2008;51(6):1546–1559.
  • Neeraj A, Chandrasekar MJN, Sara UVS, et al. Poly(HEMA-Zidovudine) conjugate: a macromolecular pro-drug for improvement in the biopharmaceutical properties of the drug. Drug Deliv. 2011;18(4):272–280.
  • Khandare J, Minko T. Polymer–drug conjugates: progress in polymeric prodrugs. Prog Polym Sci. 2006;31(4):359–397.
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–360.
  • Greenwald RB. PEG drugs: an overview. J Control Release. 2001;74(1–3):159–171.
  • Banerjee SS, Aher N, Patil R, et al. Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J Drug Deliv. 2012;2012:e103973.
  • Foroutan SM, Watson DG. Synthesis and characterisation of polyethylene glycol conjugates of hydrocortisone as potential prodrugs for ocular steroid delivery. Int J Pharm Sci. 1997;157(1):103–111.
  • Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chemical Rev. 2004;104(3):1201–1218.
  • Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chemical Rev. 1997;97(8):3133–3160.
  • Gao Y, Kuang Y, Guo Z. Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J Am Chem Soc. 2004;131(38):13576–13577.
  • Ortony JH, Newcomb CJ, Matson JB, et al. Internal dynamics of a supramolecular nanofibre. Nat Mater. 2014;13(8):812–816.
  • Pouget E, Fay N, Dujardin E, et al. Elucidation of the self-assembly pathway of lanreotide octapeptide into β-sheet nanotubes: role of two stable intermediates. J Am Chem Soc. 2010;132(12):4230–4241.
  • Vemula PK, Cruikshank GA, Karp JM, et al. Self-assembled prodrugs: an enzymatically triggered drug-delivery platform. Biomaterials. 2009;30(3):383–393.
  • Li X, Wang Y, Yang C, et al. Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy. Nanoscale. 2014;6(23):14488–14494.
  • Wang H, Wang Y, Zhang X, et al. Supramolecular nanofibers of self-assembling peptides and proteins for protein delivery. Chem Communications. 2015;51(75):14239–14242.
  • Veurink M, Asmus L, Hennig M, et al. Design and in-vitro assessment of L-lactic acid-based copolymers as prodrug and carrier for intravitreal sustained L-lactate release to reverse retinal arteriolar occlusions. Eur J Pharm Sci. 2013;49(2):233–240.
  • Brazitikos PD, Pournaras CJ, Munoz JL, et al. Microinjection of L-lactate in the preretinal vitreous induces segmental vasodilation in the inner retina of miniature pigs. Invest Ophthalmol Vis Sci. 1993;34(5):1744–1752.
  • Asmus LR, Gurny R, Möller M. Solutions as solutions–synthesis and use of a liquid polyester excipient to dissolve lipophilic drugs and formulate sustained-release parenterals. Eur J Pharm Biopharm. 2011;79(3):584–591.
  • Bundgaard H. The double prodrug concept and its applications. Adv Drug Deliv Rev. 1989;3(1):39–65.
  • FDA Home. Orange book: approved drug products with therapeutic equivalence evaluations. Silver Spring (MD): U.S. Food and Drug Administration; 2016.
  • Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130(1):90–100.
  • Hamel AR, Hubler F, Carrupt A, et al. Cyclosporin A prodrugs: design, synthesis and biophysical properties. J Pept Res. 2016;63(2):147–154.
  • Javadi M-A, Feizi S. Dry eye syndrome. J Ophthalmic Vis Res. 2011;6(3):192–198.
  • Stevenson D, Tauber J, Reis BL. Efficacy and safety of cyclosporin A ophthalmic emulsion in the treatment of moderate-to-severe dry eye disease: a dose-ranging, randomized trial. The cyclosporin a phase 2 study group. Ophthalmology. 2000;107(5):967–974.
  • Bodor N, Prokai L, Wu WM, et al. Sequential bioactivation of methoxime analogs of beta-adrenergic antagonists in the eye. J Ocul Pharmacol Ther. 1995;11(3):305–318.
  • Bodor N. Retrometabolic drug design concepts in ophthalmic target-specific drug delivery. Adv Drug Deliv Rev. 1995;16(1):21–38.
  • Bodor N, Buchwald P. Drug targeting via retrometabolic approaches. Pharmacol Ther. 1997;76(1–3):1–27.
  • Bodor N, Buchwald P. Ophthalmic drug design based on the metabolic activity of the eye: soft drugs and chemical delivery systems. AAPS J. 2005;7(4):E820–33.
  • Bodor N, Buchwald P, Buchwald P. Recent advances in retrometabolic drug design (RMDD) and development. Int J Pharm Sci. 2010;65(6):395–403.
  • Hayreh SS, Podhajsky P. Beta-blocker eyedrops and nocturnal arterial hypotension. Am J Ophthalmol. 1999;128(3):301–309.
  • Diggory P, Cassels-Brown A. Avoiding unsuspected respiratory side-effects of topical timolol with cardioselective or sympathomimetic agents. Lancet. 1995;345(8965):1604–1606.
  • Bodor N, Prokai L. Site- and stereospecific ocular drug delivery by sequential enzymatic bioactivation. Pharm Res. 1990;7(7):723–725.
  • Bodor N, ElKoussi A, Kano M, et al. Improved delivery through biological membranes. 26. Design, synthesis, and pharmacological activity of a novel chemical delivery system for beta-adrenergic blocking agents. J Med Chem. 1988;31(1):100–106.
  • Bodor N, Farag HH, Somogyi G, et al. Ocular-specific delivery of timolol by sequential bioactivation of its oxime and methoxime analogs. J Ocul Pharmacol Ther. 1997;13(5):389–403.
  • El-Koussi AA, Bodor N. Formation of propranolol in the iris-ciliary body from its propranolol ketoxime precursor — a potential antiglaucoma drug. Int J Pharm Sci. 1989;53(3):189–194.
  • Passo MS, Palmer EA, Van Buskirk EM. Plasma timolol in glaucoma patients. Ophthalmology. 1984;91(11):1361–1363.
  • Bodor N, Buchwald P. Soft drug design: general principles and recent applications. Med Res Rev. 2000;20(1):58–101.
  • Bodor N, Buchwald P. Soft drug design: general principles and recent applications. Med Res Rev. 1999;20(1):58–101.
  • Rhen T, Cidlowski J. Antiinflammatory action of glucocorticoids — new mechanisms for old drugs. N Engl J Med. 2016;353(16):1711–1723.
  • Andersson P. Developments in anti-asthma glucocorticoids. Europe PMC. 1988;23:239–260 (Abstract).
  • Gillies MC, Kuzniarz M, Craig J, et al. Intravitreal triamcinolone-induced elevated intraocular pressure is associated with the development of posterior subcapsular cataract. Ophthalmology. 2005;112(1):139–143.
  • Urban RC Jr., Cotlier E. Corticosteroid-induced cataracts. Surv Ophthalmol. 1986;31(2):102–110.
  • Jobling AI, Augusteyn RC. What causes steroid cataracts? A review of steroid-induced posterior subcapsular cataracts. Clin Exp Optom. 2002;85(2):61–75.
  • Abelson MB, McLaughlin J. A partial solution to steroid side effects. Newtown Square (PA): A review of Opthalmology; 2011.
  • Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin. 1992;10(3):505–512.
  • Bodor N, Murakami T, Wu WM. Soft drugs. 18. Oral and rectal delivery of loteprednol etabonate, a novel soft corticosteroid, in rats–for safer treatment of gastrointestinal inflammation. Pharm Res. 1995;12(6):869–874.
  • Druzgala P, Wu WM, Bodor N. Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr Eye Res. 1991;10(10):933–937.
  • Miklós A, Magyar Z, Kiss E, et al. 28-day oral toxicity study with soft corticosteroid BNP-166 in rats and dogs, followed by a 14-day recovery period. Die Pharmazie. 2002;57(2):142–146.
  • Bodor N, Buchwald P. Ophthalmic drug design based on the metabolic activity of the eye: soft drugs and chemical delivery systems. AAPS J. 2005;7(4):E820–E833.
  • Bodor N, Bodor N, Wu WM. A comparison of intraocular pressure elevating activity of loteprednol etabonate and dexamethasone in rabbits. Curr Eye Res. 1992;11(6):525–530.
  • Benfield P, Clissold SP, Brogden RN. Metoprolol. An updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in hypertension, ischaemic heart disease and related cardiovascular disorders. Drugs. 1986;31(5):376–429.
  • Dunham CN, Spaide RF, Dunham G. The contralateral reduction of intraocular pressure by timolol. Br J Ophthalmol. 1994;78(1):38–40.
  • Jespersen H, Andersen J, Ditzel H. Lipids, curvature stress, and the action of lipid prodrugs: free fatty acids and lysolipid enhancement of drug transport across liposomal membranes. Biochimie. 2012;94(1):2–10.
  • Reddy LH, Couvreur P. Lipid-based anticancer prodrugs. In: Macrommolecular Anticancer Therapeutics. New York: Springer; 2009. p. 291–328.
  • Gokulgandhi MR, Barot M, Bagui M, et al. Transporter-targeted lipid prodrugs of cyclic cidofovir: a potential approach for the treatment of cytomegalovirus retinitis. J Pharm Sci. 2012;101(9):3249–3263.
  • Ciesla SL, Trahan J, Wan WB, et al. Esterification of cidofovir with alkoxyalkanols increases oral bioavailability and diminishes drug accumulation in kidney. Antiviral Research. 2003;59(3):163–171.
  • Kern DCQ, Deborah JC, Wan WB, et al. Oral treatment of cowpox and vaccinia virus infections in mice with ether lipid esters of cidofovir. Antimicrob Agents Chemother. 2004;48(2):404–412.
  • Cheng L, Beadle JR, Tammewar A, et al. Intraocular pharmacokinetics of a crystalline lipid prodrug, octadecyloxyethyl-cyclic-cidofovir, for cytomegalovirus retinitis. J Ocul Pharmacol Ther. 2011;27(2):157–162.
  • Appelt WR, Freeman LC, Maria ER, et al. Evaluation of intraocular pharmacokinetics and toxicity of prinomastat (AG3340) in the rabbit. J Ocul Pharmacol Ther. 2004;17(3):295–304.
  • Ma F, Nan K, Lee S, et al. Micelle formulation of hexadecyloxypropyl-cidofovir (HDP-CDV) as an intravitreal long-lasting delivery system. Eur J Pharm Sci. 2015;89:271–279.
  • Cholkar K, Trinh HM, Vadlapudi AD, et al. Synthesis and characterization of ganciclovir long chain lipid prodrugs. Adv Ophthalmol Vis Syst. 2014;1(2). pii: 00007.
  • Janoria KG, Boddu SHS, Wang Z, et al. Vitreal pharmacokinetics of biotinylated ganciclovir: role of sodium-dependent multivitamin transporter expressed on retina. J Ocul Pharmacol Ther. 2009;25(1):39–49.
  • Vadlapudi AD, Vadlapatla RK, Earla R, et al. Novel biotinylated lipid prodrugs of acyclovir for the treatment of Herpetic Keratitis (HK): transporter recognition, tissue stability and antiviral activity. Pharm Res. 2013;30(8):2063–2076.
  • Vadlapudi AD, Vadlapatla RK, Kwatra D, et al. Targeted lipid based drug conjugates: a novel strategy for drug delivery. Int J Pharm Sci. 2012;434(1–2):315–324.
  • Peyman GA, Schulman J. Proliferative vitreoretinopathy and chemotherapeutic agents. Surv Ophthalmol. 1985;29(6):434–442.
  • Assil KK, Hartzer M, Weinreb RN, et al. Liposome suppression of proliferative vitreoretinopathy. Rabbit model using antimetabolite encapsulated liposomes. Invest Ophthalmol Vis Sci. 1991;32(11):2891–2897.
  • Das N, Dhanawat M, Dash B, et al. Codrug: an efficient approach for drug optimization. Eur J Pharm Sci. 2010;41(5):571–588.
  • Cavalli A, Bolognesi ML, Minarini A, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51(3):347–372.
  • Cynkowska G, Cynkowski T, Al-Ghananeem AM, et al. Novel antiglaucoma prodrugs and codrugs of ethacrynic acid. Bioorg Med Chem Lett. 2005;15(15):3524–3527.
  • Charteris DG, Hiscott P, Robey HL, et al. Inflammatory cells in proliferative vitreoretinopathy subretinal membranes. Ophthalmology. 1993;100(1):43–46.
  • Mahar PS, Nwokora GE. Role of mitomycin C in pterygium surgery. Br J Ophthalmol. 1993;77(7):433–435.
  • Macky TA, Oelkers C, Rix U, et al. Synthesis, pharmacokinetics, efficacy, and rat retinal toxicity of a novel mitomycin c-triamcinolone acetonide conjugate. J Med Chem. 2002;45(5):1122–1127.
  • Cardillo JA, Farah ME, Mitre J, et al. An intravitreal biodegradable sustained release naproxen and 5-fluorouracil system for the treatment of experimental post-traumatic proliferative vitreoretinopathy. Br J Ophthalmol. 2004;88(9):1201–1205.
  • Dey S, Mitra AK. Transporters and receptors in ocular drug delivery: opportunities and challenges. Expert Opin Drug Deliv. 2005;2(2):201–204.
  • Vig BS, Huttunen KM, Laine K, et al. Amino acids as promoieties in prodrug design and development. Adv Drug Deliv Rev. 2013;65(10):1370–1385.
  • Hosoya K, Kondo T, Tomi M, et al. MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina. Pharm Res. 2002;18(12):1669–1676.
  • Mitra SD, Soumyajit M, Ashim K. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther. 2005;3(1):45–56.
  • Majumdar S, Duvvuri S, Mitra AK. Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv Drug Deliv Rev. 2004;56(10):1437–1452.
  • Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica. 2008;38(7–8):1022–1042.
  • Brandsch M, Knutter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol. 2008;60(5):543–585.
  • Shen H, Smith DE, Keep RF, et al. Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus. J Biol Chem. 2002;278(7):4786–4791.
  • Atluri H, Anand BS, Patel J, et al. Mechanism of a model dipeptide transport across blood-ocular barriers following systemic administration. Exp Eye Res. 2004;78(4):815–822.
  • Majumdar S, Nashed YE, Patel K, et al. Dipeptide monoester ganciclovir prodrugs for treating HSV-1-induced corneal epithelial and stromal keratitis: in-vitro and in-vivo evaluations. J Ocul Pharmacol Ther. 2005;21(6):463–474.
  • Peterson LW, Sala-Rabanal M, Krylov IS, et al. Serine side chain-linked peptidomimetic conjugates of cyclic HPMPC and HPMPA: synthesis and interaction with hPEPT1. Mol Pharm. 2010;7(6):2349–2361.
  • Majumdar S, Kansara V, Mitra AK. Vitreal pharmacokinetics of dipeptide monoester prodrugs of ganciclovir. J Ocul Pharmacol Ther. 2006;22(4):231–241.
  • Vooturi SK, Kadam RS, Kompella UB. Transporter targeted gatifloxacin prodrugs: synthesis, permeability, and topical ocular delivery. Mol Pharm. 2012;9(11):3136–3146.
  • Katragadda S, Talluri RS, Mitra AK. Modulation of P-glycoprotein-mediated efflux by prodrug derivatization: an approach involving peptide transporter-mediated influx across rabbit cornea. J Ocul Pharmacol Ther. 2006;22(2):110–120.
  • Hariharan S, Gunda S, Mishra GP, et al. Enhanced corneal absorption of erythromycin by modulating P-Glycoprotein and MRP mediated efflux with corticosteroids. Pharm Res. 2008;26(5):1270–1282.
  • Sheng Y, Yang X, Pal D, et al. Prodrug approach to improve absorption of prednisolone. Int J Pharm Sci. 2015;487(1–2):242–249.
  • Agarwal S, Jain R, Pal D, et al. Functional characterization of peptide transporters in MDCKII-MDR1 cell line as a model for oral absorption studies. Int J Pharm. 2006;332(1–2):147–152.
  • Dey S, Patel J, Anand BS, et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci. 2003;44(7):2909–2918.
  • Jain R, Majumdar S, Nashed Y, et al. Circumventing P-glycoprotein-mediated cellular efflux of quinidine by prodrug derivatization. Mol Pharm. 2005;1(4):290–299.
  • Clarke R, Leonessa F, Trock B. Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis. Semin Oncol. 2005;32(6 Suppl 7):S9–S15.
  • Patel M, Dalvi P, Gokulgandhi M, et al. Functional characterization and molecular expression of large neutral amino acid transporter (LAT1) in human prostate cancer cells. Int J Pharm Sci. 2013;443(1–2):245–253.
  • Patel M, Mandava NK, Pal D, et al. Amino acid prodrug of quinidine: an approach to circumvent P-glycoprotein mediated cellular efflux. Int J Pharm Sci. 2014;464(1–2):196–204.
  • Beaumont K, Webster R, Gardner I, et al. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr Drug Metab. 2003;4(6):461–485.
  • Garrett ER, Hunt CA. Physicochemical properties, solubility, and protein binding of Δ9 -tetrahydrocannabinol. J Pharm Sci. 1974;63(7):1056–1064.
  • Green K, Wynn H, Bowman KA. A comparison of topical cannabinoids on intraocular pressure. Exp Eye Res. 1978;27(2):239–246.
  • Green K, Bigger JF, Kim K, et al. Cannabinoid penetration and chronic effects in the eye. Exp Eye Res. 1977;24(2):197–205.
  • Kearse EC, Green K. Effect of vehicle upon in-vitro transcorneal permeability and intracorneal content of Delta9-tetrahydrocannabinol. Curr Eye Res. 2000;20(6):496–501.
  • Zhang J, Benavente CA, McEvoy J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012;481(7381):329–334.
  • Mócsai A, Ruland J, Tybulewicz VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10(6):387–402.
  • Baluom M, Grossbard EB, Mant T, et al. Pharmacokinetics of fostamatinib, a spleen tyrosine kinase (SYK) inhibitor, in healthy human subjects following single and multiple oral dosing in three phase I studies. Br J Clin Pharmacol. 2013;76(1):78–88.
  • Sweeny DJ, Li W, Clough J, et al. Metabolism of fostamatinib, the oral methylene phosphate prodrug of the spleen tyrosine kinase inhibitor R406 in humans: contribution of hepatic and gut bacterial processes to the overall biotransformation. Drug Metab Dispos. 2010;38(7):1166–1176.
  • Pritchard EM, Stewart E, Zhu F, et al. Pharmacokinetics and efficacy of the spleen tyrosine kinase inhibitor r406 after ocular delivery for retinoblastoma. Pharm Res. 2014;31(11):3060–3072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.