847
Views
97
CrossRef citations to date
0
Altmetric
Review

Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges

&
Pages 201-214 | Received 01 May 2016, Accepted 12 Jul 2016, Published online: 27 Jul 2016

References

  • Stewart BW, Wild CP. World cancer report. Lyon: IARC; 2014.
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–651.
  • Abouelmagd SA, Yeo Y. Nanoparticle-based drug delivery to solid tumors. In: Muro S, editor. Drug delivery across physiological barriers. Singapore: Pan Stanford Publishing Pte. Ltd; 2016.
  • Nichols JW, Bae YH. EPR: evidence and fallacy. J Control Release. 2014;190:451–464.
  • Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm. 2013;84(1):1–20.
  • Barenholz Y. Doxil (R) - The first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134.
  • Kamaly N, Xiao Z, Valencia PM, et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010.
  • Ding J, Chen L, Xiao C, et al. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem Commun (Camb). 2014;50(77):11274–11290.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475–2490.
  • Hu CM, Fang RH, Luk BT, et al. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale. 2014;6(1):65–75.
  • Marchal S, Hor AE, Millard M, et al. Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs. 2015;75(14):1601–1611.
  • U.S. Food and Drug Administration. Eligard (Leuprolide Acetate) Injectable Suspension; 2006 [cited 2016 Jun 17]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/021731s000_EligardTOC.cfm.
  • Dinndorf PA, Gootenberg J, Cohen MH, et al. FDA drug approval summary: pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist. 2007;12(8):991–998.
  • U.S. Food and Drug Administration. FDA Approves pegaspargase (Oncaspar, Enzon Pharmaceuticals, Inc) for the first-line treatment of patients with acute lymphoblastic leukemia; 2015 Nov 27 [cited 2016 Jun 17]. Available from: file:///Users/nouraabdellah/Desktop/FDA%20_Oncaspar.webarchive.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760.
  • Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1(2):13.
  • U.S. Food and Drug Administration. Drugs @ FDA; 2005 [cited 2016 Jun 17]. Available from: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails.
  • Evaluate. Phase III Protocol Submission for Nanoplatin® (NC-6004) in Asia; 2013 [cited 2016 Jun 17]. Available from: https://www.evaluategroup.com/Universal/View.aspx?type=Story&id=462722.
  • Oberoi HS, Nukolova NV, Kabanov AV, et al. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev. 2013;65(13–14):1667–1685.
  • PR Newswire a CISION Company. Access Pharmaceuticals Presents New Data on ProLindac(TM) at the 2009 AACR Annual Meeting; 2009 [cited 2016 Jun 17]. Available from: file:///Users/nouraabdellah/Desktop/Projects/Projects%20with%20Sara/EODD_review/Submitted%20EODD%20Review/Respond%20to%20Comments/ProLindac(TM)%20ref.webarchive.
  • Ton NC, Parker GJ, Jackson A, et al. Phase I evaluation of CDP791, a PEGylated di-Fab’ conjugate that binds vascular endothelial growth factor receptor 2. Clin Cancer Res. 2007;13(23):7113–7118.
  • Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):655–677.
  • Lundqvist M, Stigler J, Elia G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. P Natl Acad Sci USA. 2008;105(38):14265–14270.
  • Akhter A, Hayashi Y, Sakurai Y, et al. Ligand density at the surface of a nanoparticle and different uptake mechanism: two important factors for successful siRNA delivery to liver endothelial cells. Int J Pharm. 2014;475(1–2):227–237.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2015;99(Pt A):28–51.
  • Rabanel JM, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Control Release. 2014;185:71–87.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliver Rev. 2016;99(Pt A):28–51.
  • Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):219–233.
  • Amoozgar Z, Park JY, Lin QN, et al. Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery. Mol Pharmaceut. 2012;9(5):1262–1270.
  • Cui L, Lin Q, Jin CS, et al. A PEGylation-free biomimetic porphyrin nanoplatform for personalized cancer theranostics. ACS Nano. 2015;9(4):4484–4495.
  • Hu CM, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. P Natl Acad Sci USA. 2011;108(27):10980–10985.
  • Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release. 2015;220(Pt B):600–607.
  • Rodriguez PL, Harada T, Christian DA, et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339(6122):971–975.
  • Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliver Rev. 2011;63(3):152–160.
  • Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012;338(6109):903–910.
  • Adiseshaiah PP, Hall JB, McNeil SE. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(1):99–112.
  • Patil YB, Toti US, Khdair A, et al. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials. 2009;30(5):859–866.
  • Park J, Brust TF, Lee HJ, et al. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano. 2014;8(4):3347–3356.
  • Kennedy DC, Grunstein D, Lai CH, et al. Glycosylated nanoscale surfaces: preparation and applications in medicine and molecular biology. Chemistry. 2013;19(12):3794–3800.
  • Jain S, Spandana G, Agrawal AK, et al. Enhanced antitumor efficacy and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles. Mol Pharmaceut. 2015;12(11):3871–3884.
  • Sun B, Ranganathan B, Feng SS. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials. 2008;29(4):475–486.
  • Voltan R, Secchiero P, Ruozi B, et al. Nanoparticles engineered with rituximab and loaded with Nutlin-3 show promising therapeutic activity in B-leukemic xenografts. Clinl Cancer Res. 2013;19(14):3871–3880.
  • Yu J, Javier D, Yaseen MA, et al. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J Am Chem Soc. 2010;132(6):1929–1938.
  • Shuvaev VV, Ilies MA, Simone E, et al. Endothelial targeting of antibody-decorated polymeric filomicelles. ACS Nano. 2011;5(9):6991–6999.
  • Kamphuis MMJ, Johnston APR, Such GK, et al. Targeting of cancer cells using click-functionalized polymer capsules. J Am Chem Soc. 2010;132(45):15881–15883.
  • Cortez C, Tomaskovic-Crook E, Johnston APR, et al. Targeting and uptake of multilayered particles to colorectal cancer cells. Advanced Mater. 2006;18(15):1998–2003.
  • Wang J, Tian S, Petros RA, et al. The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc. 2010;132(32):11306–11313.
  • Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009;30(29):5737–5750.
  • Gullotti E, Park J, Yeo Y. Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles. Pharm Res. 2013;30(8):1956–1967.
  • Loyer P, Bedhouche W, Huang ZW, et al. Degradable and biocompatible nanoparticles decorated with cyclic RGD peptide for efficient drug delivery to hepatoma cells in vitro. Int J Pharm. 2013;454(2):727–737.
  • Liang DS, Su HT, Liu YJ, et al. Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-alpha-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers. Biomaterials. 2015;71:11–23.
  • Valetti S, Maione F, Mura S, et al. Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. J Control Release. 2014;192:29–39.
  • Gupta M, Chashoo G, Sharma PR, et al. Dual targeted polymeric nanoparticles based on tumor endothelium and tumor cells for enhanced antitumor drug delivery. Mol Pharmaceut. 2014;11(3):697–715.
  • Li M, Tang Z, Zhang Y, et al. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomaterialia. 2015;18:132–143.
  • Wei M, Guo X, Tu L, et al. Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma. Int J Nanomedicine. 2015;10:5123–5137.
  • Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8(2):137–143.
  • Xu W, Siddiqui IA, Nihal M, et al. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials. 2013;34(21):5244–5253.
  • Xing H, Tang L, Yang X, et al. Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. J Mater Chem B Mater Bio Med. 2013;1(39):5288–5297.
  • Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. P Natl Acad Sci USA. 2013;110(20):7998–8003.
  • Xiao B, Han MK, Viennois E, et al. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale. 2015;7(42):17745–17755.
  • Laquintana V, Denora N, Lopalco A, et al. Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells. Mol Pharm. 2014;11(3):859–871.
  • Lee DJ, Kessel E, Edinger D, et al. Dual antitumoral potency of EG5 sirna nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand. Biomaterials. 2016;77:98–110.
  • Ding HM, Ma YQ. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2012;33(23):5798–5802.
  • Field LD, Delehanty JB, Chen Y, et al. Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis? Acc Chem Res. 2015;48(5):1380–1390.
  • Duncan R, Richardson SCW. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharmaceut. 2012;9(9):2380–2402.
  • Palakurthi S, Yellepeddi VK, Vangara KK. Recent trends in cancer drug resistance reversal strategies using nanoparticles. Expert Opin Drug Deliv. 2012;9(3):287–301.
  • Engler AC, Ke X, Gao S, et al. Hydrophilic polycarbonates: promising degradable alternatives to poly(ethylene glycol)-based stealth materials. Macromolecules. 2015;48(6):1673–1678.
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–1659.
  • Ren WX, Han J, Uhm S, et al. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem Commun (Camb). 2015;51(52):10403–10418.
  • Bazak R, Houri M, El Achy S, et al. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141(5):769–784.
  • Yu B, Tai HC, Xue W, et al. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286–298.
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2(10):750–763.
  • De Lorenzo C, Palmer DB, Piccoli R, et al. A new human antitumor immunoreagent specific for ErbB2. Clinl Cancer Res. 2002;8(6):1710–1719.
  • Lao YH, Phua KK, Leong KW. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano. 2015;9(3):2235–2254.
  • Akabori K. Structure determination of HIV-1 Tat/Fluid phase membranes and DMPC ripple phase using X-ray scattering. Pittsburgh (PA): Carnegie Mellon University; 2014.
  • Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev. 2008;60(4–5):548–558.
  • Bogdanowich-Knipp SJ, Chakrabarti S, Williams TD, et al. Solution stability of linear vs. cyclic RGD peptides. J Pept Res. 1999;53(5):530–541.
  • Yan AC, Levy M. Aptamers and aptamer targeted delivery. RNA Biol. 2009;6(3):316–320.
  • Wu X, Chen J, Wu M, et al. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics. 2015;5(4):322–344.
  • Jubeli E, Moine L, Vergnaud-Gauduchon J, et al. E-selectin as a target for drug delivery and molecular imaging. J Control Release. 2012;158(2):194–206.
  • Amoozgar Z, Park J, Lin Q, et al. Development of quinic acid-conjugated nanoparticles as a drug carrier to solid tumors. Biomacromolecules. 2013;14(7):2389–2395.
  • Vinogradov S, Warren G, Wei X. Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine (Lond). 2014;9(5):695–707.
  • Pienta K. Targeting the m2-tumor associated macrophage for cancer therapy. WO2015035365 A1; 2015.
  • Niu M, Valdes S, Naguib YW, et al. Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharmaceut. 2016;13(6):1833–1842.
  • Conde J, Dias JT, Grazu V, et al. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem. 2014;2:48.
  • Krovi SA, Smith D, Nguyen ST. “Clickable” polymer nanoparticles: a modular scaffold for surface functionalization. Chem Commun (Camb). 2010;46(29):5277–5279.
  • Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chem Rev. 2013;113(7):4905–4979.
  • Park J, Mattessich T, Jay SM, et al. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. J Control Release. 2011;156(1):109–115.
  • Theoharis S, Krueger U, Tan PH, et al. Targeting gene delivery to activated vascular endothelium using anti E/P-selectin antibody linked to PAMAM dendrimers. J Immunol Methods. 2009;343(2):79–90.
  • Park J, Fong PM, Lu J, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomed Nanotechnol Biol Med. 2009;5(4):410–418.
  • Diamandis EP, Christopoulos TK. The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem. 1991;37(5):625–636.
  • Liu KC, Yeo Y. Zwitterionic chitosan–polyamidoamine dendrimer complex nanoparticles as a pH-sensitive drug carrier. Mol Pharm. 2013;10(5):1695–1704.
  • Peng Q, Wei X-Q, Yang Q, et al. Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona. Nanomed Nanotechnol Biol Med. 2015;10(2):205–214.
  • Poon Z, Lee JB, Morton SW, et al. Controlling in vivo stability and biodistribution in electrostatically assembled nanoparticles for systemic delivery. Nano Letters. 2011;11(5):2096–2103.
  • Fang RH, Hu CM, Chen KN, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale. 2013;5(19):8884–8888.
  • Messersmith PB, Lee H. Surface-independent, surface-modifying, multifunctional coatings and application thereof. EP2078062 A1; 2013.
  • Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–430.
  • Chung YI, Kim JC, Kim YH, et al. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated pluronic on tumor targeting. J Control Release. 2010;143(3):374–382.
  • Ma W-J, Yuan X-B, Kang C-S, et al. Evaluation of blood circulation of polysaccharide surface-decorated PLA nanoparticles. Carbohydr Polym. 2008;72(1):75–81.
  • Gullotti E, Yeo Y. Beyond the imaging: limitations of cellular uptake study in the evaluation of nanoparticles. J Control Release. 2012;164(2):170–176.
  • Miura Y, Takenaka T, Toh K, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano. 2013;7(10):8583–8592.
  • Prabaharan M, Grailer JJ, Pilla S, et al. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials. 2009;30(16):3009–3019.
  • Tao W, Zeng X, Liu T, et al. Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomaterialia. 2013;9(11):8910–8920.
  • Lu J, Shi M, Shoichet MS. Click chemistry functionalized polymeric nanoparticles target corneal epithelial cells through RGD-cell surface receptors. Bioconjug Chem. 2009;20(1):87–94.
  • Han HS, Thambi T, Choi KY, et al. Bioreducible shell-cross-linked hyaluronic acid nanoparticles for tumor-targeted drug delivery. Biomacromolecules. 2015;16(2):447–456.
  • Abouelmagd SA, Ku YJ, Yeo Y. Low molecular weight chitosan-coated polymeric nanoparticles for sustained and pH-sensitive delivery of paclitaxel. J Drug Target. 2015;23(7–8):725–735.
  • Ho KS, Shoichet MS. Design considerations of polymeric nanoparticle micelles for chemotherapeutic delivery. Curr Opin Chem Eng. 2013;2(1):53–59.
  • Guo Y, Luo J, Tan S, et al. The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49(2):175–186.
  • Crampton HL, Simanek EE. Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polym Int. 2007;56(4):489–496.
  • Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–1025.
  • Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharmaceut. 2009;6(3):659–668.
  • Bartlett DW, Davis ME. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug Chem. 2007;18(2):456–468.
  • Fakhari A, Baoum A, Siahaan TJ, et al. Controlling ligand surface density optimizes nanoparticle binding to ICAM-1. J Pharm Sci. 2011;100(3):1045–1056.
  • Welt S, Ritter G, Williams C Jr., et al. Phase I study of anticolon cancer humanized antibody A33. Clinl Cancer Res. 2003;9(4):1338–1346.
  • Lai MH, Clay NE, Kim DH, et al. Bacteria-mimicking nanoparticle surface functionalization with targeting motifs. Nanoscale. 2015;7(15):6737–6744.
  • Reuter KG, Perry JL, Kim D, et al. Targeted PRINT hydrogels: the role of nanoparticle size and ligand density on cell association, biodistribution, and tumor accumulation. Nano Letters. 2015;15(10):6371–6378.
  • Cho EJ, Holback H, Liu KC, et al. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharmaceut. 2013;10(6):2093–2110.
  • Lahkar Sunita DMK. Surface modified polymeric nanoparticles for brain targeted drug delivery. Curr Trends Biotechnol Pharm. 2013;7:4.
  • Domanski DM, Klajnert B, Bryszewska M. Influence of PAMAM dendrimers on human red blood cells. Bioelectrochemistry. 2004;63(1–2):189–191.
  • Saha B, Evers TH, Prins MW. How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing. Anal Chem. 2014;86(16):8158–8166.
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–1626.
  • Feldborg LN, Jolck RI, Andresen TL. Quantitative evaluation of bioorthogonal chemistries for surface functionalization of nanoparticles. Bioconjug Chem. 2012;23(12):2444–2450.
  • Gref R, Couvreur P, Barratt G, et al. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials. 2003;24(24):4529–4537.
  • Shemetov AA, Nabiev I, Sukhanova A. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano. 2012;6(6):4585–4602.
  • Zuo G, Huang Q, Wei G, et al. Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. ACS Nano. 2010;4(12):7508–7514.
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113–131.
  • Perry JL, Reuter KG, Kai MP, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Letters. 2012;12(10):5304–5310.
  • Jokerst JV, Lobovkina T, Zare RN, et al. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond). 2011;6(4):715–728.
  • Yu K, Lai BFL, Foley JH, et al. Modulation of complement activation and amplification on nanoparticle surfaces by glycopolymer conformation and chemistry. ACS Nano. 2014;8(8):7687–7703.
  • Hong S, Leroueil PR, Majoros IJ, et al. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol. 2007;14(1):107–115.
  • Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65(12):5317–5324.
  • Tang Z, Li D, Sun H, et al. Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density. Biomaterials. 2014;35(27):8015–8027.
  • Elias DR, Poloukhtine A, Popik V, et al. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomed Nanotechnol Biol Med. 2013;9(2):194–201.
  • Xiang Y, Kiseleva R, Reukov V, et al. Relationship between targeting efficacy of liposomes and the dosage of targeting antibody using surface plasmon resonance. Langmuir. 2015;31(44):12177–12186.
  • Kathleen MM, Ananth A, Ravi VB. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma. Nanotechnology. 2007;18(38):385101.
  • Hennig R, Pollinger K, Veser A, et al. Nanoparticle multivalency counterbalances the ligand affinity loss upon PEGylation. J Control Release. 2014;194:20–27.
  • Vlashi E, Kelderhouse LE, Sturgis JE, et al. Effect of folate-targeted nanoparticle size on their rates of penetration into solid tumors. ACS Nano. 2013;7(10):8573–8582.
  • Hrkach J, Von Hoff D, Mukkaram Ali M, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):128ra39.
  • Mirshafiee V, Mahmoudi M, Lou KY, et al. Protein corona significantly reduces active targeting yield. Chem Commun. 2013;49(25):2557–2559.
  • Cheng CJ, Tietjen GT, Saucier-Sawyer JK, et al. A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discovery. 2015;14(4):239–247.
  • Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012;161(2):152–163.
  • Li HJ, Du JZ, Du XJ, et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc Natl Acad Sci USA. 2016;113(15):4164–4169.
  • Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9(2):223–243.
  • Wang H-X, Zuo Z-Q, Du J-Z, et al. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today. 2016;11(2):133–144.
  • Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater. 2013;12(11):958–962.
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–287.
  • Shibata D. Cancer. Heterogeneity and tumor history. Science (New York, NY). 2012;336(6079):304–305.
  • Kwon IK, Lee SC, Han B, et al. Analysis on the current status of targeted drug delivery to tumors. J Control Release. 2012;164(2):108–114.
  • Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clinl Cancer Res. 2002;8(4):1172–1181.
  • Jiang W, Kim BY, Rutka JT, et al. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3(3):145–150.
  • Ryan SM, Brayden DJ. Progress in the delivery of nanoparticle constructs: towards clinical translation. Curr Opin Pharmacol. 2014;18:120–128.
  • Bosetti R. Cost-effectiveness of nanomedicine: the path to a future successful and dominant market? Nanomedicine (Lond). 2015;10(12):1851–1853.
  • Kim S, Kim JH, Jeon O, et al. Engineered polymers for advanced drug delivery. Eur J Pharmaceutics Biopharmaceutics. 2009;71(3):420–430.
  • Brown PD, Patel PR. Nanomedicine: a pharma perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(2):125–130.
  • Stirland DL, Nichols JW, Miura S, et al. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J Controlled Release. 2013;172(3):1045–1064.
  • Wlodkowic D, Cooper JM. Tumors on chips: oncology meets microfluidics. Curr Opin Chem Biol. 2010;14(5):556–567.
  • Digital Human for Drug Development. 2014 [cited 2016 Apr 1]. Available from: http://xtal.ipph.purdue.edu/DHD2/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.