694
Views
19
CrossRef citations to date
0
Altmetric
Review

Transporter effects on cell permeability in drug delivery

, , , &
Pages 385-401 | Received 28 Apr 2016, Accepted 14 Jul 2016, Published online: 05 Aug 2016

References

  • Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009 Apr;3:281–290.
  • Dubrovskyi O, Birukova AA, Birukov KG. Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab Invest. 2013 Feb;93:254–263.
  • Zhang MQ, Wilkinson B. Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol. 2007 Dec;18:478–488.
  • Matsson P, Doak BC, Over B, et al. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev. 2016 Apr 8;101:42–61.
  • Dobson PD, Kell DB. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule?. Nat Rev Drug Discov. 2008 Mar;7:205–220.
  • Mandal A, Patel M, Sheng Y, et al. Design of lipophilic prodrugs to improve drug delivery and efficacy. Curr Drug Targets. 2015 Dec 8;17:1.
  • Vadlapudi AD, Vadlapatla RK, Earla R, et al. Novel biotinylated lipid prodrugs of acyclovir for the treatment of herpetic keratitis (HK): transporter recognition, tissue stability and antiviral activity. Pharm Res. 2013;30:2063–2076.
  • Estudante M, Morais JG, Soveral G, et al. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013 Oct;65:1340–1356.
  • Tucker GT, Houston JB, Huang SM. Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential–toward a consensus. Pharm Res. 2001 Aug;18:1071–1080.
  • Hillgren KM, Keppler D, Zur AA, et al. Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin Pharmacol Ther. 2013 Jul;94:52–63.
  • Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev. 2010;62:1–96.
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005 Jan;2:3–14.
  • Di L, Artursson P, Avdeef A, et al. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov Today. 2012;17:905–912.
  • Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res. 2001;42:1007–1017.
  • Minocha M, Khurana V, Qin B, et al. Enhanced brain accumulation of pazopanib by modulating P-gp and Bcrp1 mediated efflux with canertinib or erlotinib. Int J Pharm. 2012 Oct 15;436(1–2):127–134.
  • Minocha M, Khurana V, Qin B, et al. Co-administration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors. Int J Pharm. 2012 Sep 15;434(1–2):306–314.
  • Joseph S, Nicolson TJ, Hammons G, et al. Expression of drug transporters in human kidney: impact of sex, age, and ethnicity. Biol Sex Differ. 2015;6:4.
  • Tamai I, Saheki A, Saitoh R, et al. Nonlinear intestinal absorption of 5-hydroxytryptamine receptor antagonist caused by absorptive and secretory transporters. J Pharmacol Exp Ther. 1997;283:108–115.
  • Pontén F, Jirström K, Uhlen M. The Human Protein Atlas–a tool for pathology. J Pathol. 2008;216:387–393.
  • Schinkel AH. P-glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev. 1999 Jan 15;36(2–3):179–194.
  • Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem. 1998 Jan 15;251(1–2):252–261.
  • Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights. 2013;7:27–34.
  • Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest. 1999;104:147–153.
  • Hendrikse NH, Schinkel AH, de Vries EG, et al. Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol. 1998;124:1413–1418.
  • Sasongko L, Link JM, Muzi M, et al. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther. 2005;77:503–514.
  • Homolya L, Váradi A, Sarkadi B. Multidrug resistance-associated proteins: export pumps for conjugates with glutathione, glucuronate or sulfate. BioFactors. 2003;17:103–114.
  • Schwenk MH, Pai AB. Drug transporter function-implications in CKD. Adv Chronic Kidney Dis. 2016;23:76–81.
  • Shibayama Y, Iwashita Y, Yoshikawa Y, et al. Effect of 5-fluorouracil treatment on SN-38 absorption from intestine in rats. Biol Pharm Bull. 2011;34:1418–1425.
  • Dahan A, Amidon GL. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009;297:G371–G377.
  • Vlaming ML, Mohrmann K, Wagenaar E, et al. Carcinogen and anticancer drug transport by Mrp2 in vivo: studies using Mrp2 (Abcc2) knockout mice. J Pharmacol Exp Ther. 2006;318:319–327.
  • Ruiz ML, Villanueva SSM, Luquita MG, et al. Induction of intestinal multidrug resistance-associated protein 2 (Mrp2) by spironolactone in rats. Eur J Pharmacol. 2009 Nov 25;623(1–3):103–106.
  • Ni Z, Bikadi Z, Rosenberg MF, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab. 2010;11:603–617.
  • International Transporter Consortium, Giacomini KM, Huang SM, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–236.
  • Peroni RN, Di Gennaro SS, Hocht C, et al. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem Pharmacol. 2011 Nov 1;82(9):1227–1233.
  • Johnston RA, Rawling T, Chan T, et al. Selective inhibition of human solute carrier transporters by multikinase inhibitors. Drug Metab Dispos. 2014;42:1851–1857.
  • Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95:83–123.
  • Emami Riedmaier A, Nies AT, Schaeffeler E, et al. Organic anion transporters and their implications in pharmacotherapy. Pharmacol Rev. 2012;64:421–449.
  • Eraly SA, Vallon V, Vaughn DA, et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem. 2006 Feb 24;281(8):5072–5083.
  • Hagenbuch B. Drug uptake systems in liver and kidney: a historic perspective. Clin Pharmacol Ther. 2010;87:39–47.
  • Nies AT, Koepsell H, Damme K, et al. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol. 2011;201:105–167.
  • Wang DS, Jonker JW, Kato Y, et al. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther. 2002;302:510–515.
  • Jonker JW, Schinkel AH. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther. 2004;308:2–9.
  • Svoboda M, Riha J, Wlcek K, et al. Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr Drug Metab. 2011;12:139–153.
  • Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012 Mar;165:1260–1287.
  • Zimmerman EI, Hu S, Roberts JL, et al. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clinical Cancer Res. 2013 Mar 15;19(6):1458–1466.
  • Khurana V, Minocha M, Pal D, et al. Inhibition of OATP-1B1 and OATP-1B3 by tyrosine kinase inhibitors. Drug Metabol Drug Interact. 2014;29:249–259.
  • Khurana V, Minocha M, Pal D, et al. Role of OATP-1B1 and/or OATP-1B3 in hepatic disposition of tyrosine kinase inhibitors. Drug Metabol Drug Interact. 2014;29:179–190.
  • Dey S, Mitra AK. Transporters and receptors in ocular drug delivery: opportunities and challenges. Expert Opin Drug Deliv. 2005;2:201–204.
  • Cholkar K, Patel SP, Vadlapudi AD, et al. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther. 2013;29:106–123.
  • Hariharan S, Minocha M, Mishra GP, et al. Interaction of ocular hypotensive agents (PGF2 alpha analogs-bimatoprost, latanoprost, and travoprost) with MDR efflux pumps on the rabbit cornea. J Ocul Pharmacol Ther. 2009;25:487–498.
  • Karla PK, Quinn TL, Herndon BL, et al. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux. J Ocul Pharmacol Ther. 2009;25:121–132.
  • Hariharan S, Gunda S, Mishra GP, et al. Enhanced corneal absorption of erythromycin by modulating P-glycoprotein and MRP mediated efflux with corticosteroids. Pharm Res. 2009;26:1270–1282.
  • Karla PK, Pal D, Quinn T, et al. Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int J Pharm. 2007 May 4;336(1):12–21.
  • Dey S, Patel J, Anand BS, et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci. 2003;44:2909–2918.
  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. AAPS J. 2010;12:348–360.
  • Khurana V, Vadlapudi AD, Vadlapatla RK, et al. Functional characterization and molecular identification of vitamin C transporter (SVCT2) in human corneal epithelial (HCEC) and retinal pigment epithelial (D407) cells. Curr Eye Res. 2015;40:457–469.
  • Khurana V, Kwatra D, Pal D, et al. Molecular expression and functional activity of vitamin C specific transport system (SVCT2) in human breast cancer cells. Int J Pharm. 2014 Oct 20;474(1–2):14–24.
  • Gokulgandhi MR, Barot M, Bagui M, et al. Transporter-targeted lipid prodrugs of cyclic cidofovir: a potential approach for the treatment of cytomegalovirus retinitis. J Pharm Sci. 2012;101:3249–3263.
  • Chen P, Chen H, Zang X, et al. Expression of efflux transporters in human ocular tissues. Drug Metab Dispos. 2013;41:1934–1948.
  • Mitra AK. Ocular transporters and receptors: their role in drug delivery. 1st ed. Sawston: Woodhead Publishing Limited; 2013.
  • Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. Mol Cell Therapy. 2014;2:15.
  • Ballestero MR, Monte MJ, Briz O, et al. Expression of transporters potentially involved in the targeting of cytostatic bile acid derivatives to colon cancer and polyps. Biochem Pharmacol. 2006 Sep 14;72(6):729–738.
  • Zhang S, Lovejoy KS, Shima JE, et al. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 2006 Sep 1;66(17):8847–8857.
  • Uwai Y, Taniguchi R, Motohashi H, et al. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2004;19:369–374.
  • Tamai I, Ohashi R, Nezu J, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998 Aug 7;273(32):20378–20382.
  • Gong S, Lu X, Xu Y, et al. Identification of OCT6 as a novel organic cation transporter preferentially expressed in hematopoietic cells and leukemias. Exp Hematol. 2002;30:1162–1169.
  • van de Steeg E, van Esch A, Wagenaar E, et al. Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clinical Cancer Res. 2013 Feb 15;19(4):821–832.
  • Landowski CP, Vig BS, Song X, et al. Targeted delivery to PEPT1-overexpressing cells: acidic, basic, and secondary floxuridine amino acid ester prodrugs. Mol Cancer Ther. 2005;4:659–667.
  • Fletcher JI, Haber M, Henderson MJ, et al. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010;10:147–156.
  • Mitra AK, Agrahari V, Mandal A, et al. Novel delivery approaches for cancer therapeutics. J Control Release. 2015 Dec 10;219:248–268.
  • Timsit YE, Negishi M. CAR and PXR: the xenobiotic-sensing receptors. Steroids. 2007;72:231–246.
  • Ihunnah CA, Jiang M, Xie W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta. 2011;1812:956–963.
  • Dhillon AS, Hagan S, Rath O, et al. MAP kinase signalling pathways in cancer. Oncogene. 2007 May 14;26(22):3279–3290.
  • Merkle D, Hoffmann R. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: cross-talk with the androgen receptor. Cell Signal. 2011;23:507–515.
  • Misra UK, Pizzo SV. Epac1-induced cellular proliferation in prostate cancer cells is mediated by B-Raf/ERK and mTOR signaling cascades. J Cell Biochem. 2009 Nov 1;108(4):998–1011.
  • Leone V, di Palma A, Ricchi P, et al. PGE2 inhibits apoptosis in human adenocarcinoma Caco-2 cell line through Ras-PI3K association and cAMP-dependent kinase A activation. Am J Physiol Gastrointest Liver Physiol. 2007;293:G673–G681.
  • Bircsak KM, Richardson JR, Aleksunes LM. Inhibition of human MDR1 and BCRP transporter ATPase activity by organochlorine and pyrethroid insecticides. J Biochem Mol Toxicol. 2013;27:157–164.
  • Glavinas H, Méhn D, Jani M, et al. Utilization of membrane vesicle preparations to study drug-ABC transporter interactions. Expert Opin Drug Metab Toxicol. 2008;4:721–732.
  • van Staden CJ, Morgan RE, Ramachandran B, et al. Membrane vesicle ABC transporter assays for drug safety assessment. Curr Protoc Toxicol. 2012 Nov;Chapter 23:Unit 23 5.
  • Vectorial SJ. Vectorial Transport in intestinal epithelial cells. Biochem Mol Biol Educ. 2006;34:449–451.
  • Hilgendorf C, Ahlin G, Seithel A, et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007;35:1333–1340.
  • Agarwal S, Boddu SH, Jain R, et al. Peptide prodrugs: improved oral absorption of lopinavir, a HIV protease inhibitor. Int J Pharm. 2008 Jul 9;359(1–2):7–14.
  • Cui Y, König J, Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol. 2001;60:934–943.
  • Ottaviani G, Martel S, Carrupt PA. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem. 2006;29(49):3948–3954.
  • Smith M, Omidi Y, Gumbleton M. Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target. 2007;15:253–268.
  • Franke H, Galla H-J, Beuckmann CT. An improved low-permeability in vitro-model of the blood-brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res. 1999 Feb 6;818(1):65–71.
  • Abe K, Bridges AS, Brouwer KLR. Use of sandwich-cultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Drug Metab Dispos. 2009;37:447–452.
  • Widdows KL, Panitchob N, Crocker IP, et al. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. Faseb J. 2015;29:2583–2594.
  • Volpe DA, Hamed SS, Zhang LK. Use of different parameters and equations for calculation of IC₅₀ values in efflux assays: potential sources of variability in IC₅₀ determination. AAPS J. 2014;16:172–180.
  • Kuo K-L, Zhu H, McNamara PJ. Localization and functional characterization of the rat Oatp4c1 transporter in an in vitro cell system and rat tissues. PLoS One. 2012;7:e39641.
  • Forster MD, Ormerod MG, Agarwal R, et al. Flow cytometric method for determining folate receptor expression on ovarian carcinoma cells. Cytometry A. 2007;71:945–950.
  • Granvil CP, Yu AM, Elizondo G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003;31:548–558.
  • Pal D, Kwatra D, Minocha M, et al. Efflux transporters- and cytochrome P-450-mediated interactions between drugs of abuse and antiretrovirals. Life Sci. 2011 May 23;88(21–22):959–971.
  • Cummins CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;300:1036–1045.
  • Cummins CL, Salphati L, Reid MJ, et al. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J Pharmacol Exp Ther. 2003;305:306–314.
  • Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. ‎Eur J Pharm Sci. 2006;27:425–446.
  • Varun K, Sulabh PP, Vibhuti A, et al. Novel pentablock copolymer based nanoparticles containing pazopanib: a potential therapy for ocular neovascularization. Recent Patents Nanomed. 2014;4:57–68.
  • Benet LZ. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci. 2013;102:34–42.
  • Thiel-Demby VE, Humphreys JE, St John Williams LA, et al. Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay. Mol Pharm. 2009;6:11–18.
  • Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008;10:208–212.
  • Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26:2039–2054.
  • Martinez M, Augsburger L, Johnston T, et al. Applying the biopharmaceutics classification system to veterinary pharmaceutical products. Part I: biopharmaceutics and formulation considerations. Adv Drug Deliv Rev. 2002 Oct 4;54(6):805–824.
  • Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.
  • Broccatelli F, Cruciani G, Benet LZ, et al. BDDCS class prediction for new molecular entities. Mol Pharm. 2012 Mar 5;9(3):570–580.
  • Dahan A, Amidon GL. MRP2 mediated drug-drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting. Int J Pharm. 2010 Feb 15;386(1–2):216–220.
  • Perloff MD, Von Moltke LL, Greenblatt DJ. Fexofenadine transport in Caco-2 cells: inhibition with verapamil and ritonavir. J Clin Pharmacol. 2002;42:1269–1274.
  • Wessler JD, Grip LT, Mendell J, et al. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 2013 Jun 25;61(25):2495–2502.
  • Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015 Jan 23;347(6220):1260419.
  • Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28:1248–1250.
  • Stege A, Priebsch A, Nieth C, et al. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther. 2004;11:699–706.
  • Ee PL, He X, Ross DD, et al. Modulation of breast cancer resistance protein (BCRP/ABCG2) gene expression using RNA interference. Mol Cancer Ther. 2004;3:1577–1583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.