886
Views
86
CrossRef citations to date
0
Altmetric
Review

Minimally invasive microneedles for ocular drug delivery

, , , , &
Pages 525-537 | Received 11 Apr 2016, Accepted 25 Jul 2016, Published online: 25 Aug 2016

References

  • [cited 2016 Mar 18]. Available from: http://www.who.int/mediacentre/factsheets/fs282/en/
  • Yellepeddi VK, Sheshala R, McMillan H, et al. Punctal plug: a medical device to treat dry eye syndrome and for sustained drug delivery to the eye. Drug Discov Today. 2015;20(7):884–889.
  • Idrees F, Vaideanu D, Fraser SG, et al. A review of anterior segment dysgeneses. Surv Ophthalmol. 2006;51(3):213–231.
  • Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52:37–48.
  • Lee SS, Hughes P, Ross AD, et al. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27:2043–2053.
  • Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58:1164–1181.
  • Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3:275–287.
  • Lee VHL, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Phamacol. 1986;2:67–108.
  • Lang JC. Ocular drug delivery: conventional ocular formulations. Adv Drug Deliv Rev. 1995;16:39–43.
  • Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41:961–964.
  • Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol. 1993;37(6):435–456.
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–1135.
  • Mikkelson TJ, Chrai SS, Robinson JR. Competitive inhibition of drug-protein interaction in eye fluids and tissues. J Pharm Sci. 1973;62:1942–1945.
  • Fischbarg J. The biology of the eye. Burlington: Elsevier; 2006.
  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. Aaps J. 2010;12:348–360.
  • Willoughby CE, Ponzin D, Ferrari S, et al. Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function ? A review. Clin Exp Ophthalmol. 2010;38:2–11.
  • Schoenwald RD, Ward RL. Relationship between steroid permeability across excised rabbit cornea and octanol-water partition coefficients. J Pharm Sci. 1978;67:786–788.
  • Sasaki H, Ichikawa M, Yamamura K, et al. Ocular membrane permeability of hydrophilic drugs for ocular peptide delivery. J Pharma Pharmacol. 1997;49:135–139.
  • Bachman WG, Wilson G. Essential ions for maintenance of the corneal epithelial surface. Invest Ophthalmol Vis Sci. 1985;26:1484–1488.
  • Akhtar S, Tullo A, Caterson B, et al. Clinical and morphological features including expression of betaig-h3 and keratan sulphate proteoglycans in Maroteaux-Lamy syndrome type B and in normal cornea. Br J Ophthalmol. 2002;86:147–151.
  • Malhotra M, Majumdar DK. Permeation through cornea, Indian. J Exp Biol. 2001;39:11–24.
  • Rabinovich-Guilatt L, Couvreur P, Lambert G, et al. Cationic vectors in ocular drug delivery. J Drug Targeting. 2004;12:623–633.
  • Wilson SA, Last A. Management of corneal abrasions. Am Fam Phys. 2004;70:123–128.
  • Graymore CN. Biochemistry of the eye. London: Academic Press; 1970. p. 19.
  • Kompella UB, Kadam RS, Lee VHL. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1:435–456.
  • Olsen TW, Aaberg SY, Geroski DH, et al. Human sclera: thickness and surface area. Am J Ophthalmol. 1998;125:237–241.
  • Dunlevy JR, Summers RJ. Interaction of lumican with aggrecan in the aging human sclera. Invest Ophthalmol Vis Sci. 2004;45(11):3849–3856.
  • Watson PG, Young RD. Scleral structure, organisation and disease. A review. Expt Eye Res. 2004;78:609–623.
  • Ambati J, Canakis CS, Miller JW, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41:1181–1185.
  • Edwards A, Prausnitz MR. Fiber matrix model of sclera and corneal stroma for drug delivery to the eye. AIChE J. 1998;44:214–225.
  • Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers. 2011;3:193–221.
  • Ikuno Y, Kawaguchi K, Nouchi T, et al. Choroidal thickness in healthy Japanese subjects RID F-2586-2011. Invest Ophthalmol Vis Sci. 2010;51:2173–2176.
  • Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147:811–815.
  • Chong NHV, Keonin J, Luthert PJ, et al. Decreased thickness and integrity of the macular elastic layer of Bruch’s membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol. 2005;166:241–251.
  • Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Euro J Pharma Biopharma. 2005;60:207–225.
  • Heiduschka P, Fietz H, Hofmeister S, et al. Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest Ophthalmol Vis Sci. 2005;48:2814–2823.
  • Galloway NR, Amoaku WMK, Galloway PH, et al.. Common eye diseases and their management. Springer; 2006.
  • Yoeruek E, Ziemssen F, Henke-Fahle S, et al. Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn. Acta Ophthalmol. 2007;86:322–328.
  • Kim WJ, Jeong HO, Chung SK. The effect of bevacizumab on corneal neovascularization in rabbits. Korean J Ophthalmol. 2010;24:230–237.
  • Chang JH, Garg NK, Lunde E, et al. Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol. 2012;57:415–429.
  • Dastjerdi MH, Al-Arfaj KM, Nallasamy N, et al. Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, noncomparative study. Arch Ophthalmol. 2009;127:381–389.
  • Vieira ACC, Höfling-Lima AL, Gomes JÁP, et al. Intrastromal injection of bevacizumab in patients with corneal neovascularization. Arq Bras Oftalmol. 2012;75:277–279.
  • Hashemian MN, Zare MA, Rahimi F, et al. Deep intrastromal bevacizumab injection for management of corneal stromal vascularization after deep anterior lamellar keratoplasty, a novel technique. Cornea. 2011;30:215–218.
  • Sharma N, Agarwal P, Sinha R, et al. Evaluation of intrastromal voriconazole injection in recalcitrant deep fungal keratitis: case series. Br J Ophthalmol. 2001;95:1735–1737.
  • Kalaiselvi G, Narayana S, Krishnan T, et al. Intrastromal voriconazole for deep recalcitrant fungal keratitis: a case series. Br J Ophthalmol. 2015;99:195–198.
  • Maurice D. Review: practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther. 2001;17:393–401.
  • Jiang J, Gill HS, Ghate D, et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007;48:4038–4043.
  • You X, Li J, Li S, et al. Effects of Lamellar keratectomy and intrastromal injection of 0.2% fluconazole on fungal keratitis. J Ophthalmol. 2015;2015:656027.
  • Ohm J. Über die Behandlung der Netzhautablösung durch operative Entleerung der subretinalen Flüssigkeit und Einspritzung von Luft in den Glaskörper. Albrecht Von Græfe’s Archiv Für Ophthalmologie. 1911;79:442–450. .
  • Ramulu PY, Do DV, Corcoran KJ, et al. Use of retinal procedures in Medicare beneficiaries from 1997 to 2007. Arc Ophthalmol. 2010;128:1335–1340.
  • Amoaku W. The royal college of opthamologists audit: summary of survey on provision of AMD services. London: The Royal College of Ophthalmologists; 2009.
  • Englander M, Chen TC, Paschalis EI, et al. Intravitreal injections at the Massachusetts eye and ear infirmary: analysis of treatment indications and postinjection endophthalmitis rates. Br J Ophthalmol. 2013;97:460–465.
  • The Royal College of Opthamologists, 2009. Guidelines for Intravitreal Injections procedure; [cited 2016 Mar 18]. Available from: https://www.rcophth.ac.uk/wp-content/uploads/2015/01/2009-SCI-012_Guidelines_for_Intravitreal_Injections_Procedure_1.pdf
  • Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13:135–143.
  • Kurz D, Ciulla TA. Novel approaches for retinal drug delivery. Ophthalmol Clinics North Am. 2002;15:405–410.
  • Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye. 2013;27:787–794.
  • Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina. 2009;29:875–912.
  • Kim YC, Grossniklaus HE, Edelhauser HF, et al.. Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization. Invest Ophthalmol Vis Sci. 2014;55:7376–7386.
  • Donnelly RF, Thakur RRS, Garland MJ, et al. Hydrogel-forming microneedle
arrays for enhanced transdermal drug
delivery. Adv Funct Mater. 2012;22:4879–4890.
  • Henry S, McAllister DV, Allen MG, et al. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87:922–925.
  • Roxhed N, Samel B, Nordquist L, et al. Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans Bio Med Eng. 2008;55:1063–1071.
  • Donnelly RF, Thakur RRS, Morrow DIJ, et al.. Microneedle-mediated transdermal and intradermal drug delivery. Oxford (UK): Wiley- Blackwell; 2012.
  • Quinn HL, Kearney MC, Courtenay AJ, et al. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv. 2014;11:1769–1780.
  • Thakur RRS, Fallows SJ, McMillan HL, et al.. Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery. J Pharm Phamacol. 2014;66:584–595.
  • Jiang J, Moore JS, Edelhauser HF, et al. Intrascleral drug delivery to the eye using hollow microneedles. Pharma Res. 2008;26:395–403.
  • Patel SR, Lin ASP, Edelhauser HF, et al.. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharma Res. 2011;28:166–176.
  • Song HB, Lee KJ, Seo H, et al. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. J Control Rel. 2015;209:272–279.
  • Patel SR, Berezovsky DE, McCarey BE, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Opthalmol Vis Sci. 2012;53:4433–4441.
  • Gilger BC, Abarca EM, Salmon JH, et al. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Invest Opthalmol Vis Sci. 2013;54:2483–2492.
  • Chiang B, Yoo CK, Edelhauser HR, et al. Circumferential flow of particles in the suprachoroidal space is impeded by the posterior ciliary arteries. Expt Eye Res. 2016;145:1–35.
  • Palakurthi NK, Correa ZM, Augsburger JJ, et al. Toxicity of a biodegradable microneedle implant loaded with methotrexate as a sustained release device in normal rabbit eye: a pilot study. J Ocular Pharmacol Thera. 2011;27:151–156.
  • Jiang JW, Joshi M, Christoforidis J. Drug delivery implants in the treatment of vitreous inflammation. Mediators Inflamm. 2013;2013:1–8.
  • Yasukawa T, Kimura H, Tabata Y, et al. Biodegradable scleral plugs for vitreoretinal drug delivery. Adv Drug Deliv Rev. 2001;52:25–36.
  • Okabe J. Biodegradable intrascleral implant for sustained intraocular delivery of betamethasone phosphate. Invest Ophthalmol Vis Sci. 2003;44:740–744.
  • Shin JPJ, Park YCY, Oh JHJ, et al. Biodegradable intrascleral implant of triamcinolone acetonide in experimental uveitis. J Ocular Pharmacol Ther. 2009;25:201–208.
  • Kim Y, Lim J, Kim H, et al. A novel design of one-side coated biodegradable intrascleral implant for the sustained release of triamcinolone acetonide. Eur J Pharma Biopharma. 2008;70:179–186.
  • [cited 2016 Mar 18]. Available from: https://clinicaltrials.gov/ct2/results?term=ocular+microneedle&Search=Search
  • Gill HS, Denson DD, Burris BA, et al. Effect of microneedle design on pain in human subjects. Clin J Pain. 2008;24:585–594.
  • Mooney K, McElnay JC, Donnelly RF. Paediatricians’ opinions of microneedle-mediated monitoring: a key stage in the translation of microneedle technology from laboratory into clinical practice. Drug Deliv Transl Res. 2015;5:346–359.
  • Matthews A, Hutnik C, Hill K, et al. Indentation and needle insertion properties of the human eye. Eye. 2014;28:880–887.
  • Thakur RRS, Dunne NJ, Cunningham E, et al. Review of patents on microneedle applicators. Recent Pat Drug Deliv Formul. 2011;5:11–23.
  • Goldstein DA. Achieving Drug Delivery Via the Suprachoroidal Space. Retina Today. 2014 Jul–Aug;82–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.