27,292
Views
175
CrossRef citations to date
0
Altmetric
Review

Dry powder inhalation: past, present and future

, , , , &
Pages 499-512 | Received 31 Mar 2016, Accepted 10 Aug 2016, Published online: 30 Aug 2016

References

  • Anderson PJ. History of aerosol therapy: liquid nebulization to MDIs to DPIs. Respir Care. 2005;50:1139–1149.
  • Dessanges J. A history of nebulization. J Aerosol Med. 2001;14:65–71.
  • Grossman J. The evolution of inhaler technology. J Asthma. 1994;31:55–64.
  • Sanders M. Inhalation therapy: an historical review. Primary Care Respir J. 2007;16(2):71–81.
  • Cutchis P. Stratospheric ozone depletion and solar ultraviolet radiation on earth. Science. 1974;184:13–19.
  • Lovelock JE. Halogenated hydrocarbons in the atmosphere. Ecotoxicol Environ Saf. 1977;1:399–346.
  • Noakes TJ. CFCs, their replacement, and the ozone layer. J Aerosol Med. 1995;8:S3–S7.
  • D’Souza S. The montreal protocol and essential use exemptions. J Aerosol Med. 1995;8:S13–S17.
  • The London Gazette. 1864 Aug vol. 16. 4044.
  • Robson RA, Taylor BJ, Taylor B. Sodium cromoglycate: Spincaps or metered dose aerosol. Br J Clin Pharm. 1981;11:383–384.
  • Bell JH, Hartley PS, Cox JS. Dry powder aerosols. I: a new inhaler device. J Pharm Sci. 1971;60:1559–1564.
  • Hall VC. Inhaler. US patent 2517482. 1950.
  • Ellis MC. Device for dispensing medicaments. US patent 2573918. 1951.
  • Cocozza S. Inhaling device for medial powder compositions. US patent 3807400. 1974.
  • Mathes S. Inhalation device. US patent 3938516. 1976.
  • Wilke GA, Henderson NC, Stansel SM, et al. Inhalation device. US patent 3948264. 1976.
  • Valentini L, Maiorano N. Inhalation device. US patent 4069819. 1978.
  • Clark AR. Medical aerosol inhalers: past, present and future. Aerosol Sci Technol. 1995;22:374–391.
  • Pover GM, Dash CH. A new modified form of inhaler (“Rotahaler”) for patients with chronic obstructive lung disease. Pharmatherapeutica. 1985;4:98–101.
  • Kladders H. Powdered pharmaceutical inhaler. US patent 4889114. 1989.
  • Cocozza S. Inhaler for powdered medicaments. US patent 3991761. 1976.
  • Jones TM, Pilpel N. Some physical properties of lactose and magnesia. J Pharm Pharmacol. 1965;17:440–448.
  • Shotton E, Orr NA. Studies on mixing cohesive powders. J Pharm Pharmacol Suppl. 1971;23(S1):260S.
  • Travers DN, White RC. The mixing of micronised sodium bicarbonate with sucrose crystals. J Pharm Pharmacol Suppl. 1971;23(S1):260S–261S.
  • Hersey JA. Ordered mixing: a new concept in powder mixing. Powder Technol. 1975;7:41–44.
  • Staniforth JN. Order out of chaos. J Pharm Pharmacol. 1987;39:329–334.
  • de Boer AH, Hagedoorn P, Gjaltema D, et al. Air classifier technology (ACT) in dry powder inhalation Part 3: Design and development of an air classifier family for the Novolizer multi-dose dry powder inhaler. Int J Pharm. 2006;310:72–80.
  • de Boer AH, Hagedoorn P, Gjaltema D, et al. Air classifier technology (ACT) in dry powder inhalation Part 4: Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler. Int J Pharm. 2006;310:81–89.
  • Newman SP, Pitcarin GR, Hirst PH, et al. Scintigraphic comparison of budesonide deposition from two dry powder inhalers. Eur Respir J. 2000;16:178–183.
  • Nieminen MM, Vidgren M, Laurikainen K, et al. Easyhaler, a novel multiple dose powder inhaler: clinically equivalent to salbutamol metered dose inhaler and easier to use. Respiration. 1994;61:37–41.
  • Meakin BJ, Ganderton D, Panza I, et al. The effect of flow rate on drug delivery from the Pulvinal, a high-resistance dry powder inhaler. J Aerosol Med. 1998;11:143–152.
  • Overhoff KA, Clayborough R, Crowley M. Review of the TAIFUN multidose dry powder technology. Drug Dev Ind Pharm. 2008;34:960–965.
  • Lankinen T. Device intended for measuring a dose of powdered medicament for inhalation. US patent RE35552. 1997.
  • Ambrosio TJ, Ashley CR, Bilanin AJ, et al. Inhaler for powdered medications. WO patent 94/14492. 1994.
  • Newhouse MT, Nantel NP, Chambers CB, et al. Clickhaler (a novel dry powder inhaler) provides similar bronchodilation to pressurized metered-dose inhaler, even at low flow rates. Chest. 1999;115:952–956.
  • Dahl R, Creemers JP, Van Noord J, et al. Comparable efficacy and tolerability of formoterol (Foradil) administered via a novel multi-dose dry powder inhaler (Certihaler) or the aerolizer dry powder inhaler in patients with persistent asthma. Respiration. 2004;71:126–133.
  • Middle MV, Terblanché J, Perrin VL, et al. Bronchodilating effects of salbutamol from a novel inhaler Airmax. Resp Med. 2002;96:493–498.
  • Canonica GW, Arp J, Keegstra JR, et al. Spiromax, a new dry powder inhaler: dose consistency under simulated real-world conditions. J Aerosol Med Pulm Drug Deliv. 2015;28:309–319.
  • Sumby BS, Churcher KM, Smith IJ, et al. Dose reliability of the serevent diskhaler system. PharmTech Int. 1993;5:20–27.
  • Brindley A, Sumby BS, Smith IJ, et al. Design, manufacture and dose consistency of the serevent diskus inhaler. Pharm Technol Eur. 1995;7:14–22.
  • Wetterlin K. Turbuhaler: a new dry powder inhaler for administration of drugs to the airways. Pharm Res. 1988;5:506–508.
  • Crompton GK. Dry powder inhalers: advantages and limitations. J Aerosol Med. 1991;4:151–156.
  • LiCalsi C, Christensen T, Bennett JV, et al. Dry powder inhalation as a potential delivery method for vaccines. Vaccine. 1999;17:1796–1803.
  • White S, Bennett DB, Chey S, et al. EXUBERA: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol Ther. 2005;7:896–906.
  • Han R, Papadopoulos G, Greenspan BJ. Flow field management inside the mouthpiece of the spiros inhaler using particle image velocimetry. Aerosol Sci and Technol. 2002;36:329–341.
  • Virchov JC. What plays a role in the choice of inhaler device for asthma therapy. Curr Med Res Opin. 2005;21:S19–S25.
  • Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. Lancet. 2011;377:1032–1045.
  • Laube BL, Janssens HM, De Jongh FHC, et al. What the pulmonary specialist should know about the new inhalation therapies. Eur Resp J. 2011;37:1308–1331.
  • Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size. Am J Respir Crit Care Med. 2005;172:1497–1504.
  • Demoly P, Hagedoorn P, de Boer AH, et al. The clinical relevance of dry powder inhaler performance for drug delivery. Resp Med. 2014;108:1195–1203.
  • Norman P. Developments in inhaled combination therapies: patent activity 2013-2014. Expert Opin Ther Patents. 2015;25:1239–1245.
  • Flenly DC. Today’s treatment of airway obstruction.and tomorrow’s? Respiration. 1989;55(Suppl.2):4–9.
  • Prime D, Atkins PJ, Slater A, et al. Review of dry powder inhalers. Adv Drug Deliv Rev. 1997;26:51–58.
  • Smith IJ, Parry-Billings M. The inhalers of the future? A review of dry powder devices on the market. Pulm Pharmacol Ther. 2003;16:79–95.
  • de Boer AH, Gjaltema D, Hagedoorn P. Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers. Part 2: effect of peak flow rate (PIFR) and inspiration time on the in vitro drug release from three different types of commercial dry powder inhalers. Int J Pharm. 1996;138:45–46.
  • Pauwels R, Newman S, Borgström L. Airway deposition and airway effects of antiasthma drugs delivered from metered dose inhalers. Eur Respir J. 1997;10:2127–2138.
  • Olsson B. Aerosol particle generation from dry powder inhalers: can they equal pressurized metered dose inhalers? J Aerosol Med. 1995;8:S13–S18.
  • Borgström L, Derom E, Ståhl E, et al. The inhalation device influences lung deposition and bronchodilating effect of terbutaline. Am J Respir Crit Care Med. 1996;153:1636–1640.
  • Frijlink HW, de Boer AH. Dry powder inhalers for pulmonary drug delivery. Exp Opin Drug Deliv. 2004;1:67–86.
  • Clark AR, Newman SP, Dasovich N. Mouth and oropharyngeal deposition of pharmaceutical aerosols. J Aerosol Med. 1998;11:S116–S121.
  • DeHaan WH, Finlay WH. Predicting extrathoracic deposition from dry powder inhalers. Aerosol Sci. 2004;35:309–331.
  • de Boer AH, Chan HK, Price R. A critical view on lactose-based drug formulation and device studies for powder inhalation; Which are relevant and what interactions to expect. Adv Drug Deliv Rev. 2012;64:257–274.
  • Grasmeijer F, Grasmeijer N, Hagedoorn P, et al. Recent advances in the fundamental understanding of adhesive mixtures for inhalation. Curr Phar Design. 2015;21:5900–5914.
  • Islam N, Stewart P, Larson I, et al. Effect of carrier size on the dispersion of salmeterol xinafoate from interactive mixtures. J Pharm Sci. 2004;93:1030–1038.
  • Guenette E, Barrett A, Kraus D, et al. Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design. Int J Pharm. 2009;380:80–88.
  • Kawashima Y, Serigano T, Hino T, et al. Effect of surface morphology of carrier lactose on dry powder inhalation of pranlukast hydrate. Int J Pharm. 1998;172:179–188.
  • Ferrari F, Cocconi D, Bettini R, et al. The surface roughness of lactose particles can be modulated by wet-smoothing using a high-shear mixer. AAPS PharmSciTech. 2004;5:69–74.
  • Kayali W, Ticehurst MD, Murphy J, et al. Improved aerosolization performance of salbutamol sulfate formulated with lactose crystallized from binary mixtures of ethanol-acetone. J Pharm Sci. 2011;100:2665–2684.
  • Arnold K, Grass P, Knecht A, et al. Powders for inhalation. US patent 5478578. 1995.
  • Jones MD, Price R. The influence of fine excipient particles on the performance of carrier-based dry powder inhalation formulations. Pharm Res. 2006;23:1665–1674.
  • Begat P, Morton DAV, Staniforth JN, et al. The cohesive-adhesive balances in dry powder inhaler formulations I: direct quantification by atomic force microscopy. Pharm Res. 2004;21:1591–1597.
  • Tong HY, Shekunov BY, York P, et al. Characterization of two polymorphs of salmeterol xinafoate crystallized from supercritical fluids. Pharm Res. 2001;18:852–858.
  • Sitz R. Current innovations in dry powder inhalers. Ondrugdelivery. 2010:10–12. Available from: www.ondrugdelivery.com
  • Newman S, Malik S, Hirst P, et al. Lung deposition of salbutamol in healthy human subjects from the MAGhaler dry powder inhaler. Respir Med. 2002;96:1026–1032.
  • de Boer AH, Gjaltema D, Hagedoorn P, et al. Comparative in vitro performance evaluation of the novopulmon 200 novolizer and budesonid-ratiopharm jethaler: two novel budesonide dry powder inhalers. Pharmazie. 2004;59:692–699.
  • Alhalaweh A, Kaialy W, Buckton G, et al. Theofylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance. AAPS PharmSciTech. 2013;14:265–276.
  • Padrela L, Rodrigues MA, Tiago J, et al. Tuning physiochemical properties of theofylline by cocrystallization using the super critical fluid enhanced atomization technique. J Supercritical Fluids. 2014;86:129–136.
  • Velaga SP, Berger R, Carlfors J. Supercritical fluids crystallization of budesonide and flunisolide. Pharm Res. 2002;19:1564–1571.
  • Rehman M, Shekunov BY, York P, et al. Optimisation of powders for pulmonary delivery using supercritical fluid technology. Eur J Pharm Sci. 2004;22:1–17.
  • Buckton G. Characterisation of small changes in the physical properties of powders of significance for dry powder inhalation formulations. Adv Drug Deliv Rev. 1997;26:17–27.
  • Staniforth JN. Carrier particles for use in dry powder inhalers. WO patent 1996023485. 1996.
  • Begat P, Morton DA, Shur J, et al. The role of force control agents in high-dose dry powder inhaler formulations. J Pharm Sci. 2009;98:2770–2783.
  • Das SC, Zhou Q, Morton DA, et al. Use of surface energy distributions by inverse gas chromatography to understand mechanofusion processing and functionality of lactose coated with magnesium stearate. Eur J Pharm Sci. 2011;43:325–333.
  • Grant AC, Walker R, Hamilton M, et al. The `ELLIPTA dry powder inhaler: design, functionality, in vitro dosing performance and critical task compliance by patients and caregivers. J Aerosol Med Pulm Drug Deliv. 2015;28:474–485.
  • Pavkov R, Mueller S, Fiebich K, et al. Characteristics of a capsule based dry powder inhaler for the delivery of indacaterol. Curr Med Res Opin. 2010;26:2527–2533.
  • Staniforth JN, Morton DA, Brambilla G, et al. Pharmaceutical formulations foer dry powder inhalers in the form of hard-pellets. WO 01/78693. 2001.
  • Cocconi D, Alberti MD, Busca A, et al. Use of magnesium stearate in dry powder formulations for inhalation. US patent 20120082727. 2012.
  • Corradi M, Chrystyn H, Cosio BG, et al. NEXThaler, an innovative dry powder inhaler delivering an extrafine fixed combination of beclomethasone and formoterol to treat large and small airways in asthma. Exp Opin Drug Deliv. 2014;11:1497–1506.
  • Buttini F, Brambilla G, Copelli D, et al. Effect of flow rate on in vitro aerodynamic performance of NEXThaler in comparison with diskus and turbuhaler dry powder inhalers. J Aerosol Med Pulm Drug Deliv. 2015;28:1–12.
  • Glover W, Chan H-K, Eberl S, et al. Effect of particle size of dry powder mannitol on the lung deposition in healthy volunteers. Int J Pharm. 2008;349:314–322.
  • Bosquillon C, Lombry C, Préat V, et al. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;7:329–339.
  • Li H-Y, Seville PC, Williamson IJ, et al. The use of amino acids to enhance the aerosolisation of spray-dried powders for pulmonary gene therapy. J Gene Med. 2005;7:343–353.
  • Pilcer G, Vanderbist F, Amighi K. Spray-dried carrier free dry powder tobramycin formulations with improved dispersion properties. J Pharm Sci. 2009;98:1463–1475.
  • Duddu SP, Sisk SA, Walter YH, et al. Improved lung delivery from a passive dry powder inhaler using an engineered pulmosphere powder. Pharm Res. 2002;19:689–696.
  • Newhouse MT, Hirst PH, Duddu SP, et al. Inhalation of a dry powder tobramycin pulmosphere formulation in healthy volunteers. Chest. 2003;124:360–366.
  • Vehring R. Pharmaceutical particle engineering by spray drying. Pharm Res. 2008;25:999–1022.
  • Schüle S, Schulz-Fademrecht T, Garidel P, et al. Stabilization of IgG1 in spray-dried powders for inhalation. Eur J Pharm Biopharm. 2008;69:793–807.
  • Saluja V, Amorij JP, Kapteyn JC, et al. A comparison between spray drying and spray freeze drying to produce influenza subunit vaccine powder for inhalation. J Control Release. 2010;144:127–133.
  • Shoyele SA, Sivadas N, Cryan S-A. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1-34) prepared as dry powder for inhalation. AAPS PharmSciTech. 2011;12:304–311.
  • Adouy SA, van der Schaaf G, Hinrichs WL, et al. Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization. Vaccine. 2011;29:4345–4352.
  • Bürki K, Jeon I, Arpagaus C, et al. New insights into inspirable protein powder preparation using a nano spray dryer. Int J Pharm. 2011;408:248–256.
  • Fiegel J, Fu J, Hanes J. Poly(ether-anhydride) dry powder aerosols for sustained drug delivery in the lungs. J Control Release. 2004;96:411–423.
  • Chougule M, Padhi B, Misra A. Development of spray dried liposomal dry powder inhaler of dapsone. AAPS PharmSciTech. 2008;9:47–53.
  • Bi R, Shao W, Wang Q, et al. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. J Biomed Nanotechnol. 2009;5:84–92.
  • Scalia S, Salama R, Young P, et al. Preparation and in vitro evaluation of salbutamol-loaded lipid microparticles for sustained release pulmonary therapy. J Microencapsul. 2012;29:225–233.
  • d’Angelo I, Casciaro B, Miro A, et al. Overcoming barriers in Pseudomonas lung infections: engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B Biointerfaces. 2015;135:717–725.
  • Manca ML, Valenti D, Sales OD, et al. Fabrication of polyelectrolyte multilayered vesicles as inhalable dry powder for lung administration of rifampicin. Int J Pharm. 2014;472:102–109.
  • Amidi M, Pellikaan HC, de Boer AH, et al. Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary drug delivery. Eur J Pharm Biopharm. 2008;68:191–200.
  • Pilcer G, Sebti T, Amighi K. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm Res. 2006;23:931–940.
  • Colombo G, Terzano C, Colombo P, et al. Methacholine dry powder inhaler as a new tool for bronchial challenge test. Int J Pharm. 2008;352:165–171.
  • Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary delivery. Science. 1997;276:1868–1871.
  • Sharma R, Saxena D, Dwivedi D, et al. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pham Res. 2001;18:1405–1410.
  • Gupta A, Pant G, Mitra K, et al. Inhalable particles containing rapamycin for induction of autophagy in macrophages infected with Mycobacterium tuberculosis. Mol Pharm. 2014;11:1201–1207.
  • Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm. 2015;89:163–174.
  • Tian G, Longest WP, Li X, et al. Targeting aerosol deposition to and within the lung airways using excipient enhanced growth. J Aerosol Med Pulm Drug Deliv. 2013;26:248–265.
  • Son Y-T, Longest WP, Hindle M. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG). Application: effect of spray drying process conditions on aerosol performance. Int J Pharm. 2013;443:137–145.
  • Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392:1–19.
  • Hoppentocht M, Hagedoorn P, Frijlink HW, et al. Developments and strategies for inhaled antibiotic drugs in tuberculosis therapy: a critical evaluation. Eur J Pharm Biopharm. 2013;86:23–30.
  • Hoppentocht M, Hagedoorn P, Frijlink HW, et al. Technological and practical challenges of dry powder inhalers and formulations. Adv Drug Deliv Rev. 2014;75:18–31.
  • Claus S, Schoenbrodt T, Weiler C, et al. Novel dry powder inhalation system based on dispersion of lyophilisates. Eur J Pharm Sci. 2011;43:32–40.
  • Otake H, Okuda T, Okamoto H. Development of spray-freeze-dried powders for inhalation with high inhalation performance and antihygroscopic property. Chem Pharm Bull. 2016;64:239–245.
  • Geller DE, Weers J, Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere technology. J Aerosol Med Pulm Drug Deliv. 2011;24:175–182.
  • Belotti S, Rossi A, Colombo P, et al. Spray-dried amikacin sulphate powder for inhalation in cystic fibrosis patients: a quality by design approach for product construction. Int J Pharm. 2014;471:507–515.
  • Borgström L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med. 2006;19:473–483.
  • Stapleton KW, Guentsch F, Hoskinson MK, et al. On the suitability of k-turbulence modelling for aerosol deposition in the mouth and throat: a comparison with experiment. J Aerosol Sci. 2000;31:739–749.
  • Zhou Y, Sun J, Cheng Y-S. Comparison of deposition in the USP and physical mouth-throat models with solid and liquid particles. J Aerosol Med Pulm Drug Deliv. 2011;24:277–284.
  • Janssens HM, De Jongste JC, Fokkens WJ, et al. The sophia anatomical infant nose-throat (SAINT) model: A valuable tool to study aerosol deposition in infants. J Aerosol Med. 2001;14:433–441.
  • DeHaan WH, Finlay WH. In vitro monodisperse aerosol deposition in mouth and throat with six different inhalation devices. J Aerosol Med. 2001;14:361–367.
  • Lindert S, Below A, Breitkreutz J. Performance of dry powder inhalers with single dosed capsules in preschool children and adults with improved upper airway models. Pharmaceutics. 2014;6:36–51.
  • Gerrity TR, Lee PS, Hass FJ, et al. Calculated deposition of inhaled particles in the airway generations of normal subjects. J Appl Physiol. 1979;47:867–873.
  • Weibel ER, Gomez DM. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science. 1962;137:577–585.
  • Newman S, Steed K, Hooper G, et al. Comparison of gamma scintigraphy and pharmacokinetic technique for asessing pulmonary deposition of terbutaline sulphate delivered by pressurized metered dose inhaler. Pharm Res. 1995;12:231–236.
  • Geller DE, Konstan MW, Smith J, et al. Novel tobramycin inhalation powder in cystic fibrosis subjects: pharmacokinetics and safety. Pediatric Pulmonol. 2007;42:307–313.
  • Hoppentocht M, Akkerman OW, Hagedoorn P, et al. Tolerability and pharmacokinetic evaluation of inhaled dry powder tobramycin free base in non-cystic fibrosis bronchiectasis patients. PloS ONE. 2016;11:e0149768. doi:10.1371/journal.pone.0149768.
  • Newman SP, Pitcairn GR, Hirst PH, et al. History of gamma scintigraphy. J Aerosol Med. 2001;14:139–145.
  • Snell NJ, Ganderton D. Assessing lung deposition of inhaled medications. Respir Med. 1999;93:123–133.
  • Conway J. Lung imaging - Two dimensional gamma scintigraphy, SPECT, CT and PET. Adv Drug Deliv Rev. 2012;64:357–368.
  • Newman S, Fleming J. Challenges in assessing regional distribution of inhaled drug in the human lungs. Expert Opin Drug Deliv. 2011;8:841–855.
  • Scheuch G, Bennett W, Borgström L, et al. Deposition, imaging and clearance: what remains to be done? J Aerosol Med Pulm Drug Deliv. 2010;23:S39–S57.
  • Fleming J, Bailey DL, Chan HK, et al. Standardization of techniques for using single-photon emission computed tomography (SPECT) for aerosol deposition assessment of orally inhaled products. J Aerosol Med Pulm Drug Deliv. 2012;25:S29–S51.
  • Corcoran TE, Davadason SG, Kuell PJ. Introduction: aerosol delivery of orally inhaled agents. J Aerosol Med Pulm Drug Deliv. 2012;25:S3–S5.
  • Laube BL, Corcoran TE, Davadason SG, et al. Editorial: standards for lung imaging techniques. J Aerosol Med Pulm Drug Deliv. 2012;25:S1–S2.
  • Conway J, Fleming J, Bennett M, et al. The co-imaging of gamma camera measurements of aerosol deposition and respiratory anatomy. J Aerosol Med Pulm Drug Deliv. 2013;26:123–130.
  • De Backer JW, Vos WG, Vinchurkar SC, et al. Validation of computational fluid dynamics in CT-based airway models with SPECT/CT. Radiology. 2010;257:854–862.
  • Van Holsbeke CS, Leemans G, Vos WG, et al. Functional respiratory imaging as a tool to personalize respiratory treatment in patients with unilateral diaphragmic paralysis. Resp Care. 2014;59:e127–e131.
  • Cohn ML, Davis CL, Middlebrook G. Airborne immunization against tuberculosis. Science. 1967;158:1282–1283.
  • Tonnis WF, Kersten GF, Frijlink HW, et al. Pulmonary vaccine delivery: a realistic approach? J Aerosol Med Pulm Drug Deliv. 2012;25:1–12.
  • Tonnis WT, Lexmond AJ, Frijlink HW, et al. Devices and formulations for pulmonary vaccination. Expert Opin Drug Deliv. 2013;10:1383–1397.
  • Pedersen S. Inhaler use in children with asthma. Dan Med Bull. 1987;34:234–249.
  • Lexmond AJ, Kruizinga TJ, Hagedoorn P, et al. Effect of inhaler design variables on pediatric use of dry powder inhalers. PLoS ONE. 2014;19(6). doi:10.1371/journal.pone.0099304.
  • Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic delivery. Proc Am Thorac Soc. 2004;1:338–344.
  • Patton JS, Brain JD, Davies LA, et al. The particle has landed – characterizing the fate of inhaled pharmaceuticals. J Aerosl Med Pulm Drug Deliv. 2010;23:S71–S87.
  • Rogueda PG, Traini D. The nanoscale in pulmonary delivery. Part I: deposition, fate, toxicology and effects. Exp Opin Drug Deliv. 2007;4:595–606.
  • Ali ME, Lamprecht A. Spray freeze drying for dry powder inhalation of nanoparticles. Eur J Pharm Biopharm. 2014;87:510–517.
  • Willis L, Hayes D Jr, Mansour HM. Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung. 2012;190:251–262.
  • Mack P, Horvath K, Garcia A, et al. Particle Engineering for Inhalation Formulation and Delivery of Biotherapeutics. Inhalation. 2012 Aug. Available from: www/inhalationmag.com
  • de Boer AH, Hagedoorn P, Westerman WM, et al. Design and in vitro performance testing of multiple air classifier technology in a new disposable inhaler concept (Twincer) for high powder doses. Eur J Pharm Sci. 2006;28:171–178.
  • Hoppentocht M, Akkerman OW, Hagedoorn P, et al. The Cyclops for pulmonary delivery of aminoglycosides: a new member of the twincer family. Eur J Pharm Biopharm. 2015;90:8–15.
  • Young PM, Salama RO, Zhu B, et al. Multi-breath dry powder inhaler for delivery of cohesive powders in the treatment of bronchiectasis. Drug Develop Ind Pharm. 2015;41:859–865.
  • Young PM, Crapper J, Phillips G, et al. Overcoming dose limitations using the Orbital multi-breath dry powder inhaler. J Aerosol Med Pulm Drud Deliv. 2014;27:138–147.
  • Farkas DR, Hindle M, Longest PW. Characterization of a new high-dose dry powder inhaler (DPI) based on fluid bed design. Ann Biomed Eng. 2015;43:2804–2815.
  • Dinh K, Myers DJ, Glazer M, et al. In vitro aerosol characterization of staccato loxapine. Int J Pharm. 2011;403:101–108.
  • Richardson PC, Boss AH. Technosphere insulin technology. Diabetes Technol Ther. 2007;9:S65–S72.
  • Kling J. Dreamboat sinks prospects for fast approval of inhaled insulin. Nat Biotechnol. 2011;29:176–176.
  • Lipp MM, Sung JC. Monovalent metal cation dry powders for inhalation. US0231066A1. 2015.
  • Lexmond AJ, Hagedoorn P, van der Wiel E, et al. Adenosine dry powder inhalation for bronchial challenge testing, part 1: Inhaler and formulation development and in vitro performance testing. Eur J Pharm Biopharm. 2014;86:105–114.
  • Anderson SD, Brannan J, Spring J, et al. A new method for bronchial-provocation testing in asthmatic subjects using a dry powder of mannitol. Am J Respir Crit Care Med. 1997;156:758–765.
  • Byron PR, Patton JS. Drug delivery via the respiratory tract. J Aerosol Med. 1994;7:49–75.
  • Laube BL. Aerosolized medications for gene and peptide therapy. Resp Care. 2015;60:806–821.
  • McElroy MC, Kirton C, Gliddon D, et al. Inhaled pharmaceutical drug development: nonclinical considerations and case studies. Inhal Toxicol. 2013;25:219–232.
  • Strack T. The pharmacokinetics of alternative insulin delivery systems. Curr Opin Investig Drugs. 2010;11:394–401.
  • de Boer AH, Hagedoorn P. The role of disposable inhalers in pulmonary drug delivery. Exp Opin Drug Deliv. 2015;12:143–157.
  • Suwandecha T, Wongpoowarak K, Schrichana T. Computer-aided design of dry powder inhalers using computational fluid dynamics to assess performance. Pharm Dev Technol. 2016;21:54–60.
  • de Boer AH, Hagedoorn P, Woolhouse R, et al. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer disposable high-dose dry powder inhaler. J Pharm Pharmacol. 2012;64:1316–1325.
  • Ruzycki CA, Javaheri E, Finlay WH. The use of computational fluid dynamics in inhaler design. Exp Opin Drug Deliv. 2013;10:307–323.
  • Behara SRB, Longest PW, Farkas DR, et al. Development and comparison of new high efficiency dry powder inhalers for carrier-free formulations. J Pharm Sci. 2014;103:465–477.
  • Wong W, Fletcher DF, Traini D, et al. The use of computational approaches in inhaler development. Adv Drug Deliv Rev. 2012;64:312–322.
  • Minocchieri S, Burren JM, Bachmann MA, et al. Development of the premature infant nose and throat-model (PrINT-Model): an upper airway replica of a premature neonate for the study of aerosol delivery. Pediatr Res. 2008;64:141–146.
  • Hannemann LA. What is new in asthma: new dry powder inhalers. J Pediatr Health Care. 1999;13:159–165.
  • Smith IJ, Parry-Billings M. The inhalers of the future? A review of dry powder inhalers on the market today. Pulm Pharmacol Ther. 2003;16:79–95.
  • Prime D, Atkins PJ, Slater A, et al. Review of dry powder inhalers. Adv Drug Deliv Rev. 1997;26:51–58.
  • Chan HK. Dry powder aerosol delivery systems: current and future research directions. J Aerosol Med. 2006;19:21–27.
  • Newman SP, Busse WW. Evolution of dry powder inhaler design, formulation and performance. Resp Med. 2002;96:292–304.
  • Rootmensen GN, Van Keimpema HM, Jansen HM, et al. Predictors for incorrect inhalation technique: a study using a validated videotape scoring method. J Aerosol Med Pulm Drug Deliv. 2010;23:232–328.
  • Parlati C, Colombo P, Buttini F, et al. Pulmonary spray dried powders of tobramycin containing sodium stearate to improve aerosolization efficiency. Pharm Res. 2009;26:1084–1092.
  • Fenton C, Keating GM, Ploster GL. Novolizer, a multidose dry powder inhaler. Drugs. 2003;63:2437–2445.