321
Views
8
CrossRef citations to date
0
Altmetric
Review

The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery

, , , , & ORCID Icon
Pages 685-696 | Received 18 May 2016, Accepted 16 Aug 2016, Published online: 07 Sep 2016

References

  • Wang D, Gao G (2014) State-of-the-art human gene therapy: part Ii. gene therapy strategies and applications, Discov Med. 18(98): 151–161
  • Spiegelman WG, Reichardt LF, Yaniv M, et al. Bidirectional transcription and the regulation of Phage lambda repressor synthesis. Proc Natl Acad Sci USA. 1972;69(11):3156–3160.
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811.
  • Geary RS, Norris D, Yu R, et al. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;87(46–51). DOI:10.1016/j.addr.2015.01.008
  • Aartsma-Rus A. Overview on AON design. Methods Mol Biol. 2012;867(117–29). DOI:10.1007/978-1-61779-767-5_8
  • Obika S. Development of bridged nucleic acid analogues for antigene technology. Chem Pharm Bull (Tokyo). 2004;52(12):1399–1404.
  • Casey BP, Glazer PM. Gene targeting via triple-helix formation. Prog Nucleic Acid Res Mol Biol. 2001;67:163–192.
  • Svobodova E, Kubikova J, Svoboda P. Production of small RNAs by mammalian Dicer. Pflugers Arch. 2016;468(6):1089–1102. DOI:10.1007/s00424-016-1817-6
  • Kobayashi H, Tomari Y. RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta. 2016;1859(1):71–81. DOI:10.1016/j.bbagrm.2015.08.007
  • Chen GX, Zhang S, He XH, et al. Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives. Onco Targets Ther. 2014;7:1901–1909. DOI:10.2147/OTT.S50483
  • Available from: http://www.gsk.com/en-gb/media/press-releases/2016/gsk-receives-positive-chmp-opinion-in-europe-for-strimvelis-the-first-gene-therapy-to-treat-very-rare-disease-ada-scid/
  • Scott LJ. Alipogene tiparvovec: a review of its use in adults with familial lipoprotein lipase deficiency. Drugs. 2015;75(2):175–182. DOI:10.1007/s40265-014-0339-9
  • Geary R, Henry SP, Grillone LR. Fomivirsen: clinical pharmacology and potential drug interactions. Clin Pharmacokinet. 2002;41(4):255–260.
  • Marafini I, Di Fusco D, Calabrese E, et al. Antisense approach to inflammatory bowel disease: prospects and challenges. Drugs. 2015;75(7):723–730. DOI:10.1007/s40265-015-0391-0
  • Rader D, Kastelein J. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation. 2014;129(9):1022–1032. DOI:10.1161/circulationaha.113.001292
  • Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Public_statement/2009/12/WC500018346.pdf
  • Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/002429/WC500140678.pdf
  • Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015;14:843–856. DOI:10.1038/nrd4685
  • Campbell MA, Wengel J. Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem Soc Rev. 2011;40(12):5680–5689. DOI:10.1039/c1cs15048k
  • Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release. 2012;161(554–65). doi:10.1016/j.jconrel.2011.11.014 .
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene based therapy. Nat Rev Genet. 2014;15:541–555. DOI:10.1038/nrg3763
  • Merkel OM, Kissel T. Quo vadis polyplex? J Control Release. 2014;190:415–423. DOI:10.1016/j.jconrel.2014.06.009 .
  • Dyer PDR, Shepherd TR, Gollings AS, et al. Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity. J Controlled Release. 2015;220:316–328. DOI:10.1016/j.jconrel.2015.10.054.
  • Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm. 2012;9(9):2380–2402. DOI:10.1021/mp300293n .
  • Dyer PDR, Kotha AK, Gollings AS, et al. An in vitro evaluation of epigallocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin. Biochim Biophys Acta. 2016;1860(7):1541–1550. DOI:10.1016/j.bbagen.2016.03.024
  • Pattrick NG, Richardson SC, Casolaro M, et al. Poly(amidoamine)-mediated intracytoplasmic delivery of ricin A-chain and gelonin. J Controlled Release. 2001;77:225–232.
  • van Deurs B, Sandvig K, Petersen OW, et al. Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J Cell Biol. 1988;106(2):253–267.
  • Richardson SCW, Wallom KL, Ferguson EL, et al. The use of fluorescence microscopy to define polymer localization to the late endocytic compartments in cells that are targets for drug delivery. J Control Release. 2008;127(1):1–11. DOI:10.1016/j.jconrel.2007.12.015
  • Duncan R, Cable HC, Strohalm J, et al. Pinocytic capture and exocytosis of rat immunoglobulin IgG-N-(2-hydroxypropyl)methacrylamide copolymer conjugates by rat visceral yolk sacs cultured in vitro. Biosci Rep. 1986;6(10):869–877.
  • Mullock BM, Smith CW, Ihrke G, et al. Syntaxin 7 is localized to late endosome compartments, associates with vamp 8, and is required for late endosome–Lysosome fusion. Mol Biol Cell. 2000;11:3137–3153.
  • Zhao Q, Matson S, Herrera CJ, et al. Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res Dev. 1993;3(1):53–66.
  • Engel A, Walter P. Membrane lysis during biological membrane fusion: collateral damage by misregulated fusion machines. J Cell Biol. 2008;183(2):181–186. DOI:10.1083/jcb.200805182
  • Luzio JP, Rous BA, Bright NA, et al. Lysosome-endosome fusion and lysosome biogenesis. J Cell Sci. 2000;113(9):1515–1524.
  • BCC Research. Global markets and technologies for advanced drug delivery systems. Report Code: PHM006K; 2016. Available from: http://www.bccresearch.com/market-research/pharmaceuticals/advanced-drug-delivery-systems-tech-markets-report-phm006k.html
  • Global Industry Analysts, Inc. Global RNA Interference (RNAi) Market to Reach $4.04 Billion by 2017. 2011. Available from: http://www.prnewswire.com/news-releases/antivirals-market-to-2017—increased-uptake-of-high-priced-combination-drugs-will-offset-the-impact-of-generics-in-the-hiv-therapeutics-market-149029305.html
  • Shiffman ML, Maciewicz RA, Hu AW, et al. Protein dissociation from DNA in model systems and chromatin. Nucleic Acids Res. 1978;5(9):3409–3426.
  • Manning GS. Electrostatic free energy of the DNA double helix in counterion condensation theory. Biophys Chem. 2002;101-102:461–473.
  • Kabanov AV, Astafieva IV, Maksimova IV, et al. Efficient transformation of mammalian cells using DNA interpolyelectrolyte complexes with carbon chain polycations. Bioconjug Chem. 1993;4(6):448–454.
  • Xu B, Wiehle S, Roth JA, et al. The contribution of poly-L-lysine, epidermal growth factor and streptavidin to EGF/PLL/DNA polyplex formation. Gene Ther. 1998;5(9):1235–1243.
  • Dubes GR, Wegrzyn RJ. Rapid ephemeral cell sensitization as the mechanism of histone-induced and protamine-induced enhancement of transfection by poliovirus RNA. Protoplasma. 1978;96(3–4):209–223.
  • Al-Moslih MI, White RJ, Dubes GR. Use of a transfection method to demonstrate a monolayer cell transforming agent from the EB3 line of Burkitt’s lymphoma cells. J Gen Virol. 1976;31(3):331–345.
  • Wu GY, Wu CH. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry. 1988;27(3):887–892.
  • Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyleneimine. Proc Natl Acad Sci USA. 1995;92:7297–7230.
  • Li H, Tsui TY, Ma W. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Int J Mol Sci. 2015;16(8):19518–19536. DOI:10.3390/ijms160819518
  • Richardson SCW, Pattrick NG, Lavignac N, et al. Intracellular fate of bioresponsive poly(amidoamine)s in vitro and in vivo. J Controlled Release. 2010;142(1):78–88. DOI:10.1016/j.jconrel.2009.09.025
  • Hu J, Hu K, Cheng Y. Tailoring the dendrimer core for efficient gene delivery. Acta Biomater. 2016;35(1–11). DOI:10.1016/j.actbio.2016.02.031
  • Yang JP, Huang L. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther. 1997;4(9):950–960.
  • Kudsiova L, Ho J, Fridrich B, et al. Lipid chain geometry of C14 glycerol-based lipids: effect on lipoplex structure and transfection. Mol Biosyst. 2011;7(2):422–436. DOI:10.1039/c0mb00149j
  • Nair JK, Willoughby JL, Chan A, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. Jacs. 2014;136:16958−16961. DOI:10.1021/ja505986a
  • Voorschuur AH, Kuiper J, Neelissen JAM, et al. Different zonal distribution of the asialoglycoprotein receptor, the x2-macroglobulin receptor/low-density-lipoprotein receptor-related proteinand the lipoprotein-remnant receptor of rat liver parenchymal cells. Biochem J. 1994;303:809416.
  • Weigel PH, Yik JHN. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochimica et Biophysica Acta. 2002;1572:341–363.
  • Tros de Ilarduya C, Sun Y, Düzgüneş N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci. 2010;40(3):159–170. DOI:10.1016/j.ejps.2010.03.019
  • Marina Biotech continues to build worldwide patent protection for its SMARTICLES nucleic acid delivery technology. Focus on Surfactants. 2014;5:5–6. DOI:10.1016/S1351-4210(14)70123-4
  • Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5(3):305–313. DOI:10.15171/apb.2015.043
  • Richardson S, Ferruti P, Duncan R. Poly(amidoamine)s as potential endosomolytic polymers: evaluation in vitro and body distribution in normal and tumour-bearing animals. J Drug Target. 1999;6(6):391–404.
  • Richardson SC, Kolbe HV, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm. 1999;178(2):231–243.
  • Dyer PD, Richardson SC. Delivery of biologics to select organelles–the role of biologically active polymers. Expert Opin Drug Deliv. 2011;8(4):403–407. DOI:10.1517/17425247.2011.558080
  • Ferruti P, Manzoni S, Richardson SCW, et al. Amphoteric linear poly(amido-amine)s as endosomolytic polymers: correlation between physicochemical and biological properties. Macromolecules. 2000;33(21):7793–7800. DOI:10.1021/ma000378h
  • Takakura Y, Nishikawa M, Yamashita M, et al. Development of gene drug delivery systems based on pharmacokinetic studies. Eur J Pharm Sci. 2001;13(1):71–76.
  • Zhan C, Li C, Wei X, et al. Toxins and derivatives in molecular pharmaceutics: drug delivery and targeted therapy. Adv Drug Deliv Rev. 2015;90:101–118. DOI:10.1016/j.addr.2015.04.025
  • Sandvig K, Torgersen ML, Engedal N, et al. Protein toxins from plants and bacteria: probes for intracellular transport and tools in medicine. FEBS Lett. 2010;584:2626–2634. DOI:10.1016/j.febslet.2010.04.008
  • Tarragó-Trani MT, Storrie B. alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv Drug Deliv Rev. 2007;59(8):782–797.
  • Uherek C, Wels W. DNA-carrier proteins for targeted gene delivery. Adv Drug Deliv Rev. 2000;44:153–166.
  • Abrami L, Lindsay M, Parton RG, et al. Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol. 2004;66(5):645–651. DOI:10.1083/jcb.200312072 .
  • Rydell GE, Renard H-F, Garcia-Castillo M-D, et al. Rab12 localizes to Shiga toxin-induced plasma membrane invaginations and controls toxin transport. Traffic. 2014;15(7):772–787. DOI:10.1111/tra.12173
  • Williams JM, Inoue T, Chen G, et al. The nucleotide exchange factors Grp170 and Sil1 induce cholera toxin release from BiP to enable retrotranslocation. Mol Biol Cell. 2015;26(12):2181–2189. DOI:10.1091/mbc.E15-01-0014
  • Lemichez E, Bomsel M, Devilliers G, et al. Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery. Mol Microbiol. 1997;23(3):445–457.
  • Lord JM, Roberts LM. Ricin: structure, synthesis, and mode of action. In: Raffael S, Schmitt M, editor. Microbial protein toxins. topics in current genetics. Vol. 11. Berlin: Springer; 2004. p. 215–233. DOI:10.1007/b100198. ISBN 3-540-23562-0.
  • Spooner RA, Lord JM. Ricin trafficking in cells. Toxins. 2015;7(1):49–65. DOI:10.3390/toxins7010049
  • Smith DC, Spooner RA, Watson PD, et al. Internalized Pseudomonas exotoxin A can exploit multiple pathways to reach the endoplasmic reticulum. Traffic. 2006;7(4):379–393.
  • Murphy JR. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins. 2011;3(294–308). DOI:10.3390/toxins3030294
  • Yang X, Kessler E, Su LJ, et al. Diphtheria toxin-epidermal growth factor fusion protein DAB389EGF for the treatment of bladder cancer. Clin Cancer Res. 2013;19(1):148–157. DOI:10.1158/1078-0432.CCR-12-1258
  • Roy CJ, Brey RN, Mantis NJ, et al. Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin: epitope-specific neutralizing antibodies correlate with protection. Proc Natl Acad Sci USA. 2015;112(12):3782–3787. DOI:10.1073/pnas.1502585112
  • Sphyris N, Lord JM, Wales R, et al. Mutational analysis of the Ricinus lectin B-chains. Galactose-binding ability of the 2 gamma subdomain of Ricinus communis agglutinin B-chain. J Biol Chem. 1995;270(35):20292–20297. DOI:10.1074/jbc.270.35.20292
  • Slominska-Wojewodzka M, Gregers TF, Wälchli S, et al. EDEM is involved in retrotranslocation of ricin from the endoplasmic reticulum to the cytosol. Mol Biol Cell. 2006;17:1664–1675.
  • Endo Y, Tsurugi K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem. 1988;263(18):8735–8739.
  • Plaut RD, Carbonetti NH. Retrograde transport of pertussis toxin in the mammalian cell. Cell Microbiol. 2008;10(5):1130–1139. DOI:10.1111/j.1462-5822.2007.01115.x
  • Baykal B, Tumer NE. The C-terminus of pokeweed antiviral protein has distinct roles in transport to the cytosol, ribosome depurination and cytotoxicity. Plant J. 2007;49(6):995–1007. DOI:10.1111/j.1365-313X.2006.03012.x
  • Turturro F. Denileukin diftitox: a biotherapeutic paradigm shift in the treatment of lymphoid-derived disorders. Expert Rev Anticancer Ther. 2007;7(1):11–17. DOI:10.1586/14737140.7.1.11
  • Frankel AE, Zuckero SL, Mankin AA, et al. Anti-CD3 recombinant diphtheria immunotoxin therapy of cutaneous T cell lymphoma. Curr Drug Targets. 2009;10(2):104–109. DOI:10.2174/138945009787354539
  • Binz T, Rummel A. Cell entry strategy of clostridial neurotoxins. J Neurochem. 2009;109(6):1584–1595. DOI:10.1111/j.1471-4159.2009.06093.x
  • Montal M. Translocation of Botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Toxicon. 2009;54(5):565–569. DOI:10.1016/j.toxicon.2008.11.018
  • Dressler D, Benecke R. Pharmacology of therapeutic botulinum toxin preparations. Disabil Rehabil. 2007;29(23):1761–1768.
  • Young JAT, Collier RJ. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem. 2007;76,1:243–265. DOI:10.1146/annurev.biochem.75.103004.142728
  • Kintzer AF, Thoren KL, Sterling HJ, et al. The protective antigen component of anthrax toxin forms functional octameric complexes. J Mol Biol. 2009;392:614–629. DOI:10.1016/j.jmb.2009.07.037
  • Kintzer AF, Sterling HJ, Tang II, et al. Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma. JMol Biol. 2010;399(5):741–758. DOI:10.1016/j.jmb.2010.04.041
  • Peters DE, Hoover B, Cloud LG, et al. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities. Toxicol Appl Pharmacol. 2014;279:220–229. DOI:10.1016/j.taap.2014.06.010
  • Liu S, Crown D, Miller-Randolph S, et al. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc Nat Acad Sci USA. 2009;106(30):12424–12429. DOI:10.1073/pnas.0905409106
  • Martchenko M, Jeonga S-Y, Cohen SN. Heterodimeric integrin complexes containing β1-integrin promote internalization and lethality of anthrax toxin. Proc Natl Acad Sci USA. 2010;107:15583–15588. DOI:10.1073/pnas.1010145107
  • Bradley KA, Mogridge J, Mourez M, et al. Identification of the cellular receptor for anthrax toxin. Nature. 2001;414:225–229.
  • Liu S, Zhang Y, Hoover B, et al. The receptors that mediate the direct lethality of anthrax toxin. Toxins. 2013;5,1:1–8. DOI:10.3390/toxins5010001.
  • Qadan M, Christensen KA, Zhang L, et al. Membrane insertion by anthrax protective antigen in cultured cells. Mol Cell Biol. 2005;25(13):5492–5498.
  • Jiang J, Pentelute BL, Collier RJ, et al. Atomic structure of Anthrax protective antigen pore elucidates toxin translocation. Nature. 2015;521:545–549. DOI:10.1038/nature14247
  • Krantz BA, Trivedi AD, Cunningham K, et al. Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin. J Mol Biol. 2004;344(3):739–756.
  • Moayeri M, Wiggins JF, Leppla SH. Anthrax protective antigen cleavage and clearance from the blood of mice and rats. Infect Immun. 2007;75:5175–5184.
  • Dadachova E, Rivera J, Revskaya E, et al. In vitro evaluation, biodistribution and scintigraphic imaging in mice of radiolabeled anthrax toxins. Nucl Med Biol. 2009;37:755–761. DOI:10.1016/j.nucmedbio.2008.07.001
  • Aurora N, Leppla SH. Residues 1-254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J Biol Chem. 1993;268:3334–3341.
  • Uherek C, Fominaya J, Wels W. Modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery. J Biol Chem. 1998;273:8835–8841.
  • Fisher KJ, Wilson JM. The transmembrane domain of diphtheria toxin improves molecular conjugate gene transfer. Biochem J. 1997;321:49–58.
  • Gaur R, Gupta PK, Goyal A, et al. Delivery of nucleic acid into mammalian cells by anthrax toxin. Biochem Biophys Res Commun. 2002;297:1121–1127.
  • Fominaya J, Wels W. Target cell-specific DNA transfer mediated by a chimeric multidomain protein. Novel non-viral gene delivery system. J Biol Chem. 1996;271:10560–10568.
  • Fominaya J, Uherek C, Wels W. A chimeric fusion protein containing transforming growth factor-alpha mediates gene transfer via binding to the EGF receptor. Gene Therapy. 1998;5:521–530.
  • Barrett LB, Logan A, Berry M, et al. Targeted transfection of neuronal cells using a poly(D-lysine)-cholera-toxin b chain conjugate. Biochem Soc Trans. 1999;27:851–857.
  • Barrett LB, Berry M, Ying WB, et al. CTb targeted non-viral cDNA delivery enhances transgene expression in neurons. J Gene Med. 2004;6:429–438.
  • Voorhees RM, Fernández IS, Scheres SH, et al. Structure of the mammalian ribomsome-Sec61 complex to 3.4 A resolution. Cell. 2014;157:1632–1643. DOI:10.1016/j.cell.2014.05.024
  • Zornetta I, Brandi L, Janowiak B, et al. Imaging the cell entry of the anthrax oedema and lethal toxins with fluorescent protein chimeras. Cell Microbiol. 2010;12(1435–45). DOI:10.1111/j.1462-5822.2010.01480.x
  • Knight A, Carvajal J, Schneider H, et al. Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin. Eur J Biochem. 1999;259:762–769.
  • Miana-Menaa FJ, Muñoz MJ, Roux S, et al. A non-viral vector for targeting gene therapy to motoneurons in the CNS. Neurodegenerative Dis. 2004;1:101–108. DOI:10.1159/000080050
  • Wright DG, Zhang Y, Murphy JR. Effective delivery of antisense peptide nucleic acid oligomers into cells by anthrax protective antigen. Biochem Biophys Res Commun. 2008;376(1):200–205. DOI:10.1016/j.bbrc.2008.08.124
  • Nablo BJ, Panchal RG, Bavari S, et al. Anthrax toxin-induced rupture of artificial lipid bilayer membranes. J Chem Phys. 2013;139:065101.
  • Facchini LM, Lingwood CA. A verotoxin 1 B subunit-lambda CRO chimeric protein specifically binds both DNA and globotriaosylceramide (Gb3) to effect nuclear targeting of exogenous DNA in Gb3 positive cells. Exp Cell Res. 2001;269:117–129. DOI:10.1006/excr.2001.5297.
  • Liu S, Liu J, Ma Q. Solid tumor therapy by selectively targeting stromal endothelial cells. Proc Natl Acad Sci USA. 2016;113(28):E4079–87. DOI:10.1073/pnas.1600982113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.