447
Views
62
CrossRef citations to date
0
Altmetric
Review

Functionalized and graft copolymers of chitosan and its pharmaceutical applications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1189-1204 | Received 02 Jun 2016, Accepted 22 Sep 2016, Published online: 05 Oct 2016

References

  • Ogaji IJ, Nep EI, Audu-Peter JD. Advances in natural polymers as pharmaceutical excipients. Pharm Anal Acta. 2011;3(1). DOI:10.4172/2153-2435.1000146
  • Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr Drug Deliv. 2012;9:367–394.
  • Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603–632.
  • Sonia TA, Sharma CP. Chitosan and its derivatives for drug delivery perspective. In: Chitosan for biomaterials I. 1st ed. Berlin: Springer Berlin Heidelberg; 2011. p. 23–53.
  • Dutta PK, Dutta J, Tripathi VS. Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res. 2004 Jan 1;63(1):20–31.
  • Sandeep A, Sangameshwar K, Mukesh G, et al. A brief overview on chitosan applications. Indo Am J Pharm Sci. 2013;3(12):1564–4574.
  • Mourya VK, Inamdar N. Chapter 1: chitosan and chemically engineered chitosan. In: Comprehensive chemistry and biomedical applications of chitosan and chemically engineered chitosan. 1st ed. India: Career Publishers; 2012 Aug. p. 1–24.
  • Hanif M, Zaman M, Qureshi S. Thiomers: a blessing to evaluating era of pharmaceuticals. Int J Polymer Sci. 2015. Article ID 146329. DOI:10.1155/2015/146329
  • Bernkop-Schnürch A, Hornof M, Zoidl T. Thiolated polymers—thiomers: synthesis and in vitro evaluation of chitosan–2-iminothiolane conjugates. Int J Pharm. 2003;260(2):229–237.
  • Anitha A, Deepa N, Chennazhi KP, et al. Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications. Carbohydr Polym. 2011;83(1):66–73.
  • Saboktakin MR, Tabatabaie RM, Maharramov A, et al. Synthesis and characterization of biodegradable thiolated chitosan nanoparticles as targeted drug delivery system. J Nanomed Nanotechnol. 2011;4. DOI:10.4172/2157-7439.S4001
  • Millotti G, Samberger C, Fröhlich E, et al. Chitosan-4-mercaptobenzoic acid: synthesis and characterization of a novel thiolated chitosan. J Mater Chem. 2010;20(12):2432–2440.
  • Lee D, Zhang W, Shirley SA, et al. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm Res. 2007;24(1):157–167.
  • Krauland AH, Guggi D, Bernkop-Schnürch A. Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. J Control Release. 2004;95(3):547–555.
  • Werle M, Hoffer M. Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J Control Release. 2006;111(1):41–46.
  • Kafedjiiski K, Krauland AH, Hoffer MH, et al. Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials. 2005;26(7):819–826.
  • Krauland AH, Guggi D, Bernkop-Schnürch A. Thiolated chitosan microparticles: a vehicle for nasal peptide drug delivery. Int J Pharm. 2006;307(2):270–277.
  • Föger F, Schmitz T, Bernkop-Schnürch A. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan. Biomaterials. 2006;27(23):4250–4255.
  • Lee DW, Shirley SA, Lockey RF, et al. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res. 2006;7(1):112.
  • Anitha A, Deepa N, Chennazhi KP, et al. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta. 2014;1840(9):2730–2743.
  • Semenyuk PI, Moiseeva EV, Stroylova YY, et al. Sulfated and sulfonated polymers are able to solubilize efficiently the protein aggregates of different nature. Arch Biochem Biophys. 2015;567:22–29.
  • Hoffman AS. Surface modification of polymers. Chin J Polym Sci. 1995;13(3):195–203.
  • Mayo FR, Walling C. Copolymerization. Chem Rev. 1950;46(2):191–287.
  • Andrade F, Goycoolea F, Chiappetta DA, et al. Chitosan-grafted copolymers and chitosan-ligand conjugates as matrices for pulmonary drug delivery. Int J Carbohydr Chem. 2011;2011:1–14. Article ID 865704. DOI:10.1155/2011/865704
  • Prabaharan M. Review paper: chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl. 2008;23(1):5–36.
  • Jintapattanakit A, Mao S, Kissel T, et al. Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation. Eur J Pharm Biopharm. 2008;70(2):563–571.
  • Li XY, Li X, Kong XY, et al. Preparation of N-trimethyl chitosan-protein nanoparticles intended for vaccine delivery. J Nanosci Nanotechnol. 2010;10(8):4850–4858.
  • Zarifpour M, Hadizadeh F, Iman M, et al. Preparation and characterization of trimethyl chitosan nanospheres encapsulated with tetanus toxoid for nasal immunization studies transport. Pharm Sci. 2013;18(4):193–198.
  • Van der Merwe SM, Verhoef JC, Verheijden JH, et al. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58(2):225–235.
  • Kean T, Roth S, Thanou M. Trimethylated chitosan as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release. 2005;103(3):643–653.
  • Thanou M, Florea BI, Geldof M, et al. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials. 2002;23(1):153–159.
  • Di Colo G, Burgalassi S, Zambito Y, et al. Effects of different N‐trimethyl chitosans on in vitro/in vivo ofloxacin transcorneal permeation. J Pharm Sci. 2004;93(11):2851–2862.
  • Amidi M, Romeijn SG, Borchard G, et al. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release. 2006;111(1):107–116.
  • Zheng Y, Cai Z, Song X, et al. Receptor mediated gene delivery by folate conjugated N-trimethyl chitosan in vitro. Int J Pharm. 2009;382(1):262–269.
  • Morris VB, Sharma CP. Folate mediated histidine derivative of quaternised chitosan as a gene delivery vector. Int J Pharm. 2010;389(1):176–185.
  • Guan M, Zhou Y, Zhu QL, et al. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomed Nanotech Biol Med. 2012;8(7):1172–1181.
  • Bal SM, Slütter B, Verheul R, et al. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant-and site-dependent immunogenicity in mice. Eur J Pharm Sci. 2012;45(4):475–481.
  • Huang A, Su Z, Li S, et al. Oral absorption enhancement of salmon calcitonin by using both N-trimethyl chitosan chloride and oligoarginines-modified liposomes as the carriers. Drug Deliv. 2014;21(5):388–396.
  • Van der Maaden K, Sekerdag E, Schipper P, et al. Layer-by-layer assembly of inactivated poliovirus and N-trimethyl chitosan on pH-sensitive microneedles for dermal vaccination. Langmuir. 2015;31(31):8654–8660.
  • Chen H, Wu J, Sun M, et al. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J Liposome Res. 2012;22(2):100–109.
  • Shen YB, Du Z, Tang C, et al. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int J Pharm. 2016;505(1):223–233.
  • Farag RK, Mohamed RR. Synthesis and characterization of carboxymethyl chitosan Nanogels for swelling studies and antimicrobial activity. Molecules. 2012;18(1):190–203.
  • Chang J, Liu W, Han B, et al. The evaluation on biological properties of carboxymethyl-chitosan and carboxymethyl-chitin. J Ocean Univ China. 2008;7(4):404–410.
  • Gan Q, Zhu J, Yuan Y, et al. A proton-responsive ensemble using mesocellular foam supports capped with N, O-carboxymethyl chitosan for controlled release of bioactive proteins. J Mater Chem. 2015;3(11):2281–2285.
  • Luo Y, Teng Z, Wang Q. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J Agr Food Chem. 2012;60(3):836–843.
  • Teng Z, Luo Y, Wang Q. Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D 3. Food Chem. 2013;141(1):524–532.
  • Luo Y, Teng Z, Wang X, et al. Development of carboxymethyl chitosan hydrogel beads in alcohol-aqueous binary solvent for nutrient delivery applications. Food Hydrocoll. 2013;31(2):332–339.
  • Maya S, Kumar LG, Sarmento B, et al. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydr Polym. 2013;93(2):661–669.
  • Gao C, Liu T, Dang Y, et al. pH/redox responsive core cross-linked nanoparticles from thiolated carboxymethyl chitosan for in vitro release study of methotrexate. Carbohydr Polym. 2014;111:964–970.
  • Vaghani SS, Patel MM, Satish CS. Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole. Carbohydr Res. 2012;347(1):76–82.
  • Anitha A, Sreeranganathan M, Chennazhi KP, et al. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N, O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur J Pharm Biopharm. 2014;88(1):238–251.
  • Feng C, Wang Z, Jiang C, et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm. 2013;457(1):158–167.
  • Ma Q, Lin ZH, Yang N, et al. A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater. 2014;10(2):868–874.
  • Mi FL, Wu SJ, Chen YC. Combination of carboxymethyl chitosan-coated magnetic nanoparticles and chitosan-citrate complex gel beads as a novel magnetic adsorbent. Carbohydr Polym. 2015;131:255–263.
  • Budiraharjo R, Neoh KG, Kang ET. Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation. J Colloid Interface Sci. 2012;366(1):224–232.
  • Dumont VC, Mansur AA, Carvalho SM, et al. Chitosan and carboxymethyl-chitosan capping ligands: effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes. Mater Sci Eng C. 2016;59:265–277.
  • Song Y, Li Y, Liu Z, et al. A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence “turn on–off” nanosensor for lysozyme detection. Biosens Bioelectron. 2014;61:9–13.
  • Yan C, Chen D, Gu J, et al. Preparation of N-succinyl-chitosan and their physical-chemical properties as a novel excipient. Yakugaku Zasshi. 2006;126(9):789–793.
  • Kato Y, Onishi H, Machida Y. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates. Biomaterials. 2004;25(5):907–915.
  • Dai YN, Li P, Zhang JP, et al. A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharm Drug Dispos. 2008;29(3):173–184.
  • Aiping Z, Tian C, Lanhua Y, et al. Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres. Carbohydr Polym. 2006;66(2):274–279.
  • Sui W, Wang Y, Dong S, et al. Preparation and properties of an amphiphilic derivative of succinyl-chitosan. Colloids Surf A. 2008;316(1):171–175.
  • Kato Y, Onishi H, Machida Y. Evaluation of N-succinyl-chitosan as a systemic long-circulating polymer. Biomaterials. 2000;21(15):1579–1585.
  • Xiangyang X, Ling L, Jianping Z, et al. Preparation and characterization of N-succinyl-N′-octyl chitosan micelles as doxorubicin carriers for effective anti-tumor activity. Colloids Surf B. 2007;55(2):222–228.
  • Sun S, Wang A. Adsorption properties of N-succinyl-chitosan and cross-linked N-succinyl-chitosan resin with Pb (II) as template ions. Sep Purif Technol. 2006;51(3):409–415.
  • Hou Z, Han J, Zhan C, et al. Synthesis and evaluation of N-succinyl-chitosan nanoparticles toward local hydroxycamptothecin delivery. Carbohydr Polym. 2010;81(4):765–768.
  • Song R, Xue R, He LH, et al. The structure and properties of chitosan/polyethylene glycol/silica ternary hybrid organic-inorganic films. Chinese J Polym Sci. 2008;26(05):621–630.
  • Sukhoverkov KV. Kudryashova EV. PEG-chitosan and glycol-chitosan for improvement of biopharmaceutical properties of recombinant L-asparaginase from Erwinia carotovora. Biochemistry-Moscow+. 2015;80(1):113–119.
  • Sarmento B, Das Neves J, editors. Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics. Illustrated ed. Hoboken (NJ): John Wiley & Sons; 2012 March.
  • Jintapattanakit A, Junyaprasert VB, Kissel T. The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J Pharm Sci. 2009;98(12):4818–4830.
  • Mao S, Shuai X, Unger F, et al. Synthesis, characterization and cytotoxicity of poly (ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials. 2005;26(32):6343–6356.
  • Chan P, Kurisawa M, Chung JE, et al. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials. 2007;28(3):540–549 .
  • Jiang X, Dai H, Leong KW, et al. Chitosan‐g‐PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions. J Gene Med. 2006;8(4):477–487.
  • Zhang Y, Chen J, Zhang Y, et al. A novel PEGylation of chitosan nanoparticles for gene delivery. Biotechnol Appl Biochem. 2007;46(4):197–204.
  • Morris VB, Sharma CP. Folate mediated in vitro targeting of depolymerised trimethylated chitosan having arginine functionality. J Colloid Interface Sci. 2010;348(2):360–368.
  • Prego C, Torres D, Fernandez-Megia E, et al. Chitosan–PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Control Release. 2006;111(3):299–308.
  • Jeong YI, Kim SH, Jung TY, et al. Polyion complex micelles composed of all‐trans retinoic acid and poly (ethylene glycol)‐grafted‐chitosan. J Pharm Sci. 2006;95(11):2348–2360.
  • Rodrigues FH, Fajardo AR, Pereira AG, et al. Chitosan-graft-poly (acrylic acid)/rice husk ash based superabsorbent hydrogel composite: preparation and characterization. J Polym Res. 2012;19(12):1–10.
  • Spagnol C, Rodrigues FH, Pereira AG, et al. Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohydr Polym. 2012;87(3):2038–2045.
  • Rodrigues FH, Pereira AG, Fajardo AR, et al. Synthesis and characterization of chitosan‐graft‐poly (acrylic acid)/nontronite hydrogel composites based on a design of experiments. J Appl Polym Sci. 2013;128(5):3480–3489.
  • Xie YT, Wang AQ. Preparation and swelling behaviour of chitosan-g-poly (acrylic acid)/muscovite superabsorbent composites. Iran Polym J. 2010;19(2):131–141.
  • Nguyen VC, Huynh TK. Reusable nanocomposite of CoFe2O4/chitosan-graft-poly (acrylic acid) for removal of Ni (II) from aqueous solution. Adv Nat Sci Nanosci Nanotechnol. 2014;5(2):025007.
  • Wen Y, Zhu X, Gauthier DE, et al. Development of poly (acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose. 2015;22(4):2499–2506.
  • Ge H, Wang S. Thermal preparation of chitosan–acrylic acid superabsorbent: optimization, characteristic and water absorbency. Carbohydr Polym. 2014;113:296–303.
  • Khairkar SR, Raut AR. Chitosan-graft-poly (acrylicacid-co-acrylamide) superabsorbent hydrogel. J Chitin Chitosan Sci. 2014;2(4):288–292.
  • Liu J, Wang W, Wang A. Synthesis, characterization, and swelling behaviours of chitosan‐g‐poly (acrylic acid)/poly (vinyl alcohol) semi‐IPN superabsorbent hydrogels. Polymer Adv Tech. 2011;22(5):627–634.
  • Danwanichakul P, Sirikhajornnam P. An investigation of chitosan-grafted-poly (vinyl alcohol) as an electrolyte membrane. J Chem. 2013;2013:9. Article ID 642871
  • Azizi S, Ahmad MB, Hussein MZ, et al. Preparation and properties of poly (vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO-Ag multifunctional nanosized filler. Int J Nanomedicine. 2014;9:1909.
  • Radhakumary C, Nair PD, Mathew S, et al. Synthesis, characterization, and properties of poly (vinyl acetate)‐and poly (vinyl alcohol)‐grafted chitosan. J Appl Polym Sci. 2007;104(3):1852–1859.
  • Shukla SK, Deshpande SR, Shukla SK, et al. Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly (vinyl alcohol) core-shell nanocomposite. Talanta. 2012;99:283–287.
  • Radhakumary C, Nair PD, Reghunadhan Nair CP, et al. Chitosan‐graft‐poly (vinyl acetate) for hemodialysis applications. J Appl Polym Sci. 2012;125(3):2022–2033.
  • Nguyen NT, Liu JH. Fabrication and characterization of poly (vinyl alcohol)/chitosan hydrogel thin films via UV irradiation. Eur Polym J. 2013;49(12):4201–4211.
  • Zaytseva‐Zotova D, Balysheva V, Tsoy A, et al. Biocompatible smart microcapsules based on chitosan‐Poly (vinyl alcohol) copolymers for cultivation of animal cells. Adv Eng Mater. 2011;13(12):B493–503.
  • Srivastava A, Mishra DK, Behari K. Graft copolymerization of N-vinyl-2-pyrrolidone onto chitosan: synthesis, characterization and study of physicochemical properties. Carbohydr Polym. 2010;80(3):790–798.
  • Sajomsang W, Nuchuchua O, Gonil P, et al. Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr Polym. 2012;89(2):623–631.
  • Alamdarnejad G, Sharif A, Taranejoo S, et al. Synthesis and characterization of thiolated carboxymethyl chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole. J Mater Sci Mater Med. 2013;24(8):1939–1949.
  • Prabaharan M, Jayakumar R. Chitosan-graft-β-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int J Biol Macromolec. 2009;44(4):320–325.
  • Wang Y, Qin F, Tan H, et al. pH-responsive glycol chitosan-cross-linked carboxymethyl-β-cyclodextrin nanoparticles for controlled release of anticancer drugs. Int J Nanomedicine. 2015;10(1):7359–7370.
  • Kang BS, Lee SE, Ng CL, et al. Exploring the preparation of albendazole-loaded chitosan-tripolyphosphate nanoparticles. Materials. 2015;8(2):486–498.
  • Le Tien C, Lacroix M, Ispas-Szabo P, et al. N-acylated chitosan: hydrophobic matrices for controlled drug release. J Control Release. 2003;93(1):1–3.
  • Martin L, Wilson CG, Koosha F, et al. The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels. J Control Release. 2002;80(1):87–100.
  • Katugampola P, Winstead C. Rheological behaviour and thermal stability of palmitoyl chitosan varying the degree of substitution. Int J Pharm Sci Invent. 2014;3(11):24–32.
  • Lee MY, Hong KJ, Kajiuchi T, et al. Synthesis of chitosan-based polymeric surfactants and their adsorption properties for heavy metals and fatty acids. Int J Biol Macromolec. 2005;36(3):152–158.
  • Uygun DA, Uygun M, Karagözler A, et al. A novel support for antibody purification: fatty acid attached chitosan beads. Colloids Surf B. 2009;70(2):266–270.
  • Champagne LM The synthesis of water soluble N-acyl chitosan derivatives for characterization as antibacterial agents [Doctoral dissertation]. Xavier University of Louisiana. Available from: http://etd.lsu.edu/docs/available/etd-12052007-130029/unrestricted/Champagne_dis.pdf: cited 2016 May 31.
  • Naberezhnykh GA, Gorbach VI, Likhatskaya GN, et al. Interaction of chitosans and their N-acylated derivatives with lipopolysaccharide of gram-negative bacteria. Biochemistry-Moscow+. 2008;73(4):432–441.
  • Zhu A, Zhao F, Ma T. Photo-initiated grafting of gelatin/N-maleic acyl-chitosan to enhance endothelial cell adhesion, proliferation and function on PLA surface. Acta Biomater. 2009 Jul 31;5(6):2033–2044.
  • Zhang J, Chen XG, Li YY, et al. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomed Nanotech Biol Med. 2007;3(4):258–265.
  • Shelma R, Sharma CP. Acyl modified chitosan derivatives for oral delivery of insulin and curcumin. J Mater Sci Mater Med. 2010;21(7):2133–2140.
  • Sun GZ, Chen XG, Li YY, et al. Preparation and properties of amphiphilic chitosan derivative as a coagulation agent. Environ Eng Sci. 2008;25(9):1325–1332.
  • Hirano S, Yamaguchi Y, Kamiya M. Novel N-saturated-fatty-acyl derivatives of chitosan soluble in water and in aqueous acid and alkaline solutions. Carbohydr Polym. 2002;48(2):203–207.
  • Hirano S, Yamaguchi Y, Kamiya M. Water‐soluble N‐(n‐Fatty acyl) chitosans. Macromol Biosci. 2003;3(10):629–631.
  • Hirano S, Moriyasu T. Some novel N-(carboxyacyl) chitosan filaments. Carbohydr Polym. 2004;55(3):245–248.
  • Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules. 2012;45(10):4015–4039.
  • Chen C, Liu M, Gao C, et al. A convenient way to synthesize comb-shaped chitosan-graft-poly (N-isopropylacrylamide) copolymer. Carbohydr Polym. 2013;92(1):621–628.
  • Munro NH, Hanton LR, Moratti SC, et al. Synthesis and characterisation of chitosan-graft-poly (OEGMA) copolymers prepared by ATRP. Carbohydr Polym. 2009;77(3):496–505.
  • Bao H, Hu J, Gan LH, et al. Stepped association of comb‐like and stimuli‐responsive graft chitosan copolymer synthesized using ATRP and active ester conjugation methods. J Polym Sci Part A Polym Chem. 2009;47(23):6682–6692.
  • Liu P, Su Z. Surface-initiated atom transfer radical polymerization (SI-ATRP) of styrene from chitosan particles. Mater Lett. 2006 May 31;60(9):1137–1139.
  • Hua D, Tang J, Cheng J, et al. A novel method of controlled grafting modification of chitosan via RAFT polymerization using chitosan-RAFT agent. Carbohydr Polym. 2008;73(1):98–104.
  • Tang J, Hua D, Cheng J, et al. Synthesis and properties of temperature-responsive chitosan by controlled free radical polymerization with chitosan-RAFT agent. Int J Biol Macromolec. 2008;43(4):383–389.
  • Fournier D, Hoogenboom R, Schubert US. Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem Soc Rev. 2007;36(8):1369–1380.
  • Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40(11):2004–2021.
  • Tirino P, Laurino R, Maglio G, et al. Synthesis of chitosan–PEO hydrogels via mesylation and regioselective Cu (I)-catalyzed cycloaddition. Carbohydr Polym. 2014;112:736–745.
  • Li X, Yuan W, Gu S, et al. Synthesis and self-assembly of tunable thermosensitive chitosan amphiphilic copolymers by click chemistry. Mater Lett. 2010;64(24):2663–2666.
  • Yuan W, Zhao Z, Gu S, et al. characterization, and properties of amphiphilic chitosan copolymers with mixed side chains by click chemistry. J Polym Sci Part A Polym Chem. 2010;48(15):3476–3486.
  • Struszczyk MH. Global requirements for medical applications of chitin and its derivatives. In: Polish Chitin Society, Monograph XI. Łódź: Polish Chitin Society; 2006. p. 95–102.
  • Navard P. The European polysaccharide network of excellence (EPNOE): research initiatives and results. Illustrated ed. Berlin: Springer Science & Business Media; 2012. p. 329–374.
  • Medical devices. World Health Organization (WHO). Geneva (Switzerland). cited 2016 May 31]. Available from: http://www.who.int/medical_devices/full_deffinition/en/
  • Jayakumar R, Prabaharan M, Kumar PS, et al. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322–337.
  • Chen JP, Kuo CY, Lee WL. Thermo-responsive wound dressings by grafting chitosan and poly (N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Appl Surf Sci. 2012;262:95–101.
  • Chen SH, Tsao CT, Chang CH, et al. Assessment of reinforced poly (ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model. Mat Sci Eng C. 2013;33(5):2584–2594.
  • Zhao L, Mitomo H, Zhai M, et al. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr Polym. 2003;53(4):439–446.
  • Wang CC, Chen JP, Chen CC. An enhancement on water absorbing and permeating abilities of acrylic acid grafted and chitosan/collagen immobilized polypropylene non-woven fabric: chitosan obtained from Mucor. Mat Sci Eng C. 2009;29(4):1133–1139.
  • Popelka A, Novák I, Lehocký M, et al. A new route for chitosan immobilization onto polyethylene surface. Carbohydr Polym. 2012;90(4):1501–1508.
  • Chen C, Liu L, Huang T, et al. Bubble template fabrication of chitosan/poly (vinyl alcohol) sponges for wound dressing applications. Int J Biol Macromolec. 2013;62:188–193.
  • Yang JM, Lin HT. Properties of chitosan containing PP-g-AA-g-NIPAAm bigraft nonwoven fabric for wound dressing. J Membr Sci. 2004;243(1):1–7.
  • Zhou Y, Yang H, Liu X, et al. Potential of quaternization-functionalized chitosan fiber for wound dressing. Int J Biol Macromolec. 2013;52:327–332.
  • Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, et al. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Res Int. 2015;2015:1–15. Article ID 821279. DOI:10.1155/2015/821279
  • Tissue Engineering and Regenerative Medicine. National institute of Biomedical imaging and Bioengineering. Washington (DC). National Institute of Health. [cited 2016 May 31]. Available from: http://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-medicine
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011. Article ID 290602. doi:10.1155/2011/290602
  • Jung SM, Yoon GH, Lee HC, et al. Thermodynamic insights and conceptual design of skin-sensitive chitosan coated ceramide/PLGA nanodrug for regeneration of stratum corneum on atopic dermatitis. Sci Rep. 2015 15;5:18089. Epub 2015 Dec 15.
  • Mohd Hilmi AB, Halim AS, Hassan A, et al. In vitro characterization of a chitosan skin regenerating template as a scaffold for cells cultivation. SpringerPlus. 2013;2(1):79.
  • Mohd Yussof SJ, Halim AS, Mat Saad AZ, et al. Evaluation of the biocompatibility of a bilayer chitosan skin regenerating template, human skin allograft, and integra implants in rats. ISRN Mater Sci. 2011;2011:1–7. Article ID 857483. DOI:10.5402/2011/857483
  • Toskas G, Cherif C, Hund RD, et al. Chitosan (PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym. 2013;94(2):713–722.
  • Norowski PA, Fujiwara T, Clem WC, et al. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility. J Tissue Eng Regen M. 2015;9(5):577–583.
  • Muzzarelli RA, Greco F, Busilacchi A, et al. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr Polym. 2012;89(3):723–739.
  • Li G, Zhang L, Wang C, et al. Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration. Carbohydr Polym. 2014;101:718–726.
  • Wu H, Zhang J, Luo Y, et al. Mechanical properties and permeability of porous chitosan–poly (p-dioxanone)/silk fibroin conduits used for peripheral nerve repair. J Mech Behav Biomed Mater. 2015;50:192–205.
  • Wang F, Su XX, Guo YC, et al. Bone regeneration by nanohydroxyapatite/chitosan/poly (lactide-co-glycolide) scaffolds seeded with human umbilical cord mesenchymal stem cells in the calvarial defects of the nude mice. BioMed Res Int. 2015. Article ID 261938. DOI:10.1155/2015/261938
  • Xu H, Yan Y, Li S. PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials. 2011;32(20):4506–4516.
  • Reddy CP, Chaitanya KS, Rao MY. A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods. DARU J Pharm Sci. 2011;19(6):385–403.
  • S C C, Shijith KV, Vipin KV, et al. Chitosan based mucoadhesive buccal patches containing bisoprolol fumarate. Int J Adv Pharm Biol Chem. 2013;2(3):465–469.
  • Xu J, Strandman S, Zhu JX, et al. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials. 2015;37:395–404.
  • Abruzzo A, Cerchiara T, Bigucci F, et al. Mucoadhesive buccal tablets based on chitosan/Gelatin microparticles for delivery of propranolol hydrochloride. J Pharm Sci. 2015;104(12):4365–4372.
  • Ayensu I, Mitchell JC, Boateng JS. Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa. Colloids Surf B. 2012;91:258–265.
  • Barbi MD, Carvalho FC, Kiill CP, et al. Preparation and characterization of chitosan nanoparticles for zidovudine nasal delivery. J Nanosci Nanotechnol. 2015;15(1):865–874.
  • Singh D, Rashid M, Hallan SS, et al. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif Cells Nanomed Biotechnol. 2016;44(3):865–877.
  • Cevher E, Salomon SK, Somavarapu S, et al. Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies. J Microencapsul. 2015;32(8):769–783.
  • Naik A, Nair H. Formulation and evaluation of thermosensitive biogels for nose to brain delivery of doxepin. BioMed Res Int. 2014;2014:1–10. Article ID 847547. DOI:10.1155/2014/847547
  • Casettari L, Vllasaliu D, Mantovani G, et al. Effect of PEGylation on the toxicity and permeability enhancement of chitosan. Biomacromolecules. 2010;11(11):2854–2865.
  • Liu Q, Zheng X, Zhang C, et al. Antigen-conjugated n-trimethylaminoethylmethacrylate chitosan nanoparticles induce strong immune responses after nasal administration. Pharm Res. 2015;32(1):22–36.
  • Shojaei AH. Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharm Sci. 1998;1(1):15–30.
  • Gupta H, Bhandari D, Sharma A. Recent trends in oral drug delivery: a review. Recent Pat Drug Deliv Formul. 2009;3(2):162–173.
  • Gaucher G, Satturwar P, Jones MC, et al. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76(2):147–158.
  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:1–15. Article ID 340315. DOI:10.1155/2013/340315
  • Simões SM, Figueiras AR, Veiga F, et al. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv. 2015;12(2):297–318.
  • Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle technologies for oral drug delivery. Clin Gastroenterol Hepatol. 2014;12(10):1605–1610.
  • Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12(9):1459–1473.
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–570.
  • Chaturvedi K, Ganguly K, Nadagouda MN, et al. Polymeric hydrogels for oral insulin delivery. J Control Release. 2013;165(2):129–138.
  • Jafari B, Rafie F, Davaran S. Preparation and characterization of a novel smart polymeric hydrogel for drug delivery of insulin. Bioimpacts. 2011;1(2):135.
  • Pawar H, Douroumis D, Boateng JS. Preparation and optimization of PMAA–chitosan–PEG nanoparticles for oral drug delivery. Colloids Surf B. 2012;90:102–108.
  • Saboktakin MR, Maharramov A, Ramazanov M. pH sensitive chitosan-based supramolecular gel for oral drug delivery of insulin. J Mol Genet Med. 2015;9(170):1747–1862.
  • Yuan H, Lu LJ, Du YZ, et al. Stearic acid-g-chitosan polymeric micelle for oral drug delivery: in vitro transport and in vivo absorption. Mol Pharm. 2011;8(1):225–238.
  • Yuan Z, Ye Y, Gao F, et al. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. Int J Pharm. 2013;446(1):191–198.
  • Wang L, Li L, Sun Y, et al. In vitro and in vivo evaluation of chitosan graft glyceryl monooleate as peroral delivery carrier of enoxaparin. Int J Pharm. 2014;471(1):391–399.
  • Ge W, Li D, Chen M, et al. Characterization and antioxidant activity of β-carotene loaded chitosan-graft-poly (lactide) nanomicelles. Carbohydr Polym. 2015;117:169–176.
  • Li G, Guo L, Wen Q, et al. Thermo-and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release. Int J Biol Macromolec. 2013;55:69–74.
  • Marques ND, Maia AM, Balaban RD. Development of dual-sensitive smart polymers by grafting chitosan with poly (N-isopropylacrylamide): an overview. Polímeros. 2015;25(3):237–246.
  • Fattahi A, Asgarshamsi M, Hasanzadeh F, et al. Methotrexate-grafted-oligochitosan micelles as drug carriers: synthesis and biological evaluations. J Mater Sci Mater Med. 2015;26(2):119.
  • Bao X, Wang W, Wang C, et al. A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy. Biomaterials. 2014;35(29):8450–8466.
  • Li D, Kaner RB. Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc. 2006 Jan 25;128(3):968–975.
  • Zhang W. Nanoparticle aggregation: principles and modeling. In: Capco DG, Chen Y, editors. Nanomaterial: impacts on cell biology and medicine. Netherlands: Springer; 2014. p. 19–43.
  • Chronopoulou L, Massimi M, Giardi MF, et al. Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Colloids Surf B. 2013 Mar 1;103:310–317.
  • Durán-Lobato M, Martín-Banderas L, Gonçalves LM, et al. Comparative study of chitosan-and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. J Nanopart Res. 2015 Feb 1;17(2):1–7.
  • Sheng J, Han L, Qin J, et al. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces. 2015 Jul;7(28):15430–15441.
  • Wang Y, Li P, Kong L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech. 2013 Jun 1;14(2):585–592.
  • Yang SJ, Lin FH, Tsai KC, et al. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjugate Chem. 2010 Mar 11;21(4):679–689.
  • Khatik R, Mishra R, Verma A, et al. Colon-specific delivery of curcumin by exploiting Eudragit-decorated chitosan nanoparticles in vitro and in vivo. J Nanopart Res. 2013 Sep 1;15(9):1–5.
  • Tripathi P, Dwivedi P, Khatik R, et al. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: a dual strategy for effective management of Leishmaniasis. Colloids Surf B. 2015 Dec 1;136:150–159.
  • Nam JP, Nah JW. Target gene delivery from targeting ligand conjugated chitosan–PEI copolymer for cancer therapy. Carbohydr Polym. 2016 Jan 1;135:153–161.
  • Khandelwal K, Pachauri SD, Arya A, et al. Improved oral bioavailability of novel antithrombotic S002-333 via chitosan coated liposomes: a pharmacokinetic assessment. RSC Adv. 2015;5(49):39168–39176.
  • Jain A, Jain S, Jain R, et al. Coated chitosan nanoparticles encapsulating caspase 3 activator for effective treatment of colorectal cancer. Drug Deliv Transl Res. 2015 Dec 1;5(6):596–610.
  • Yang KK, Kong M, Wei YN, et al. Folate-modified–chitosan-coated liposomes for tumor-targeted drug delivery. J Mater Sci. 2013 Feb 1;48(4):1717–1728.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.