933
Views
70
CrossRef citations to date
0
Altmetric
Review

Hydrogels with smart systems for delivery of hydrophobic drugs

, ORCID Icon, &
Pages 879-895 | Received 18 May 2016, Accepted 03 Oct 2016, Published online: 21 Oct 2016

References

  • Lee KY, DJ Mooney. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–1880.
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351.
  • Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc. 2016 Jan 7;138:704–717.
  • Vashist A, Vashist A, Gupta YK, et al. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B. 2014;2(2):147–166.
  • Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008 Apr 15;49(8):1993–2007.
  • Ladet S, David L, Domard A. Multi-membrane hydrogels. Nature. 2008 Mar 6;452(7183):76–79.
  • Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012 Jun 1;336(6085):1124–1128.
  • Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Del. 2007 Jul;4(4):403–416.
  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:1–15.
  • Cavalli S, Albericio F, Kros A. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience. Chem Soc Rev. 2010;39(1):241–263.
  • MacCallum JL, Moghaddam MS, Chan HS, et al. Hydrophobic association of alpha-helices, steric dewetting, and enthalpic barriers to protein folding. Proc Natl Acad Sci USA. 2007 Apr 10;104(15):6206–6210.
  • Luo Z, Zhang S. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev. 2012;41(13):4736.
  • Vashi AV, Keramidaris E, Abberton KM, et al. Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials. 2008 Feb;29(5):573–579.
  • Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008 Sep 10;130(2):98–106.
  • Sweetana S, Akers MJ. Solubility principles and practices for parenteral drug dosage form development. PDA J Pharm Sci Technol. 1996 Sep-Oct;50(5):330–342.
  • Guzman HR, Tawa M, Zhang Z, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci-Us. 2007 Oct;96(10):2686–2702.
  • van Hoogevest P, Liu X, Fahr A. Drug delivery strategies for poorly water-soluble drugs: the industrial perspective. Expert Opin Drug Deliv. 2011 Nov;8(11):1481–1500.
  • Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007 Jul 30;59(7):603–616.
  • Merisko-Liversidge E. Nanosizing: “End-to-End” formulation strategy for poorly water-soluble molecules. Aaps Adv Pharm Sci. 2015;15:437–467.
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000 Jul;50(1):161–177.
  • Rosler A, Vandermeulen GW, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev. 2012 Dec 3;64(1):270–279.
  • Chen J, Xing MMQ, Zhong W. Degradable micelles based on hydrolytically degradable amphiphilic graft copolymers for doxorubicin delivery. Polymer. 2011;52(4):933–941.
  • Song W, Tang Z, Zhang D, et al. Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials. 2014 Mar;35(9):3005–3014.
  • Katarzyna Kita-Tokarczyk JG, Haefele T, Meier W. Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer. 2005;46:3540–3563.
  • Xu J, Fu Q, Ren JM, et al. Novel drug carriers: from grafted polymers to cross-linked vesicles. Chem Communications. 2013 Jan 4;49(1):33–35.
  • Wan YM, Gan ZH, Li ZB. Effects of the surface charge on the stability of PEG-b-PCL micelles: simulation of the interactions between charged micelles and plasma components. Polym Chem. 2014 Mar 7;5(5):1720–1727.
  • Li Z, Kesselman E, Talmon Y, et al. Multicompartment micelles from ABC miktoarm stars in water. Science. 2004 Oct 1;306(5693):98–101.
  • Peng S, Wang K, Guo DS, et al. Supramolecular polymeric vesicles formed by p-sulfonatocalix[4]arene and chitosan with multistimuli responses. Soft Matter. 2014 Dec 10;11(2):290–296.
  • Bellomo EG, Wyrsta MD, Pakstis L, et al. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater. 2004 Apr;3(4):244–248.
  • Cai M, Zhu K, Qiu Y, et al. pH and redox-responsive mixed micelles for enhanced intracellular drug release. Colloids Surf B Biointerfaces. 2014 Apr;1(116):424–431.
  • O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 2006 Nov;35(11):1068–1083.
  • Fu Q, Xu J, Ladewig K, et al. Degradable cross-linked polymer vesicles for the efficient delivery of platinum drugs. Polym Chem. 2015 Jan 7;6(1):35–43.
  • Sulistio A, Blencowe A, Wang J, et al. Stabilization of peptide-based vesicles via in situ oxygen-mediated cross-linking. Macromol Biosci. 2012 Sep;12(9):1220–1231.
  • Hartnett TE, O’Connor AJ, Ladewig K. Cubosomes and other potential ocular drug delivery vehicles for macromolecular therapeutics. Expert Opin Drug Deliv. 2015;12(9):1513–1526.
  • Chen S, Zhang XZ, Cheng SX, et al. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules. 2008 Oct;9(10):2578–2585.
  • Wang F, Bronich TK, Kabanov AV, et al. Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjug Chem. 2005 Mar-Apr;16(2):397–405.
  • Kojima C, Kono K, Maruyama K, et al. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem. 2000 Nov-Dec;11(6):910–917.
  • Liu J, Duong H, Whittaker MR, et al. Synthesis of functional core, star polymers via RAFT polymerization for drug delivery applications. Macromol Rapid Commun. 2012 May 14;33(9):760–766.
  • Knop K, Pavlov GM, Rudolph T, et al. Amphiphilic star-shaped block copolymers as unimolecular drug delivery systems: investigations using a novel fungicide. Soft Matter. 2013;9(3):715.
  • Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev. 2005 Dec 14;57(15):2203–2214.
  • Paleos CM, Tsiourvas D, Sideratou Z, et al. Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin Drug Del. 2010 Dec;7(12):1387–1398.
  • Sulistio A, Lowenthal J, Blencowe A, et al. Folic acid conjugated amino acid-based star polymers for active targeting of cancer cells. Biomacromolecules. 2011 Oct 10;12(10):3469–3477.
  • Sulistio A, Widjaya A, Blencowe A, et al. Star polymers composed entirely of amino acid building blocks: a route towards stereospecific, biodegradable and hierarchically functionalized stars. Chem Communications. 2011;47(4):1151–1153.
  • Tan S, Wong EHH, Fu Q, et al. Azobenzene-functionalised core cross-linked star polymers and their host-guest interactions. Aust J Chem. 2014;67(1):173–178.
  • Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005 Jan 1;10(1):35–43.
  • Nagahama K, Kawano D, Oyama N, et al. Self-assembling polymer micelle/clay nanodisk/doxorubicin hybrid injectable gels for safe and efficient focal treatment of cancer. Biomacromolecules. 2015 Mar 9;16(3):880–889.
  • Wiltshire JT, Qiao GG. Recent advances in star polymer design: degradability and the potential for drug delivery. Aust J Chem. 2007;60(10):699–705.
  • Gu D, Ladewig K, Klimak M, et al. Amphiphilic core cross-linked star polymers as water-soluble, biocompatible and biodegradable unimolecular carriers for hydrophobic drugs. Polym Chem. 2015;6(36):6475–6487.
  • Ren JM, Fu Q, Blencowe A, et al. Organic catalyst-mediated ring-opening polymerization for the highly efficient synthesis of polyester-based star polymers. ACS Macro Lett. 2012;1(6):681–686.
  • Schramm OG, Pavlov GM, van Erp HP, et al. A versatile approach to unimolecular water-soluble carriers: ATRP of PEGMA with hydrophobic star-shaped polymeric core molecules as an alternative for PEGylation. Macromolecules. 2009 Mar 24;42(6):1808–1816.
  • Ashley GW, Henise J, Reid R, et al. Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proc Natl Acad Sci USA. 2013 Feb 5;110(6):2318–2323.
  • Zhang WL, Li YL, Liu LX, et al. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties. Biomacromolecules. 2010 May;11(5):1331–1338.
  • Yang C, Liu SQ, Venkataraman S, et al. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs. J Control Release. 2015 Jun;28(208):93–105.
  • Xu W, Siddiqui IA, Nihal M, et al. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials. 2013 Jul;34(21):5244–5253.
  • Liao HH, Liu H, Li YL, et al. Antitumor efficacy of doxorubicin encapsulated within PEGylated poly(amidoamine) dendrimers. J Appl Polym Sci. 2014 Jun 5;131(11):40358–40367.
  • Zhang CY, Pan DY, Luo K, et al. Dendrimer-doxorubicin conjugate as enzyme-sensitive and polymeric nanoscale drug delivery vehicle for ovarian cancer therapy. Polym Chem. 2014;5(18):5227–5235.
  • Kang YM, Kim GH, Kim JI, et al. In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer. Biomaterials. 2011 Jul;32(20):4556–4564.
  • Yu L, Ty C, Zhou SC, et al. The thermogelling PLGA-PEG-PLGA block copolymer as a sustained release matrix of doxorubicin. Biomater Science. 2013;1(4):411–420.
  • Ding C, Zhao L, Liu F, et al. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Biomacromolecules. 2010 Apr 12;11(4):1043–1051.
  • Sheikholeslami P, Muirhead B, Baek DSH, et al. Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel. Exp Eye Res. 2015;137:18–31.
  • Chassenieux C, Nicolai T, Benyahia L. Rheology of associative polymer solutions. Curr Opin Colloid In. 2011 Feb;16(1):18–26.
  • Nicolai T, Colombani O, Chassenieux C. Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter. 2010;6(14):3111–3118.
  • Borisova O, Billon L, Zaremski M, et al. Synthesis and pH- and salinity-controlled self-assembly of novel amphiphilic block-gradient copolymers of styrene and acrylic acid. Soft Matter. 2012;8(29):7649–7659.
  • Seitz ME, Burghardt WR, Faber KT, et al. Self-assembly and stress relaxation in acrylic triblock copolymer gels. Macromolecules. 2007 Feb 20; 40(4):1218–1226.
  • Nowak AP, Breedveld V, Pakstis L, et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature. 2002 May 23;417(6887):424–428.
  • Zhang S, Alvarez DJ, Sofroniew MV, et al. Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties. Biomacromolecules. 2015 Mar 19;16(4):1331–1340.
  • Sathaye S, Zhang H, Sonmez C, et al. Engineering complementary hydrophobic interactions to control beta-hairpin peptide self-assembly, network branching, and hydrogel properties. Biomacromolecules. 2014 Nov 10;15(11):3891–3900.
  • Ravichandran R, Griffith M, Phopase J. Applications of self-assembling peptide scaffolds in regenerative medicine: the way to the clinic. J Mater Chem B. 2014;2(48):8466–8478.
  • Ciofani G, Genchi GG, Mattoli V, et al. The potential of recombinant human elastin-like polypeptides for drug delivery. Expert Opin Drug Deliv. 2014 Oct;11(10):1507–1512.
  • Popescu MT, Liontos G, Avgeropoulos A, et al. Stimuli responsive fibrous hydrogels from hierarchical self-assembly of a triblock copolypeptide. Soft Matter. 2015 Jan 14;11(2):331–342.
  • Deming TJ. Preparation and development of block copolypeptide vesicles and hydrogels for biological and medical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 May-Jun;6(3):283–297.
  • Cui H, Zhuang X, He C, et al. High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomater. 2015 Jan;11:183–190.
  • Glassman M, Olsen B. End block design modulates the assembly and mechanics of thermoresponsive, dual-associative protein hydrogels. Macromolecules. 2015;48(6):1832–1842.
  • Lin GY, Cosimbescu L, Karin NJ, et al. Injectable and thermogelling hydrogels of PCL-g-PEG: mechanisms, rheological and enzymatic degradation properties. J Mater Chem B. 2013;1(9):1249–1255.
  • Khoee S, Kardani M. Preparation of PCL/PEG superporous hydrogel containing drug-loaded nanoparticles: the effect of hydrophobic–hydrophilic interface on the physical properties. Eur Polym J. 2014;58:180–190.
  • Gong CY, Shi SA, Dong PW, et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: part 1-synthesis, characterization, and acute toxicity evaluation. J Pharm Sci-Us. 2009 Dec;98(12):4684–4694.
  • Gong CY, Shi SA, Dong PW, et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm. 2009 Jan 5;365(1–2):89–99.
  • Gong C, Shi S, Wu L, et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. Acta Biomater. 2009 Nov;5(9):3358–3370.
  • Abdelhamid D, Arslan H, Zhang Y, et al. Role of branching of hydrophilic domain on physicochemical properties of amphiphilic macromolecules. Polym Chem. 2014 Feb 21;5(4):1457–1462.
  • Niu H, Wang F, Weiss RA. Hydrophobic/hydrophilic triblock copolymers: synthesis and properties of physically cross-linked hydrogels. Macromolecules. 2015 Feb 10;48(3):645–654.
  • Shedge A, Colombani O, Nicolai T, et al. Charge dependent dynamics of transient networks and hydrogels formed by self-assembled ph-sensitive triblock copolyelectrolytes. Macromolecules. 2014 Apr 8;47(7):2439–2444.
  • Tew GN, Sanabria-DeLong N, Agrawal SK, et al. New properties from PLA–PEO–PLA hydrogels. Soft Matter. 2005;1(4):253.
  • Liu HB, Jiang A, Guo JA, et al. Unimolecular micelles: synthesis and characterization of amphiphilic polymer systems. J Polym Sci Pol Chem. 1999 Mar 15;37(6):703–711.
  • Rinaudo M, Auzely R, Vallin C, et al. Specific interactions in modified chitosan systems. Biomacromolecules. 2005 Sep-Oct;6(5):2396–2407.
  • Finelli I, Chiessi E, Oddo L, et al. Collective dynamics and transient behavior of partially hydrophobic hyaluronic acid chains. Macromol Chem Phys. 2014 Jan;215(2):140–147.
  • Osada Y, Matsuda A. Shape-memory in hydrogels. Nature. 1995 Jul 20;376(6537):219–19.
  • Tuncaboylu DC, Sahin M, Argun A, et al. Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules. 2012;45(4):1991–2000.
  • Argun A, Algi MP, Tuncaboylu DC, et al. Surfactant-induced healing of tough hydrogels formed via hydrophobic interactions. Colloid Polym Sci. 2013;292(2):511–517.
  • Gulyuz U, Okay O. Self-healing polyacrylic acid hydrogels. Soft Matter. 2013;9(43):10287.
  • Tuncaboylu DC, Argun A, Algi MP, et al. Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains. Polymer. 2013 Nov 1;54(23):6381–6388.
  • Gulyuz U, Okay O. Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules. 2014 Oct 14;47(19):6889–6899.
  • Wiener CG, Weiss RA, Vogt BD. Overcoming confinement limited swelling in hydrogel thin films using supramolecular interactions. Soft Matter. 2014;10(35):6705–6712.
  • Smeets NMB, Patenaude M, Kinio D, et al. Injectable hydrogels with in situ-forming hydrophobic domains: oligo(d,l-lactide) modified poly(oligoethylene glycol methacrylate) hydrogels. Polym Chem. 2014;5:6811–6823.
  • Nitta K, Miyake J, Watanabe J, et al. Gel formation driven by tunable hydrophobic domain: design of acrylamide macromonomer with oligo hydrophobic segment. Biomacromolecules. 2012 Apr 9;13(4):1002–1009.
  • Fan C, Zhang C, Jing Y, et al. Preparation and characterization of a biodegradable hydrogel containing oligo(2,2-dimethyltrimethylene carbonate) moieties with tunable properties. RSC Adv. 2013;3(1):157–165.
  • Patrickios CS, Georgiou TK. Covalent amphiphilic polymer networks. Curr Opin Colloid In. 2003 Mar;8(1):76–85.
  • Rikkou-Kalourkoti M, Kitiri EN, Patrickios CS, et al. Double networks based on amphiphilic cross-linked star block copolymer first conetworks and randomly cross-linked hydrophilic second networks. Macromolecules. 2016 Mar 8;49(5):1731–1742.
  • Liu DE, Dursch TJ, Oh Y, et al. Equilibrium water and solute uptake in silicone hydrogels. Acta Biomater. 2015 Feb 25;18:112–117.
  • Cui J, Lackey MA, Madkour AE, et al. Synthetically simple, highly resilient hydrogels. Biomacromolecules. 2012 Mar 12;13(3):584–588.
  • Cui J, Lackey MA, Tew GN, et al. Mechanical properties of end-linked PEG/PDMS hydrogels. Macromolecules. 2012;45(15):6104–6110.
  • Saffer EM, Lackey MA, Griffin DM, et al. SANS study of highly resilient poly(ethylene glycol) hydrogels. Soft Matter. 2014 Mar 28;10(12):1905–1916.
  • Hamid ZA, Blencowe A, Ozcelik B, et al. Epoxy-amine synthesised hydrogel scaffolds for soft-tissue engineering. Biomaterials. 2010 Sep;31(25):6454–6467.
  • Ozcelik B, Blencowe A, Palmer J, et al. Highly porous and mechanically robust polyester poly(ethylene glycol) sponges as implantable scaffolds. Acta Biomater. 2014 Jun;10(6):2769–2780.
  • Ozcelik B, Brown KD, Blencowe A, et al. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Healthc Mater. 2014 Sep;3(9):1496–1507.
  • Rossi B, Venuti V, D’Amico F, et al. Water and polymer dynamics in a model polysaccharide hydrogel: the role of hydrophobic/hydrophilic balance. Phys Chem Chem Phys. 2015 Jan 14;17(2):963–971.
  • Yang J, Shi FK, Gong C, et al. Dual cross-linked networks hydrogels with unique swelling behavior and high mechanical strength: based on silica nanoparticle and hydrophobic association. J Colloid Interface Sci. 2012 Sep 1;381(1):107–115.
  • Zhou Y, Sharma N, Deshmukh P, et al. Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers. J Am Chem Soc. 2012 Jan 25;134(3):1630–1641.
  • Appel EA, Tibbitt MW, Webber MJ, et al. Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat Commun. 2015;6:6295.
  • Cevik O, Gidon D, Kizilel S. Visible-light-induced synthesis of pH-responsive composite hydrogels for controlled delivery of the anticonvulsant drug pregabalin. Acta Biomater. 2015 Jan;11:151–161.
  • Tirtaatmadja N, Murphy KT, Lynch GS, et al. Mixed micelles to deliver drugs for skeletal muscle regeneration. Tissue Engineering and Regenerative Medicine International Society 2010 Asia Pacific Meeting; 2010. Sydney, Australia. 2010 15–17 Sep.
  • Salmaso S, Semenzato A, Bersani S, et al. Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int J Pharm. 2007 Dec 10;345(1–2):42–50.
  • Concheiro A, Alvarez-Lorenzo C. Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. Adv Drug Deliv Rev. 2013 Aug;65(9):1188–1203.
  • Tan S, Ladewig K, Fu Q, et al. Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Commun. 2014 Jul;35(13):1166–1184.
  • Gulsen D, Chauhan A. Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. Int J Pharm. 2005 Mar 23;292(1–2):95–117.
  • Kim J, Conway A, Chauhan A. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials. 2008 May;29(14):2259–2269.
  • Blanchette J, Kavimandan N, Peppas NA. Principles of transmucosal delivery of therapeutic agents. Biomed Pharmacother. 2004 Apr;58(3):142–151.
  • Bourges JL, Bloquel C, Thomas A, et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006 Nov 15;58(11):1182–1202.
  • Khafagy ES, Morishita M, Onuki Y, et al. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev. 2007 Dec 22;59(15):1521–1546.
  • Sharpe LA, Daily AM, Horava SD, et al. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. 2014 Jun;11(6):901–915.
  • Kim B, La Flamme K, Peppas NA. Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci. 2003 Aug 8;89(6):1606–1613.
  • Madsen F, Peppas NA. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition. Biomaterials. 1999 Sep;20(18):1701–1708.
  • Bromberg L. Intelligent hydrogels for the oral delivery of chemotherapeutics. Expert Opin Drug Deliv. 2005 Nov;2(6):1003–1013.
  • Caldorera-Moore M, Maass K, Hegab R, et al. Hybrid responsive hydrogel carriers for oral delivery of low molecular weight therapeutic agents. J Drug Deliv Sci Technol. 2015 Dec 1;30(Pt B):352–359.
  • Schoener CA, Hutson HN, Fletcher GK, et al. Amphiphilic interpenetrating networks for the delivery of hydrophobic, low molecular weight therapeutic agents. Ind Eng Chem Res. 2011 Nov 16;50(22):12556–12561.
  • Schoener CA, Hutson HN, Peppas NA. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the delivery of hydrophobic therapeutic agents. Polym Int. 2012 Jun 1;61(6):874–879.
  • Schoener CA, Hutson HN, Peppas NA. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. J Biomed Mater Res A. 2013 Aug;101(8):2229–2236.
  • Gao XY, He CL, Xiao CS, et al. Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer. 2013 Mar 22;54(7):1786–1793.
  • Watkins KA, Chen R. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules. Int J Pharm. 2015 Jan 30;478(2):496–503.
  • Wang YJ, Chen LJ, Tan LW, et al. PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials. 2014 Aug;35(25):6972–6985.
  • Singh NK, Lee DS. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Control Release. 2014 Nov;10(193):214–227.
  • Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release. 2000 Jan 3;63(1–2):155–163.
  • Gao Y, Ren F, Ding B, et al. A thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of docetaxel. J Drug Target. 2011 Aug;19(7):516–527.
  • Lin Z, Mei D, Chen M, et al. A comparative study of thermo-sensitive hydrogels with water-insoluble paclitaxel in molecule, nanocrystal and microcrystal dispersions. Nanoscale. 2015 Sep 28;7(36):14838–14847.
  • Lin Z, Gao W, Hu H, et al. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: high drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Control Release. 2014 Jan;28(174):161–170.
  • Hyun H, Kim YH, Song IB, et al. In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. Biomacromolecules. 2007 Apr;8(4):1093–1100.
  • Kang YM, Lee SH, Lee JY, et al. A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustable therapeutic window. Biomaterials. 2010 Mar;31(9):2453–2460.
  • Wang WW, Deng LD, Liu SS, et al. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(epsilon-caprolactone) and poly(ethylene glycol)co-polymer. Acta Biomater. 2012 Nov;8(11):3963–3973.
  • Huang PS, Zhang YM, Wang WW, et al. Co-delivery of doxorubicin and I-131 by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy. J Control Release. 2015 Dec 28;220:456–464.
  • Lee H, Zeng F, Dunne M, et al. Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules. 2005 Nov-Dec;6(6):3119–3128.
  • Mishra GP, Kinser R, Wierzbicki IH, et al. In situ gelling polyvalerolactone-based thermosensitive hydrogel for sustained drug delivery. Eur J Pharm Biopharm. 2014 Oct;88(2):397–405.
  • Cheng Y, He C, Xiao C, et al. Versatile biofunctionalization of polypeptide-based thermosensitive hydrogels via click chemistry. Biomacromolecules. 2013 Feb 11;14(2):468–475.
  • Cheng Y, He C, Ding J, et al. Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials. 2013 Dec;34(38):10338–10347.
  • Yang CY, Song B, Ao Y, et al. Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system. Biomaterials. 2009 May;30(15):2881–2898.
  • Zhang S, Anderson MA, Ao Y, et al. Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system. Biomaterials. 2014 Feb;35(6):1989–2000.
  • Wu J, Chen A, Qin M, et al. Hierarchical construction of a mechanically stable peptide-graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo. Nanoscale. 2015 Feb 7;7(5):1655–1660.
  • Daoud-Mahammed S, Grossiord JL, Bergua T, et al. Self-assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs. J Biomed Mater Res A. 2008 Sep;86(3):736–748.
  • Simoes SMN, Veiga F, Torres-Labandeira JJ, et al. Syringeable pluronic-alpha-cyclodextrin supramolecular gels for sustained delivery of vancomycin. Eur J Pharmaceutics Biopharmaceutics. 2012 Jan;80(1):103–112.
  • Zhang MY, Wu YB, Zhao X, et al. Biocompatible degradable injectable hydrogels from methacrylated poly(ethylene glycol)-co-poly(xylitol sebacate) and cyclodextrins for release of hydrophilic and hydrophobic drugs. Rsc Advances. 2015;5(82):66965–66974.
  • Kuang HH, He HY, Zhang ZY, et al. Injectable and biodegradable supramolecular hydrogels formed by nucleobase-terminated poly(ethylene oxide)s and alpha-cyclodextrin. J Mater Chem B. 2014;2(6):659–667.
  • Lee ALZ, Ng VWL, Gao SJ, et al. Injectable hydrogels from triblock copolymers of vitamin E- functionalized polycarbonate and poly(ethylene glycol) for subcutaneous delivery of antibodies for cancer therapy. Adv Funct Mater. 2014 Mar;24(11):1538–1550.
  • Lee AL, Ng VW, Gao S, et al. Injectable biodegradable hydrogels from vitamin D-functionalized polycarbonates for the delivery of avastin with enhanced therapeutic efficiency against metastatic colorectal cancer. Biomacromolecules. 2015 Feb 9;16(2):465–475.
  • Pillai O, Panchagnula R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. Journal Control Release. 2003 Apr 14;89(1):127–140.
  • Paudel KS, Milewski M, Swadley CL, et al. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv. 2010 Jul;1(1):109–131.
  • Hurkmans JF, Bodde HE, Van Driel LM, et al. Skin irritation caused by transdermal drug delivery systems during long-term (5 days) application. Br J Dermatol. 1985 Apr;112(4):461–467.
  • Ali SM, Yosipovitch G. Skin pH: from basic science to basic skin care. Acta Derm Venereol. 2013 May;93(3):261–267.
  • Kwon SS, Kong BJ, Park SN. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions. Eur J Pharmaceutics Biopharmaceutics. 2015 May;92:146–154.
  • Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, et al. Estradiol sustained release from high affinity cyclodextrin hydrogels. Eur J Pharm Biopharm. 2007 Apr;66(1):55–62.
  • Ammar HO, Salama HA, El-Nahhas SA, et al. Design and evaluation of chitosan films for transdermal delivery of glimepiride. Curr Drug Deliv. 2008 Oct;5(4):290–298.
  • Zi P, Yang XH, Kuang HF, et al. Effect of HP beta CD on solubility and transdermal delivery of capsaicin through rat skin. Int J Pharm. 2008 Jun 24;358(1–2):151–158.
  • Sun Y, Du L, Liu Y, et al. Transdermal delivery of the in situ hydrogels of curcumin and its inclusion complexes of hydroxypropyl-beta-cyclodextrin for melanoma treatment. Int J Pharm. 2014 Jul 20;469(1):31–39.
  • Guo C, Bailey TS. Highly distensible nanostructured elastic hydrogels from AB diblock and ABA triblock copolymer melt blends. Soft Matter. 2010;6(19):4807–4818.
  • Zhao X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter. 2014 Feb 7;10(5):672–687.
  • Kamata H, Akagi Y, Kayasuga-Kariya Y, et al. “Nonswellable” hydrogel without mechanical hysteresis. Science. 2014 Feb 21;343(6173):873–875.
  • Wei Z, Yang JH, Zhou J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev. 2014 Dec 7;43(23):8114–8131.
  • Ladewig K. Drug delivery in soft tissue engineering. Expert Opin Drug Del. 2011 Sep;8(9):1175–1188.
  • Brandl FP, Seitz AK, Tessmar JK, et al. Enzymatically degradable poly(ethylene glycol) based hydrogels for adipose tissue engineering. Biomaterials. 2010 May;31(14):3957–3966.
  • Tsurkan MV, Levental KR, Freudenberg U, et al. Enzymatically degradable heparin-polyethylene glycol gels with controlled mechanical properties. Chem Communications. 2010 Feb 21;46(7):1141–1143.
  • Nilasaroya A, Martens PJ, Whitelock JM. Enzymatic degradation of heparin-modified hydrogels and its effect on bioactivity. Biomaterials. 2012 Aug;33(22):5534–5540.
  • GhavamiNejad, A., SamariKhalaj M, Aguilar LE, et al. pH/NIR light-controlled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy. Sci Rep. 2016;6:33594. DOI:10.1038/srep33594.
  • Almeida H, Amaral MH, Lobao P, et al. Pluronic F-127 and Pluronic Lecithin Organogel (PLO): main features and their applications in topical and transdermal administration of drugs. J Pharm Pharm Sci. 2012;15(4):592–605.
  • Escobar-Chavez JJ, Lopez-Cervantes M, Naik A, et al. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. 2006;9(3):339–358.
  • Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel)–clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev. 2009 Aug 10; 61(10):785–794.
  • DuValla GA, Tarabar D, Seidela RH, et al. Phase 2: a dose-escalation study of oncogel (ReGel/paclitaxel), a controlled-release formulation of paclitaxel, as adjunctive local therapy to external-beam radiation in patients with inoperable esophageal cancer. Anti-Cancer Drug. 2009 Feb;20(2):89–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.