431
Views
25
CrossRef citations to date
0
Altmetric
Original Research

Gb3-binding lectins as potential carriers for transcellular drug delivery

ORCID Icon, , , , , , , ORCID Icon & ORCID Icon show all
Pages 141-153 | Received 17 Jun 2016, Accepted 25 Nov 2016, Published online: 16 Dec 2016

References

  • Rodriguez-Boulan E, Kreitzer G, Müsch A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol. 2005;6(3):233–247.
  • Thuenauer R, Müller S, Römer W. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery. Expert Opin Drug Deliv. 2016;1–11. doi:10.1080/17425247.2016.1220364. [Epub ahead of print]
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRX. 2005;2(1):3–14.
  • Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol. 1998;165(3):201–211.
  • Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res. 2000;17(3):266–274.
  • Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–665.
  • Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81(1):49–60.
  • Qian ZM, Li H, Sun H, et al. Delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–587.
  • Wu D, Yang J, Pardridge WM. Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J Clin Invest. 1997;100(7):1804–1812.
  • Sade H, Baumgartner C, Hugenmatter A, et al. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One. 2014;9(4):e96340.
  • van Genderen I, van Meer G. Differential targeting of glucosylceramide and galactosylceramide analogues after synthesis but not during transcytosis in Madin-Darby canine kidney cells. J Cell Biol. 1995;131(3):645–654.
  • Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988;27(17):6197–6202.
  • Schubert T, Römer W. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis. Biochim Biophys Acta Mol Cell Res. 2015;1853(11):2992–3005.
  • Römer W, Berland L, Chambon V, et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature. 2007;450(7170):670–675.
  • Römer W, Pontani -L-L, Sorre B, et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell. 2010;140(4):540–553.
  • Ewers H, Römer W, Smith AE, et al. GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol. 2010;12(1):11–18.
  • Chinnapen DJF, Hsieh WT, Te Welscher YM, et al. Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev Cell. 2012;23(3):573–586.
  • Okuda T, Tokuda N, Numata SI, et al. Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem. 2006;281(15):10230–10235.
  • Eisenhauer PB, Chaturvedi P, Fine RE, et al. Tumor necrosis factor alpha increases human cerebral endothelial cell Gb 3 and sensitivity to Shiga Toxin. Infect Immun. 2001;69(3):1889–1894.
  • Meisen I, Rosenbrück R, Galla HJ, et al. Expression of Shiga toxin 2e glycosphingolipid receptors of primary porcine brain endothelial cells and toxin-mediated breakdown of the blood-brain barrier. Glycobiology. 2013;23(6):745–759.
  • Legros N, Dusny S, Humpf H-U, et al. Shiga toxin glycosphingolipid receptors and their lipid membrane ensemble in primary human blood–brain barrier endothelial cells. Glycobiology. 2016. Available from: https://doi.org/10.1093/glycob/cww090. [Epub ahead of print]
  • Ling H, Boodhoo A, Hazes B, et al. Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry. 1998;37(7):1777–1788.
  • Cioci G, Mitchell EP, Gautier C, et al. Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett. 2003;555(2):297–301.
  • Kandel G, Donohue-Rolfe A, Donowitz M, et al. Pathogenesis of Shigella diarrhea. XVI. Selective targetting of Shiga toxin to villus cells of rabbit jejunum explains the effect of the toxin on intestinal electrolyte transport. J Clin Invest. 1989;84(5):1509–1517.
  • Lanne B, Ciopraga J, Bergstrom J, et al. Binding of the galactose-specific Pseudomonas aeruginosa lectin, PA-I, to glycosphingolipids and other glycoconjugates. Glycoconj J. 1994;11(4):292–298.
  • Blanchard B, Nurisso A, Hollville E, et al. Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. J Mol Biol. 2008;383(4):837–853.
  • Mallard F, Antony C, Tenza D, et al. Direct pathway from early/recycling endosomes to the golgi apparatus revealed through the study of Shiga Toxin B-fragment transport. J Cell Biol. 1998;143(4):973–990.
  • McKenzie JE, Raisley B, Zhou X, et al. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi. Traffic. 2012;13(8):1140–1159.
  • Eierhoff T, Bastian B, Thuenauer R, et al. A lipid zipper triggers bacterial invasion. Proc Natl Acad Sci. 2014;111(35):12895–12900.
  • Wang Q, Rager JD, Weinstein K, et al. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm. 2005;288(2):349–359.
  • Garberg P, Ball M, Borg N, et al. In vitro models for the blood-brain barrier. Toxicol In Vitro. 2005;19(3):299–334.
  • Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol. 2014;15(4):225–242.
  • Goldenring JR. Recycling endosomes. Curr Opin Cell Biol. 2015;35:117–122.
  • Bryant DM, Mostov KE. From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol. 2008;9(11):887–901.
  • Imberty A, Wimmerová M, Mitchell EP, et al. Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition. Microbes Infect. 2004;6(2):221–228.
  • Thuenauer R, Hsu Y, Carvajal-Gonzalez JM, et al. Four-dimensional live imaging of apical biosynthetic trafficking reveals a post-Golgi sorting role of apical endosomal intermediates. Proc Natl Acad Sci. 2014;111(11):4127–4132.
  • Zinchuk V, Zinchuk O, Okada T. Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem. 2007;40(4):101–111.
  • Su T, Bryant DM, Luton F, et al. A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol. 2010;12(12):1143–1153.
  • Vergés M, Sebastián I, Mostov KE. Phosphoinositide 3-kinase regulates the role of retromer in transcytosis of the polymeric immunoglobulin receptor. Exp Cell Res. 2007;313(4):707–718.
  • Mostov KE, Deitcher DL. Polymeric immunoglobulin MDCK cells transcytoses receptor IgA expressed in MDCK cells transcytoses IgA. Cell. 1986;46(4):613–621.
  • Warnier M, Römer W, Geelen J, et al. Trafficking of Shiga toxin/Shiga-like toxin-1 in human glomerular microvascular endothelial cells and human mesangial cells. Kidney Int. 2006;70(12):2085–2091.
  • Falguieres T, Mallard F, Baron C, et al. Targeting of Shiga Toxin B-Subunit to retrograde transport route in association with detergent-resistant membranes. Mol Biol Cell. 2001;12(8):2453–2468.
  • Wilson JM, de Hoop M, Zorzi N, et al. EEA1, a tethering protein of the early sorting endosome, shows a polarized distribution in hippocampal neurons, epithelial cells, and fibroblasts. Mol Biol Cell. 2000;11(8):2657–2671.
  • Mallard F, Tang BL, Galli T, et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J Cell Biol. 2002;156(4):653–664.
  • Sheff DR, Daro EA, Hull M, et al. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J Cell Biol. 1999;145(1):123–139.
  • Golachowska MR, Hoekstra D, van Ijzendoorn SCD. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol. 2010;20(10):618–626.
  • Apodaca G, Katz LA, Mostov KE. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol. 1994;125(1):67–86.
  • Laiko M, Murtazina R, Malyukova I, et al. Shiga toxin 1 interaction with enterocytes causes apical protein mistargeting through the depletion of intracellular galectin-3. Exp Cell Res. 2010;316(4):657–666.
  • Johannes L, Römer W. Shiga toxins–from cell biology to biomedical applications. Nat Rev Microbiol. 2010;8(2):105–116.
  • Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9(1):S3.
  • Lingwood CA, Binnington B, Manis A, et al. Globotriaosyl ceramide receptor function - Where membrane structure and pathology intersect. FEBS Lett. 2010;584(9):1879–1886.
  • Lingwood D, Ries J, Schwille P, et al. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci. 2008;105(29):10005–10010.
  • Saslowsky DE, Te Welscher YM, Chinnapen DJ-F, et al. Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain. J Biol Chem. 2013;288(36):25804–25809.
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci. 1996;93(24):14164–14169.
  • Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today. 2008;13(23–24):1099–1106.
  • Jayagopal A, Sussman EM, Shastri VP. Functionalized solid lipid nanoparticles for transendothelial delivery. IEEE Trans Nanobioscience. 2008;7(1):28–34.
  • Reents R, Jeyaraj DA, Waldmann H. Enzymatically cleavable linker groups in polymer-supported synthesis. Drug Discov Today. 2002;7(1):71–76.
  • Dubowchik GM, Walker MA. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol Ther. 1999;83(2):67–123.
  • Arnaud J, Claudinon J, Tröndle K, et al. Reduction of lectin valency drastically changes glycolipid dynamics in membranes but not surface avidity. ACS Chem Biol. 2013;8(9):1918–1924.
  • Arnaud J, Tröndle K, Claudinon J, et al. Membrane deformation by neolectins with engineered glycolipid binding sites. Angew Chemie. 2014;53(35):9267–9270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.