652
Views
113
CrossRef citations to date
0
Altmetric
Review

Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections

, , , &
Pages 93-114 | Received 11 Aug 2016, Accepted 25 Jul 2017, Published online: 03 Aug 2017

References

  • Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine. 2012;7(8):1253–1271.
  • Hamidi M, Azadi A, Rafiei P, et al. A pharmacokinetic overview of nanotechnology-based drug delivery systems: an ADME-oriented approach. Crit Rev Ther Drug Carrier Syst. 2013;30(5):435–467.
  • Kingsley JD, Dou H, Morehead J, et al. Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol. 2006;1:340–350.
  • Lembo D, Cavalli R. Nanoparticulate delivery systems for antiviral drugs. Antivir Chem Chemother. 2010;21:53–70.
  • Kim PS, Read SW. Nanotechnology and HIV: potential applications for treatment and prevention. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(6):693–702.
  • Sultana S, Khan MR, Kumar M, et al. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target. 2013;21(2):107–125.
  • Jackman JA, Lee J, Cho N-J. Nanomedicine for infectious disease applications: innovation towards broad‐spectrum treatment of viral infections. Small. 2016;12(9):1133–1139.
  • Raman R, Tharakaraman K, Sasisekharan V, et al. Glycan–protein interactions in viral pathogenesis. Curr Opin Struct Biol. 2016;40:153–162.
  • Hendricks GL, Weirich KL, Viswanathan K, et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J Biol Chem. 2013;288(12):8061–8073.
  • Lembo D, Donalisio M, Laine C, et al. Auto-associative heparin nanoassemblies: a biomimetic platform against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV. Eur J Pharm Biopharm. 2014;88(1):275–282.
  • Szunerits S, Barras A, Khanal M, et al. Nanostructures for the inhibition of viral infections. Molecules. 2015;20:14051–14081.
  • Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102.
  • Dufort S, Sancey L, Coll JL. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Deliv Rev. 2012;64:179–189.
  • Liu D, Yang F, Xiong F, et al. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306–1323.
  • Li J, Mao H, Kawazoe N, et al. Insight into the interactions between nanoparticles and cells. Biomater Sci. 2017;5:173–189.
  • Ripoli M, Angelico R, Sacco P, et al. Phytoliposome-based silibinin delivery system as a promising strategy to prevent hepatitis C virus infection. J Biomed Nanotech. 2016;12(4):770–780.
  • Mehendale R, Joshi M, Patravale VB. Nanomedicines for treatment of viral diseases. Crit Rev Ther Drug Carrier Syst. 2013;30:1–49.
  • Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36.
  • Abdulbaqi IM, Darwis Y, Khan NA, et al. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine. 2016;11:2279–2304.
  • Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211-228. pii: S0939-6411(16)30694-4.
  • Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7:53–65.
  • Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5(3):305–313.
  • Kannan RM, Nance E, Kannan S, et al. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med. 2014;276(6):579–617.
  • Vacas-Córdoba E, Maly M, De la Mata FJ, et al. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-I. Int J Nanomed. 2016;11:1281–1294.
  • Roy U, Rodríguez J, Barber P, et al. The potential of HIV-1 nanotherapeutics: from in vitro studies to clinical trials. Nanomedicine (Lond). 2015;10(24):3597–3609.
  • Imperiale JC, Sosnik AD. Cyclodextrin complexes for treatment improvement in infectious diseases. Nanomedicine (Lond). 2015;10(10):1621–1641.
  • Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 2012;8:2091–2099.
  • Helgeson ME. Colloidal behavior of nanoemulsions: interactions, structure and rheology. Curr Opin Colloid Interface Sci. 2016;25:39–50.
  • Date AA, Desai N, Dixit R, et al. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine. 2010;5(10):1595–1616.
  • Khan AW, Kotta S, Ansari SH, et al. Potentials and challenges in self-nanoemulsifying drug delivery systems. Exp Opin Drug Del. 2012;9(10):1305–1317.
  • Leone F, Cavalli R. Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opin Drug Deliv. 2015;12(10):1607–1625.
  • Lai W-F, He Z-D. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release. 2016;243:269–282.
  • Vashist A, Kaushik A, Vashist A, et al. Recent trends on hydrogel based drug delivery systems for infectious diseases. Biomater Sci. 2016;4(11):1535–1553.
  • Lee AL, Ng VW, Poon GL, et al. Co‐delivery of antiviral and antifungal therapeutics for the treatment of sexually transmitted infections using a moldable, supramolecular hydrogel. Adv Healthc Mater. 2015;4(3):385–394.
  • Li N, Yu M, Deng L, et al. Thermosensitive hydrogel of hydrophobically-modified methylcellulose for intravaginal drug delivery. J Mater Sci Mater Med. 2012;23:1913–1919.
  • Ramanathan R, Jiang Y, Read B, et al. Biophysical characterization of small molecule antiviral-loaded nanolipogels for HIV-1 chemoprophylaxis and topical mucosal application. Acta Biomater. 2016;36:122–131.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
  • Adhikary RR, More P, Banerjee R. Smart nanoparticles as targeting platforms for HIV infections. Nanoscale. 2015;7(17):7520–7534.
  • Yoo JW, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm. 2011;403:262–267.
  • Huang C, Soenen SJ, van Gulck E, et al. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials. 2012;33:962–969.
  • Nyström AM, Fadeel B. Safety assessment of nanomaterials: implications for nanomedicine. J Control Release. 2012;161:403–408.
  • Őrfi E, Szebeni J. The immune system of the gut and potential adverse effects of oral nanocarriers on its function. Adv Drug Deliv Rev. 2016;106(Pt B):402–409.
  • Faulkner L, Buchan G, Slobbe L, et al. Influenza hemagglutinin peptides fused to interferon gamma and encapsulated in liposomes protects mice against influenza infection. Vaccine. 2003;21(9–10):932–939.
  • Gao F-S, Feng L, Zhang Q, et al. Immunogenicity of two FMDV nonameric peptides encapsulated in liposomes in mice and the protective efficacy in guinea pigs. PLoS One. 2013;8(7):e68658.
  • Thoryk EA, Swaminathan G, Meschino S, et al. Co-administration of lipid nanoparticles and sub-unit vaccine antigens is required for increase in antigen-specific immune responses in mice. Vaccines (Basel). 2016;4(4):47-60.
  • Jorquera PA, Tripp RA. Synthetic biodegradable microparticle and nanoparticle vaccines against the respiratory syncytial virus. Vaccines (Basel). 2016;4(4):45–48.
  • Kumari A, Yadav SK. Cellular interactions of therapeutically delivered nanoparticles. Exp Opin Drug Deliv. 2011;8(2):141–151.
  • Yameen B, Choi W, Vilos C. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 2014;190:485–499.
  • Guo X, Li Y, Yan J, et al. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology. 2016;10(9):1373–1384.
  • Fauci AS, Folkers GK, Dieffenbach CW. HIV-AIDS: much accomplished, much to do. Nat Immunol. 2013;14(11):1104–1107.
  • Sarmati L, D’Ettorre G, Parisi SG, et al. HIV replication at low copy number and its correlation with HIV reservoir: a clinical perspective. Curr HIV Res. 2015;13(3):250–257.
  • De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29(3):695–747.
  • Das K, Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 1. Curr Opin Virol. 2013;3:111–118.
  • Usach I, Melis V, Peris E. Non-nucleoside reverse transcriptase inhibitors: a re-view on pharmacokinetics, pharmacodynamics, safety and tolerability. J Int AIDS Soc. 2013;16(1):18567-18580.
  • Métifiot M, Marchand C, Pommier Y. HIV integrase inhibitors: 20-year landmark and challenges. Adv Pharmacol. 2013;67:75–105.
  • Lv Z, Chu Y, Wang Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl). 2015;7:95–104.
  • Bai Y, Xue H, Wang K, et al. Covalent fusion inhibitors targeting HIV-1 gp41 deep pocket. Amino Acids. 2013;44:701–713.
  • Mcgowan I. An overview of antiretroviral pre-exposure prophylaxis of HIV infection. Am J Reprod Immunol. 2014;71(6):624–630.
  • Nelson AG, Zhang X, Ganapathi U, et al. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment. J Control Release. 2015;219:669–680.
  • Giacalone G, Hillaireau H, Fattal E. Improving bioavailability and biodistribution of anti-HIV chemotherapy. Eur J Pharm Sci. 2015;75:40–53.
  • Kumar L, Verma S, Prasad DN, et al. Nanotechnology: a magic bullet for HIV AIDS treatment. Artif Cells Nanomed Biotechnol. 2015;43(2):71–86.
  • Ramana LN, Anand AR, Sethuraman S, et al. Targeting strategies for delivery of anti-HIV drugs. J Control Release. 2014;192:271–283.
  • Shegokar R, Singh KK. Nevirapine nanosuspensions for HIV reservoir targeting. Pharmazie. 2011;66(6):408–415.
  • Nowacek AS, Balkundi S, McMillan J, et al. Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release. 2011;150(2):204–211.
  • Tshweu L, Katata L, Kalombo L, et al. Enhanced oral bioavailability of the antiretroviral efavirenz nano-encapsulated in poly(epsilon-caprolactone) nanoparticles by a spray-drying method. Nanomedicine (London). 2014;9:1821–1833.
  • Chiappetta DA, Hocht C, Taira C. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability. Nanomedicine (London). 2010;5:11–23.
  • Chiappetta DA, Hocht C, Taira C, et al. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials. 2011;32:2379–2387.
  • Sosnik A, Imperiale JC, Vazquez-Gonzalez B, et al. Mucoadhesive thermo-responsive chitosan-g-poly(NIPAAm) polymeric micelles via a one-pot gamma radiation-assisted pathway. Colloids Surf B Biointerfaces. 2015;136:900–907.
  • Patel A, Shelat P, Lalwani A. Development and optimization of solid self-nanoemulsifying drug delivery system (S-SNEDDS) using Scheffe’s design for improvement of oral bioavailability of nelfinavir mesylate. Drug Deliv Transl Res. 2014;4:171–186.
  • Gaur PK, Mishra S, Bajpai M, et al. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. Biomed Res Int. 2014;2014:363404.
  • Sathigari S, Chadha G, Lee YP, et al. Physicochemical characterization of efavirenz–cyclodextrin inclusion complexes. AAPS Pharm Sci Tech. 2009;10:81–87.
  • Zidan AS, Spinks CB, Habib MJ, et al. Formulation and transport properties of tenofovir loaded liposomes through Caco-2 cell model. J Liposome Res. 2013;23(4):318–326.
  • Aji AMR, Chacko AJ, Jose S, et al. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42(1–2):11–18.
  • Negi JS, Chattopadhyay P, Sharma AK, et al. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur J Pharm Sci. 2013;48(1–2):231–239.
  • Pattnaik G, Sinha B, Mukherjee B, et al. Submicron-size biodegradable polymer-based didanosine particles for treating HIV at early stage: an in vitro study. J Microencapsul. 2012;29(7):666–676.
  • Destache CJ, Belgum T, Goede M, et al. Antiretroviral release from poly(DL-lactide-co-glycolide) nanoparticles in mice. J Antimicrob Chemother. 2010;65(10):2183–2187.
  • Hillaireau H, Le Doan T, Appel M, et al. Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J Control Release. 2006;116(3):346–352.
  • Hillaireau H, Le Doan T, Chacun H, et al. Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int J Pharm. 2007;331(2):148–152.
  • Giacalone G, Bochot A, Fattal E, et al. Drug-induced nanocarrier assembly as a strategy for the cellular delivery of nucleotides and nucleotide analogues. Biomacromolecules. 2013;14(3):737–742.
  • Saiyed ZM, Gandhi NH, Nair MPN. AZT 50 -triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells. J Neurovirol. 2009;15(4):343–347.
  • Ramana LN, Sharma S, Sethuraman S, et al. Investigation on the stability of saquinavir loaded liposomes: implication on stealth, release characteristics and cytotoxicity. Int J Pharm. 2012;431(1–2):120–129.
  • Dutta T, Agashe HB, Garg M, et al. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J Drug Target. 2007;15(1):89–98.
  • Garg M, Jain NK. Reduced hematopoietic toxicity, enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes. J Drug Target. 2006;14(1):1–11.
  • Borgmann K, Rao KS, Labhasetwar V, et al. Efficacy of Tat-conjugated ritonavir-loaded nanoparticles in reducing HIV-1 replication in monocyte-derived macrophages and cytocompatibility with macrophages and human neurons. AIDS Res Hum Retrovir. 2011;27:853–862.
  • Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target. 2008;16(10):798–805.
  • Freeling JP, Koehn J, Shu C, et al. Long-acting three-drug combination anti-HIV nanoparticles enhance drug exposure in primate plasma and cells within lymph nodes and blood. Aids. 2015;29(13):1727.
  • Endsley AN, Ho RJY. Design and characterization of novel peptide-coated lipid nanoparticles for targeting anti-HIV drug to CD4 expressing cells. AAPS J. 2012;14(2):225–235.
  • Roy U, Ding H, Pilakka-Kanthikeel S, et al. Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue. Int J Nanomedicine. 2015;10:5819–5835.
  • Kuo YC, Chen HH. Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate–sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier. Int J Pharm. 2006;327:160–169.
  • Kuo Y-C, Lee C-L. Methylmethacrylate–sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood–brain barrier. Colloids Surf B Biointerfaces. 2012;90:75–82.
  • Kuo Y-C, Lin P-I, Wang C-C. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly (lactide-co-glycolide) nanoparticles. Nanomedicine. 2011;6:1011–1026.
  • Mahajan HS, Mahajan MS, Nerkar PP, et al. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv. 2014;21(2):148–154.
  • Huang RQ, Qu YH, Ke WL, et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J. 2007;21:1117–1125.
  • Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm. 2008;347:93–101.
  • Chiappetta DA, Hocht C, Opezzo JAW, et al. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine. 2013;8(2):223–237.
  • Saiyed ZM, Gandhi NH, Nair MP. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomedicine. 2010;5:157–166.
  • Jayant R. Layer-by-Layer (LbL) assembly of anti HIV drug for sustained release to brain using magnetic nanoparticle. J Neuroimmune Pharmacol. 2014;9(1):25–25.
  • Fiandra L, Capetti A, Sorrentino L, et al. Nanoformulated antiretrovirals for penetration of the central nervous system: state of the art. J Neuroimmune Pharmacol. 2017;12(1):17-30.
  • Jayant RD, Atluri VS, Agudelo M, et al. Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomedicine. 2015;10:1077–1093.
  • Kaushik A, Jayant RD, Nikkhah-Moshaie R, et al. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep. 2016;6:25309.
  • Hickey MB, Merisko-Liversidge E, Remenar JF, et al. Delivery of long-acting injectable antivirals: best approaches and recent advances. Curr Opin Infect Dis. 2015;28(6):603–610.
  • Williams PE, Crauwels HM, Basstanie ED. Formulation and pharmacology of long-acting rilpivirine. Curr Opin HIV AIDS. 2015;10(4):233–238.
  • Duan J, Freeling JP, Koehn J, et al. Evaluation of atazanavir and darunavir interactions with lipids for developing pH-responsive anti-HIV drug combination nanoparticles. J Pharm Sci. 2014;103(8):2520–2529.
  • van ‘t Klooster G, Hoeben E, Borghys H, et al. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents Chemother. 2010;54:2042–2050.
  • Andrews CD, Heneine W. Cabotegravir long-acting for HIV-1 prevention. Curr Opin HIV AIDS. 2015;10:258–263.
  • Martinez-Skinner AL, Veerubhotla RS, Liu H, et al. Functional proteome of macrophage carried nanoformulated antiretroviral therapy demonstrates enhanced particle carrying capacity. J Proteome Res. 2013;12(5):2282–2294.
  • Sosnik A, Augustine R. Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev. 2016;103:105–120.
  • Daeihamed M, Dadashzadeh S, Haeri A, et al. Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv. 2017;14(2):289–303.
  • Porter CJ, Pouton CW, Cuine JF, et al. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–691.
  • Bargoni A, Cavalli R, Caputo O. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm Res. 1998;15(5):745–750.
  • Cavalli R, Bargoni A, Podio V, et al. Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J Pharm Sci. 2003;92(5):1085–1094.
  • Cory TJ, Schacker TW, Stevenson M, et al. Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS. 2013;8(3):190–195.
  • Gupta U, Jain NK. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev. 2010;62(4–5):478–490.
  • Mamo T, Moseman EA, Kolishetti N, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond.). 2010;5(2):269–285.
  • Parboosing R, Maguire GE, Govender P, et al. Nanotechnology and the treatment of HIV infection. Viruses. 2012;4(4):488–520.
  • Gunaseelan S, Gunaseelan K, Deshmukh M, et al. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev. 2010;62(4–5):518–531.
  • Chen P, Zhang X, Jia L, et al. Optimal structural design of mannosylated nanocarriers for macrophage targeting. J Control Release. 2014;194:341–349.
  • Shao J, Kraft JC, Li B, et al. Nanodrug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS. Nanomedicine (Lond). 2016;11(5):545–564.
  • Guiot C, Zullino S, Priano L, et al. The physics of drug-delivery across the blood–brain barrier. Ther Deliv. 2016;7(3):153–156.
  • Jain A, Jain SK. Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit Rev Ther Drug Carrier Syst. 2015;32(2):149–180.
  • Portioli C, Bovi M, Benati D, et al. Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res Part A. 2017;105:847–858.
  • Nair M, Jayant RD, Kaushik A, et al. Getting into the brain: potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev. 2016;103:202–217.
  • Das MK, Sarma A, Chakraborty T. Nano-ART and NeuroAIDS. Drug Deliv Transl Res. 2016;6(5):452–472.
  • Gomes MJ, Neves J, Sarmento B. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine. 2014;9:1757–1769.
  • Rao KS, Ghorpade A, Labhasetwar V. Targeting anti-HIV drugs to the CNS. Expert Opin Drug Deliv. 2009;6(8):771–784.
  • Wong HL, Chattopadhyay N, Wu XY, et al. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev. 2010;62(4–5):503–517.
  • Lakshmanan S, Gupta GK, Avci P, et al. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev. 2014;71:98–114.
  • Iannazzo D, Pistone A, Romeo R, et al. Nanotechnology approaches for antiretroviral drugs delivery. J AIDS HIV Infect. 2015;1:1–13.
  • Md S, Mustafa G, Baboota S, et al. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm. 2015;41(12):1922–1934.
  • Sagar V, Atluri VS, Pilakka-Kanthikeel S, et al. Magnetic nanotherapeutics for dysregulated synaptic plasticity during neuroAIDS and drug abuse. Mol Brain. 2016;9(1):57–66.
  • Ghera BB, Perret F, Chevalier Y, et al. Novel nanoparticles made from amphiphilic perfluoroalkyl alpha-cyclodextrin derivatives: preparation, characterization and application to the transport of acyclovir. Int J Pharm. 2009;375(1–2):155–162.
  • Bencini M, Ranucci E, Ferruti P, et al. Preparation and in vitro evaluation of the antiviral activity of the acyclovir complex of a beta-cyclodextrin/poly(amidoamine) copolymer. J Control Release. 2008;126(1):17–25.
  • Lembo D, Swaminathan S, Donalisio M, et al. Encapsulation of acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm. 2013;443(1–2):262–272.
  • Cavalli R, Donalisio M, Civra A, et al. Enhanced antiviral activity of acyclovir loaded into beta-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. J Control Release. 2009;137(2):116–122.
  • Gandhi A, Jana S, Sen KK. In-vitro release of acyclovir loaded Eudragit RLPO(®) nanoparticles for sustained drug delivery. Int J Biol Macromol. 2014;67:478–482.
  • Amany OK, Gehanne ASA, Ahmed SG, et al. Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS Pharm Sci Tech. 2009;10:1427–1436.
  • Gupta S, Agarwal A, Gupta NK, et al. Galactose decorated PLGA nanoparticles for hepatic delivery of acyclovir. Drug Dev Ind Pharm. 2013;39(12):1866–1873.
  • Azeem A, Anwer MKJ, Talegaonkar S. Niosomes in sustained and targeted drug delivery: recent advances. J Drug Target. 2009;17:671–689.
  • Naderkhani E, Erber A, Škalko-Basnet N, et al. Improved permeability of acyclovir: optimization of mucoadhesive liposomes using the phospholipid vesicle-based permeation assay. J Pharm Sci. 2014;103(2):661–668.
  • Yandrapu SK, Kanujia P, Chalasani KB, et al. Development and optimization of thiolated dendrimer as a viable mucoadhesive excipient for the controlled drug delivery: an acyclovir model formulation. Nanomedicine. 2013;9(4):514–522.
  • Ensign LM, Tang BC, Wang YY, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138.
  • Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm. 2013;39(4):508–519.
  • Jain S, Mistry MA, Swarnakar NK. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv Transl Res. 2011;1(5):395–406.
  • Schwarz JC, Klang V, Karall S, et al. Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. Int J Pharm. 2012;435(1):69–75.
  • Sawdon AJ, Peng C-A. Ring-opening polymerization of ε-caprolactone initiated by ganciclovir (GCV) for the preparation of GCV-tagged polymeric micelles. Molecules. 2015;20(2):2857–2867.
  • Ren J, Zou M, Gao P, et al. Tissue distribution of borneol-modified ganciclovir-loaded solid lipid nanoparticles in mice after intravenous administration. Eur J Pharm Biopharm. 2013;83(2):141–148.
  • Akhter S, Kushwaha S, Warsi MH, et al. Development and evaluation of nanosized niosomal dispersion for oral delivery of ganciclovir. Drug Dev Ind Pharm. 2012;38(1):84–92.
  • Akhter S, Talegaonkar S, Khan ZI, et al. Assessment of ocular pharmacokinetics and safety of ganciclovir loaded nanoformulations. J Biomed Nanotechnol. 2011;7(1):144–145.
  • Russo E, Gaglianone N, Baldassari S, et al. Preparation, characterization and in vitro antiviral activity evaluation of foscarnet-chitosan nanoparticles. Colloids Surf B Biointerfaces. 2014;118:117–125.
  • Lv Q, Yu A, Xi Y, et al. Development and evaluation of PCV-loaded solid lipid nanoparticles for topical delivery. Int J Pharm. 2009;372(1–2):191–198.
  • Chayavichitsilp P, Buckwalter JV, Krakowski AC, et al. Herpes simplex. Pediatr Rev. 2009;30(4):119–129.
  • Perret F, Duffour M, Chevalier Y, et al. Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir. Eur J Pharm Biopharm. 2013;83(1):25–32.
  • Ruiz-Caro R, Gago-Guillan M, Otero-Espinar FJ, et al. Mucoadhesive tablets for controlled release of acyclovir. Chem Pharm Bull. 2012;60(10):1249–1257.
  • Pavelic Z, Skalko-Basnet N, Filipovic-Grcic J, et al. Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J Control Release. 2005;106(1–2):34–43.
  • De Clercq E. Antivirals for the treatment of herpes virus infections. J Antimicrob Chemother. 1993;32(SupplA):121–132.
  • Centers for Disease Control and Prevention CDC. Incidence, prevalence, and cost of sexually transmitted infections in the United States. 2013. Available from: http://www.cdc.gov/std.
  • Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur J Pharm Biopharm. 2016;109:214–223.
  • Yu B, Ruan M, Dong X, et al. The mechanism of the opening of the blood-brain barrier by borneol: A pharmacodynamics and pharmacokinetics combination study. J Ethnopharmacol. 2013;150(3):1096-1108. pii: S0378-8741(13)00735-6.
  • Cao Q, Wu H, Zhu L, et al. Preparation and evaluation of zanamivir-loaded solid lipid nanoparticles. J Control Release. 2011;152 Suppl 1:e2–4.
  • Wang H, Shao N, Qiao S, et al. Host-guest chemistry of dendrimer-cyclodextrin conjugates: selective encapsulations of guests within dendrimer or cyclodextrin cavities revealed by NOE NMR techniques. J Phys Chem B. 2012;116(36):11217–11224.
  • Dodiya S, Chavhan S, Korde A, et al. Solid lipid nanoparticles and nanosuspension of adefovir dipivoxil for bioavailability improvement: formulation, characterization, pharmacokinetic and biodistribution studies. Drug Dev Ind Pharm. 2013;39(5):733–743.
  • Du L, Wu L, Jin Y, et al. Self-assembled drug delivery systems. Part7:hepatocyte-targeted nanoassemblies of an adefovir lipid derivative with cytochrome P450-triggered drug release. Int J Pharm. 2014;472(1–2):1–9.
  • Li Q, Du Y-Z, Yuan H, et al. Synthesis of lamivudine stearate and antiviral activity of stearic acid-g chitosan oligosaccharide polymeric micelles delivery system. Eur J Pharm Sci. 2010;41(3–4):498–507.
  • Guo H, Sun S, Yang Z, et al. Strategies for ribavirin prodrugs and delivery systems for reducing the side-effect hemolysis and enhancing their therapeutic effect. J Control Release. 2015;209:27–36.
  • Craparo EF, Triolo D, Pitarresi G, et al. Galactosylated micelles for a ribavirin prodrug targeting to hepatocytes. Biomacromolecules. 2013;4(6):1838–1849.
  • Craparo EF, Teresi G, Licciardi M, et al. Novel composed galactosylated nanodevices containing a ribavirin prodrug as hepatic cell targeted carriers for HCV treatment. J Biomed Nanotechnol. 2013;9(6):1107–1122.
  • Ishihara T, Kaneko K, Ishihara T, et al. Development of biodegradable nanoparticles for liver-specific ribavirin delivery. J Pharm Sci. 2014;103(12):4005–4011.
  • Hashim F, El-Ridy M, Nasr M, et al. Y. Preparation and characterization of niosomes containing ribavirin for liver targeting. Drug Deliv. 2010;17(5):282–287.
  • Liu G, Xu D, Jiang M, et al. Preparation of bioactive interferon alpha-loaded polysaccharide nanoparticles using a new approach of temperature-induced water phase/water-phase emulsion. Int J Nanomedicine. 2012;7:4841–4848.
  • Li S, Zhao B, Wang F, et al. Yak interferon-alpha loaded solid lipid nanoparticles for controlled release. Res Vet Sci. 2010;88(1):148–153.
  • Owen A, Rannard S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: insights for applications in HIV therapy. Adv Drug Deliv Rev. 2016;103:144–156.
  • Steinbach JM. Protein and oligonucleotide delivery systems for vaginal microbicides against viral STIs. Cell Mol Life Sci. 2015;72:469–503.
  • Swamy MN, Wu H, Shankar P. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv Drug Deliv Rev. 2016;103:174–186.
  • Havel H, Finch G, Strode P, et al. Nanomedicines: from bench to bedside and beyond. AAPS J. 2016;18(6):1373–1378.
  • Laffleur F, Bernkop-Schnürch A. Strategies for improving mucosal drug delivery. Nanomedicine (Lond.). 2013;8:2061–2075.
  • Whitfield T, Torkington A, van Halsema C. Profile of cabotegravir and its potential in the treatment and prevention of HIV-1 infection: evidence to date. HIV AIDS (Auckl). 2016;8:157–164.
  • Margolis DA, Boffito M. Long-acting antiviral agents for HIV treatment. Curr Opin HIV AIDS. 2015;10(4):246–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.