521
Views
30
CrossRef citations to date
0
Altmetric
Review

Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges

, &
Pages 185-196 | Received 01 Nov 2016, Accepted 07 Sep 2017, Published online: 12 Sep 2017

References

  • James ND, Hussain SA, Hall E, et al. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer. N Engl J Med. 2012 Apr 19;366(16):1477–1488.
  • Cadet J, Ravanat JL, TavernaPorro M, et al. Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett. 2012 Dec 31;327(1–2):5–15.
  • Rothkamm K, Kruger I, Thompson LH, et al. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003 Aug;23(16):5706–5715.
  • Mladenov E, Magin S, Soni A, et al. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 2013;3:113.
  • Hunt CR, Ramnarain D, Horikoshi N, et al. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat Res. 2013 Apr;179(4):383–392.
  • Price BD, D’Andrea AD. Chromatin remodeling at DNA double-strand breaks. Cell. 2013 Mar 14;152(6):1344–1354.
  • Gulston M, De Lara C, Jenner T, et al. Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation. Nucleic Acids Res. 2004;32(4):1602–1609.
  • Gulston M, Fulford J, Jenner T, et al. Clustered DNA damage induced by radiation in human fibroblasts (HF19), hamster (V79-4) cells and plasmid DNA is revealed as Fpg and Nth sensitive sites. Nucleic Acids Res. 2002 Aug 1;30(15):3464–3472.
  • Sutherland BM, Bennett PV, Sidorkina O, et al. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci USA. 2000 Jan 4;97(1):103–108.
  • Sutherland BM, Bennett PV, Sutherland JC, et al. Clustered DNA damages induced by X rays in human cells. Radiat Res. 2002 Jun;157(6):611–616.
  • Goodarzi AA, Jeggo PA. The repair and signaling responses to DNA double-strand breaks. Adv Genet. 2013;82:1–45.
  • Nikjoo H, O’Neill P, Wilson WE, et al. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat Res. 2001 Nov;156(5):577–583.
  • Jurcic JG. Radioimmunotherapy for hematopoietic cell transplantation. Immunotherapy. 2013 Apr;5(4):383–394.
  • Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009 May;9(5):351–360.
  • Larson SM, Carrasquillo JA, Cheung NKV, et al. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015 Jun;15(6):347–360.
  • Sharkey RM, Mottahennessy C, Pawlyk D, et al. Biodistribution and radiation-dose estimates for yttrium-labeled and iodine-labeled monoclonal-antibody igg and fragments in nude-mice bearing human colonic tumor xenografts. Cancer Res. 1990 Apr 15;50(8):2330–2336.
  • Seidl C, Zockler C, Beck R, et al. Lu-177-immunotherapy of experimental peritoneal carcinomatosis shows comparable effectiveness to Bi-213-immunotherapy, but causes toxicity not observed with Bi-213. Eur J Nucl Med Mol I. 2011 Feb;38(2):312–322.
  • Eisen HN, Keston AS. The immunologic reactivity of bovine serum albumin labeled with trace-amounts of radioactive iodine (I131). J Immunol. 1949 Sep;63(1):71–80.
  • Pressman D, Korngold L. The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer. 1953 May;6(3):619–623.
  • Beierwaltes WH. Radioiodine-labelled compounds previously or currently used for tumour localization. Tumour localization with radioactive agents. International Atomic Energy Agency, Vienna (Austria); Panel proceedings series 1976; p. 47–53; ISBN 92-0-111276-9
  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497.
  • Tiernan JP, Perry SL, Verghese ET, et al. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br J Cancer. 2013 Feb 19;108(3):662–667.
  • Ng D. Radioimmunotherapy: a brief overview. Biomed Imaging Interv J. 2006;2(3):e23–e.
  • Rajendran JG, Gopal AK, Fisher DR, et al. Myeloablative 131I-tositumomab radioimmunotherapy in treating non-Hodgkin’s lymphoma: comparison of dosimetry based on whole-body retention and dose to critical organ receiving the highest dose. J Nucl Med. 2008 May;49(5):837–844.
  • Sharkey RM, Goldenberg DM. Cancer radioimmunotherapy. Immunotherapy. 2011 Mar;3(3):349–370.
  • Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002 May 15;20(10):2453–2463.
  • Davis TA, Kaminski MS, Leonard JP, et al. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res. 2004 Dec 1;10(23):7792–7798.
  • Postema EJ, Oyen WJ, Boerman OC, et al. Administration guidelines for radioimmunotherapy of non-Hodgkin’s lymphoma with 90Y-labeled anti-CD20 monoclonal antibody. J Nucl Med. 2003 May;44(5):853.
  • Shimoni A, Zwas ST. Radioimmunotherapy and autologous stem-cell transplantation in the treatment of B-Cell non-hodgkin lymphoma. Semin Nucl Med. 2016 Mar;46(2):119–125.
  • Rizzieri D. Zevalin((R)) (ibritumomab tiuxetan): after more than a decade of treatment experience, what have we learned? Crit Rev Oncol Hematol. 2016 Sep;105:5–17.
  • Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002 Aug 01;20(15):3262–3269.
  • Janik JE, Morris JC, O’Mahony D, et al. 90Y-daclizumab, an anti-CD25 monoclonal antibody, provided responses in 50% of patients with relapsed Hodgkin’s lymphoma. Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):13045–13050.
  • Lehnert S. Biomolecular action of ionizing radiation. Biomolecular action of ionizing radiation series: series in medical physics and biomedical engineering. Edited by. Lehnert S 2007. 1. Taylor & Francis. Oxfordshire, United Kingdom. ISBN: 978-0-7503-0824-3
  • Goodhead DT. The initial physical damage produced by ionizing-radiations. Int J Radiat Biol. 1989 Nov;56(5):623–634.
  • Pouget JP, Navarro-Teulon I, Bardies M, et al. Clinical radioimmunotherapy-the role of radiobiology. Nat Rev Clin Oncol. 2011 Dec;8(12):720–734.
  • Delara CM, Jenner TJ, Townsend KMS, et al. The effect of dimethyl-sulfoxide on the induction of DNA double-strand breaks in V79-4 mammalian-cells by alpha-particles. Radiat Res. 1995 Oct;144(1):43–49.
  • Roots R, Okada S. Estimation of life times and diffusion distances of radicals involved in x-ray-induced DNA strand breaks or killing of mammalian-cells. Radiat Res. 1975;64(2):306–320.
  • Hirayama R, Ito A, Noguchi M, et al. OH radicals from the indirect actions of x-rays induce cell lethality and mediate the majority of the oxygen enhancement effect. Radiat Res. 2013 Nov;180(5):514–523.
  • Jain RK. Barriers to drug-delivery in solid tumors. Sci Am. 1994 Jul;271(1):58–65.
  • Press OW. Radioimmunotherapy for non-Hodgkin’s lymphomas: a historical perspective. Semin Oncol. 2003 Apr;30(2):10–21.
  • Press OW, Rasey J. Principles of radioimmunotherapy for hematologists and oncologists. Semin Oncol. 2000 Dec;27(6):62–73.
  • Barbet J, Bardies M, Bourgeois M, et al. Radiolabeled antibodies for cancer imaging and therapy. Methods Mol Biol. 2012;907:681–697.
  • Navarro-Teulon I, Lozza C, Pelegrin A, et al. General overview of radioimmunotherapy of solid tumors. Immunotherapy. 2013 May;5(5):467–487.
  • Pouget JP, Lozza C, Deshayes E, et al. Introduction to radiobiology of targeted radionuclide therapy. Front Med (Lausanne). 2015;2:12.
  • Pagel JM, Gooley TA, Rajendran J, et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood. 2009 Dec 24;114(27):5444–5453.
  • Geissler F, Anderson SK, Press O. Intracellular catabolism of radiolabeled anti-cd3 antibodies by leukemic t-cells. Cell Immunol. 1991 Oct 1;137(1):96–110.
  • Vaidyanathan G, Zalutsky MR. Preparation of N-succinimidyl 3-[*I] iodobenzoate: an agent for the indirect radioiodination of proteins. Nat Protoc. 2006;1(2):707–713.
  • Milenic DE, Brady ED, Brechbiel MW. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov. 2004 Jun;3(6):488–499.
  • Koppe MJ, Postema EJ, Aarts F, et al. Antibody-guided radiation therapy of cancer. Cancer Met Rev. 2005 Dec;24(4):539–567.
  • Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I 131 Tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2001 Oct 1;19(19):3918–3928.
  • Seidl C. Radioimmunotherapy with alpha-particle-emitting radionuclides. Immunotherapy. 2014;6(4):431–458.
  • Seidl C, Essler M. Radioimmunotherapy for peritoneal cancers. Immunotherapy. 2013 Apr;5(4):395–405.
  • Wulbrand C, Seidl C, Gaertner FC, et al. Alpha-particle emitting 213Bi-anti-EGFR immunoconjugates eradicate tumor cells independent of oxygenation. PLoS One. 2013;8(5):e64730.
  • Kim YS, Brechbiel MW. An overview of targeted alpha therapy. Tumor Biol. 2012 Jun;33(3):573–590.
  • Jackson MR, Falzone N, Vallis KA. Advances in anticancer radiopharmaceuticals. Clin Oncol. 2013 Oct;25(10):604–609.
  • Kassis AI. Molecular and cellular radiobiological effects of auger emitting radionuclides. Radiat Prot Dosim. 2011 Feb;143(2–4):241–247.
  • Reilly RM. Monoclonal antibody and peptide-targeted radiotherapy of cancer. Hoboken, NJ, USA:John Wiley & Sons; 2010.
  • Li HK, Morokoshi Y, Daino K, et al. Transcriptomic signatures of auger electron radioimmunotherapy using nuclear targeting (111)In-trastuzumab for potential combination therapies. Cancer Biother Radiopharm. 2015 Oct;30(8):349–358.
  • Morris MJ, Divgi CR, Pandit-Taskar N, et al. Pilot trial of unlabeled and indium-111-labeled anti-prostate-specific membrane antigen antibody J591 for castrate metastatic prostate cancer. Clin Cancer Res. 2005 Oct 15;11(20):7454–7461.
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012 Apr;12(4):278–287.
  • DeNardo SJ, OGrady LF, Richman CM, et al. Radioimmunotherapy for advanced breast cancer using I-131-ChL6 antibody. Anticancer Res. 1997 May-Jun;17(3b):1745–1751.
  • Navarro-Teulon I, Lozza C, Pèlegrin A, et al. General overview of radioimmunotherapy of solid tumors. Immunotherapy. 2013;5(5):467–487.
  • Reardon DA, Akabani G, Coleman RE, et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol. 2006 Jan 1;24(1):115–122.
  • Akabani G, Reardon DA, Coleman RE, et al. Dosimetry and radiographic analysis of 131I-labeled anti− tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: a Phase II study. J Nucl Med. 2005;46(6):1042–1051.
  • Divgi CR, O’Donoghue JA, Welt S, et al. Phase I clinical trial with fractionated radioimmunotherapy using I-13-labeled chimeric G250 in metastatic renal cancer. J Nucl Med. 2004 Aug;45(8):1412–1421.
  • Vallabhajosula S, Nikolopoulou AS, Jhanwar Y, et al. Radioimmunotherapy of metastatic prostate cancer with; 177Lu-DOTAhuJ591 anti prostate specific membrane antigen specific monoclonal antibody. Curr Radiopharm. 2016;9(1):44–53.
  • Kang CS, Song HA, Milenic DE, et al. Preclinical evaluation of NETA-based bifunctional ligand for radioimmunotherapy applications using 212Bi and 213Bi: radiolabeling, serum stability, and biodistribution and tumor uptake studies. Nucl Med Biol. 2013 Jul;40(5):600–605.
  • Timmermand OV, Larsson E, Ulmert D, et al. Radioimmunotherapy of prostate cancer targeting human kallikrein-related peptidase 2. Eur J Nucl Med Mol Imaging Res. 2016;6(1):1.
  • Derrien A, Gouard S, Maurel C, et al. Therapeutic efficacy of alpha-RIT using a 213Bi-anti-hCD138 antibody in a mouse model of ovarian peritoneal carcinomatosis. Front Med. 2015;2:88.
  • Song IH, Lee TS, Park JH, et al. Immuno-PET imaging and radioimmunotherapy of 64Cu/177Lu labeled anti-EGFR antibody in esophageal squamous cell carcinoma. J Nucl Med. 2015;56(supplement 3):1216.
  • Van Rij CM, Frielink C, Goldenberg DM, et al. Pretargeted radioimmunotherapy of prostate cancer with an anti-TROP-2× Anti-HSG bispecific antibody and a 177Lu-Labeled Peptide. Cancer Biother Radiopharm. 2014;29(8):323–329.
  • Van Rij C, Franssen G, Sharkey R, et al. Pretargeted immunoPET imaging and radioimmunotherapy (RIT) of prostate cancer with an anti-EGP1 x anti-HSG bispecific antibody (bsMAb). J Nucl Med. 2010;51(supplement 2):501.
  • Cheal SM, Xu H, Guo HF, et al. Theranostic pretargeted radioimmunotherapy of colorectal cancer xenografts in mice using picomolar affinity (86)Y- or (177)Lu-DOTA-Bn binding scFv C825/GPA33 IgG bispecific immunoconjugates. Eur J Nucl Med Mol Imaging Res. 2016 May;43(5):925–937.
  • Cederkrantz E, Andersson H, Bernhardt P, et al. Absorbed doses and risk estimates of (211)At-MX35 F(ab’)2 in intraperitoneal therapy of ovarian cancer patients. Int J Radiat Oncol Biol Phys. 2015 Nov 1;93(3):569–576.
  • Altai M, Wallberg H, Honarvar H, et al. Re-188-Z(HER2:V2),a promising affibody-based targeting agent against HER2-expressing tumors: preclinical assessment. J Nucl Med. 2014 Nov;55(11):1842–1848.
  • Orlova A, Jonsson A, Rosik D, et al. Site-specific radiometal labeling and improved biodistribution using ABY-027, a novel HER2-targeting affibody molecule-albumin-binding domain fusion protein. J Nucl Med. 2013 Jun 1;54(6):961–968.
  • Yong KJ, Milenic DE, Baidoo KE, et al. (212)Pb-radioimmunotherapy induces G(2) cell-cycle arrest and delays DNA damage repair in tumor xenografts in a model for disseminated intraperitoneal disease. Mol Cancer Ther. 2012 Mar;11(3):639–648.
  • Rousseau C, Ruellan AL, Bernardeau K, et al. Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-PET and radioimmunotherapy. A preclinical study on MDA-MB-468 xenograft tumors. Eur J Nucl Med Mol Imaging Res. 2011;1:20.
  • Abbas N, Heyerdahl H, Bruland ØS, et al. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. Eur J Nucl Med Mol Imaging Res. 2011;1(1):1–12.
  • Zacchetti A, Martin F, Luison E, et al. Antitumor effects of a human dimeric antibody fragment 131I-AFRA-DFM5.3 in a mouse model for ovarian cancer. J Nucl Med. 2011 Dec;52(12):1938–1946.
  • Vera DR, Eigner S, Henke KE, et al. Preparation and preclinical evaluation of 177Lu-nimotuzumab targeting epidermal growth factor receptor overexpressing tumors. Nucl Med Biol. 2012 Jan;39(1):3–13.
  • Salouti M, Babaei MH, Rajabi H, et al. Preparation and biological evaluation of (177)Lu conjugated PR81 for radioimmunotherapy of breast cancer. Nucl Med Biol. 2011 Aug;38(6):849–855.
  • Rasaneh S, Rajabi H, Babaei MH, et al. 177 Lu labeling of Herceptin and preclinical validation as a new radiopharmaceutical for radioimmunotherapy of breast cancer. Nucl Med Biol. 2010;37(8):949–955.
  • Josefsson A, Nedrow JR, Park S, et al. Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res. 2016 Jan 15;76(2):472–479.
  • Razumienko EJ, Chen JC, Cai ZL, et al. Dual-receptor-targeted radioimmunotherapy of human breast cancer xenografts in athymic mice coexpressing HER2 and EGFR Using Lu-177- or In-111-labeled bispecific radioimmunoconjugates. J Nucl Med. 2016 Mar;57(3):444–452.
  • Fazel J, Rotzer S, Seidl C, et al. Fractionated intravesical radioimmunotherapy with Bi-213-anti-EGFR-MAb is effective without toxic side-effects in a nude mouse model of advanced human bladder carcinoma. Cancer Biol Ther. 2015 Oct;16(10):1526–1534.
  • Lindenblatt D, Fischer E, Cohrs S, et al. Paclitaxel improved anti-L1CAM lutetium-177 radioimmunotherapy in an ovarian cancer xenograft model. Eur J Nucl Med Mol Imaging Res. 2014 Oct;3:4.
  • Fujiwara K, Koyama K, Suga K, et al. 90Y-labeled anti-ROBO1 monoclonal antibody exhibits antitumor activity against small cell lung cancer xenografts. PLoS One. 2015;10(5):e0125468.
  • Sugyo A, Tsuji AB, Sudo H, et al. Evaluation of efficacy of radioimmunotherapy with 90Y-labeled fully human anti-transferrin receptor monoclonal antibody in pancreatic cancer mouse models. PLoS One. 2015;10(4):e0123761.
  • Elgstrom E, Eriksson SE, Ohlsson TG, et al. Role of CD8 positive cells in radioimmunotherapy utilizing 177Lu-mAb in a syngeneic rat colon carcinoma model. Eur J Nucl Med Mol Imaging. 2014 Oct;41:S533–S.
  • Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-targeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016 Dec;57(12):1941–1944.
  • Niu G, Sun XL, Cao QZ, et al. Cetuximab-based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin Cancer Res. 2010 Apr 1;16(7):2095–2105.
  • Palm S, Back T, Claesson I, et al. Therapeutic efficacy of astatine-211-labeled trastuzumab on radioresistant SKOV-3 tumors in nude mice. Int J Radiat Oncol Biol Phys. 2007 Oct 1;69(2):572–579.
  • Lindegren S, Andrade LN, Back T, et al. Binding affinity, specificity and comparative biodistribution of the parental murine monoclonal antibody MX35 (Anti-NaPi2b) and its humanized version rebmab200. PLoS One. 2015;10(5):e0126298.
  • Frost SH, Back T, Chouin N, et al. Comparison of 211At-PRIT and 211At-RIT of ovarian microtumors in a nude mouse model. Cancer Biother Radiopharm. 2013 Mar;28(2):108–114.
  • Cederkrantz E, Angenete E, Back T, et al. Evaluation of effects on the peritoneum after intraperitoneal alpha-radioimmunotherapy with (211)At. Cancer Biother Radiopharm. 2012 Aug;27(6):353–364.
  • Gustafsson AM, Back T, Elgqvist J, et al. Comparison of therapeutic efficacy and biodistribution of 213Bi- and 211At-labeled monoclonal antibody MX35 in an ovarian cancer model. Nucl Med Biol. 2012 Jan;39(1):15–22.
  • Andersson H, Cederkrantz E, Back T, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2–a phase I study. J Nucl Med. 2009 Jul;50(7):1153–1160.
  • Chevallier P, Eugene T, Robillard N, et al. (90)Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: a phase 1 dose-escalation study. Lancet Haematol. 2015 Mar;2(3):e108–17.
  • Cheal SM, Xu H, Guo H-F, et al. Theranostic pretargeted radioimmunotherapy of colorectal cancer xenografts in mice using picomolar affinity 86Y-or 177Lu-DOTA-Bn binding scFv C825/GPA33 IgG bispecific immunoconjugates. Eur J Nucl Med Mol Imaging. 2016 May;43(5):925–937.
  • Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med. 2010 May;40(3):167–181.
  • Behr TM, Memtsoudis S, Sharkey RM, et al. Experimental studies on the role of antibody fragments in cancer radio-immunotherapy: influence of radiation dose and dose rate on toxicity and anti-tumor efficacy. Int J Cancer. 1998 Aug 31;77(5):787–795.
  • Behr TM, Sharkey RM, Sgouros G, et al. Overcoming the nephrotoxicity of radiometal-labeled immunoconjugates - Improved cancer therapy administered to a nude mouse model in relation to the internal radiation dosimetry. Cancer. 1997 Dec 15;80(12):2591–2610.
  • Vegt E, De Jong M, Wetzels JFM, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010 Jul 1;51(7):1049–1058.
  • Tolmachev V, Orlova A, Pehrson R, et al. Radionuclide therapy of HER2-positive microxenografts using a Lu-177-labeled HER2-specific affibody molecule. Cancer Res. 2007 Mar 15;67(6):2773–2782.
  • Tolmachev V, Wallberg H, Andersson K, et al. The influence of Bz-DOTA and CHX-A”-DTPA on the biodistribution of ABD-fused anti-HER2 affibody molecules: implications for (114m)In-mediated targeting therapy. Eur J Nucl Med Mol Imaging. 2009 Sep;36(9):1460–1468.
  • Murray PJ, Cornelissen B, Vallis KA, et al. DNA double-strand break repair: a theoretical framework and its application. J R Soc Interface. 2016 Jan;13(114):20150679.
  • Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007 Oct;34(7):757–778.
  • Schaefer NG, Huang P, Buchanan JW, et al. Radioimmunotherapy in non-Hodgkin lymphoma: opinions of nuclear medicine physicians and radiation oncologists. J Nucl Med. 2011 May;52(5):830–838.
  • Verheijen RH, Massuger LF, Benigno BB, et al. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J Clin Oncol. 2006 Feb 1;24(4):571–578.
  • Joiner MC, Van Der Kogel A. Basic clinical radiobiology. Boca Raton, FL, USA:CRC Press; 2016.
  • Gunderson LL, Tepper JE. Clinical radiation oncology. Philadelphia, PA, USA:Elsevier Health Sciences; 2015.
  • Tempero M, Leichner P, Baranowska-Kortylewicz J, et al. High-dose therapy with (90)yttrium-labeled monoclonal antibody CC49: a phase I trial. Clin Cancer Res. 2000 Aug;6(8):3095–3102.
  • Schwartz J, Humm JL, Divgi CR, et al. Bone marrow dosimetry using I-124-PET. J Nucl Med. 2012 Apr;53(4):615–621.
  • Rösch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans. 2011;40(23):6104–6111.
  • Kolsky K, Joshi V, Mausner L, et al. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot. 1998;49(12):1541–1549.
  • Müller C, Bunka M, Haller S, et al. Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med. 2014;55(10):1658–1664.
  • Połosak M, Piotrowska A, Krajewski S, et al. Stability of 47Sc-complexes with acyclic polyamino-polycarboxylate ligands. J Radioanal Nucl Chem. 2013;295(3):1867–1872.
  • Su FM, Beaumier P, Axworthy D, et al. Pretargeted radioimmunotherapy in tumored mice using an in vivo Pb-212/Bi-212 generator. Nucl Med Biol. 2005 Oct;32(7):741–747.
  • Ma D, McDevitt MR, Finn RD, et al. Breakthrough of 225Ac and its radionuclide daughters from an 225Ac/213Bi generator: development of new methods, quantitative characterization, and implications for clinical use. Appl Radiat Isot. 2001 Nov;55(5):667–678.
  • Boll RA, Malkemus D, Mirzadeh S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot. 2005 May;62(5):667–679.
  • Yong K, Brechbiel MW. Towards translation of 212Pb as a clinical therapeutic; getting the lead in! Dalton Trans. 2011 Jun 21;40(23):6068–6076.
  • Boerman OC, Van Schaijk FG, Oyen WJG, et al. Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med. 2003 Mar;44(3):400–411.
  • Schoffelen R, Boerman OC, Goldenberg DM, et al. Development of an imaging-guided CEA-pretargeted radionuclide treatment of advanced colorectal cancer: first clinical results. Br J Cancer. 2013 Aug 20;109(4):934–942.
  • Salaun PY, Campion L, Bournaud C, et al. Phase II trial of anticarcinoembryonic antigen pretargeted radioimmunotherapy in progressive metastatic medullary thyroid carcinoma: biomarker response and survival improvement. J Nucl Med. 2012 Aug;53(8):1185–1192.
  • Kraeber-Bodere F, Salaun PY, Ansquer C, et al. Pretargeted radioimmunotherapy (pRAIT) in medullary thyroid cancer (MTC). Tumour Biol. 2012 Jun;33(3):601–606.
  • Bodet-Milin C, Faivre-Chauvet A, Carlier T, et al. Immuno-PET using anticarcinoembryonic antigen bispecific antibody and 68Ga-labeled peptide in metastatic medullary thyroid carcinoma: clinical optimization of the pretargeting parameters in a first-in-human trial. J Nucl Med. 2016 Oct;57(10):1505–1511.
  • Bodet-Milin C, Ferrer L, Rauscher A, et al. Pharmacokinetics and dosimetry studies for optimization of pretargeted radioimmunotherapy in CEA-expressing advanced lung cancer patients. Front Med (Lausanne). 2015;2:84.
  • Houghton JL, Zeglis BM, Abdel-Atti D, et al. Pretargeted immuno-PET of pancreatic cancer: overcoming circulating antigen and internalized antibody to reduce radiation doses. J Nucl Med. 2016 Mar;57(3):453–459.
  • Zeglis BM, Brand C, Abdel-Atti D, et al. Optimization of a pretargeted strategy for the pet imaging of colorectal carcinoma via the modulation of radioligand pharmacokinetics. Mol Pharm. 2015 Oct 5;12(10):3575–3587.
  • Ashrafi SA, Hosseinimehr SJ, Varmira K, et al. Radioimmunotherapy with 131I-bevacizumab as a specific molecule for cells with overexpression of the vascular endothelial growth factor. Cancer Biother Radiopharm. 2012;27(7):420–425.
  • Desar IM, Stillebroer AB, Oosterwijk E, et al. 111In-bevacizumab imaging of renal cell cancer and evaluation of neoadjuvant treatment with the vascular endothelial growth factor receptor inhibitor sorafenib. J Nucl Med. 2010 Nov;51(11):1707–1715.
  • Muselaers CH, Stillebroer AB, Desar IM, et al. Tyrosine kinase inhibitor sorafenib decreases 111In-girentuximab uptake in patients with clear cell renal cell carcinoma. J Nucl Med. 2014 Feb;55(2):242–247.
  • Miyamoto R, Oda T, Hashimoto S, et al. Cetuximab delivery and antitumor effects are enhanced by mild hyperthermia in a xenograft mouse model of pancreatic cancer. Cancer Sci. 2016 Apr;107(4):514–520.
  • Aquino A, Formica V, Prete SP, et al. Drug-induced increase of carcinoembryonic antigen expression in cancer cells. Pharmacol Res. 2004 May;49(5):383–396.
  • Eftekhar E, Naghibalhossaini F. Carcinoembryonic antigen expression level as a predictive factor for response to 5-fluorouracil in colorectal cancer. Mol Biol Rep. 2014 Jan;41(1):459–466.
  • Lee HC, Ling QD, Yu WC, et al. Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells. Drug Des Dev Ther. 2013;7:491–502.
  • Brouwers AH, Frielink C, Oosterwijk E, et al. Interferons can upregulate the expression of the tumor associated antigen G250-MN/CA IX, a potential target for (radio)immunotherapy of renal cell carcinoma. Cancer Biother Radiopharm. 2003 Aug;18(4):539–547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.