600
Views
69
CrossRef citations to date
0
Altmetric
Review

Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region

, , , , , , , , , & show all
Pages 589-617 | Received 02 Dec 2017, Accepted 20 Apr 2018, Published online: 17 May 2018

References

  • Wen MM, El-Salamouni NS, El-Refaie WM, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial, and clinical challenges. J Control Release. 2017 Jan 10; 245:95–107. DOI:10.1016/j.jconrel.2016.11.025. PubMed PMID: 27889394; eng.
  • Meng F, Asghar S, Gao S, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf B Biointerfaces. 2015 Oct 01; 134:88–97. DOI:10.1016/j.colsurfb.2015.06.025. PubMed PMID: 26162977; eng.
  • Friedrich RP, Pottler M, Cicha I, et al. Novel nanoparticulate drug delivery systems. Nanomedicine (Lond). 2016 Mar;11(6):573–576. PubMed PMID: 26911384; eng.
  • Klimova B, Kuca K. Alzheimer’s disease: potential preventive, non-invasive, intervention strategies in lowering the risk of cognitive decline. review study. J Appl Biomed. 2015 Nov 01;13(4):257–261. DOI:10.1016/j.jab.2015.07.004.
  • Alzheimer’s disease facts and figures. Alzheimers Dement. 2015 Mar;11(3):332–384. PubMed PMID: 25984581; eng. https://www.alzheimersanddementia.com/action/showCitFormats?pii=S1552-5260%2815%2900058-8&doi=10.1016%2Fj.jalz.2015.02.003
  • Di Stefano A, Iannitelli A, Laserra S, et al. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin Drug Deliv. 2011 May 01;8(5):581–603. DOI:10.1517/17425247.2011.561311.
  • Pezzini I, Mattoli V, Ciofani G. Mitochondria and neurodegenerative diseases: the promising role of nanotechnology in targeted drug delivery. Expert Opin Drug Deliv. 2017 Apr 03;14(4):513–523. DOI:10.1080/17425247.2016.1218461.
  • Gregori M, Taylor M, Salvati E, et al. Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer’s Abeta peptide. Nanomedicine. 2017 Feb;13(2):723–732. PubMed PMID: 27769888; eng.
  • Prince M, Comas-Herrera A, Knapp M, et al. Improving healthcare for people living with dementia. World Alzheimer Report 2016. London. p. 140.
  • Kaushik A, Jayant RD, Bhardwaj V, et al. Personalized nanomedicine for CNS diseases. Drug Discov Today. 2017 Nov 15. DOI:10.1016/j.drudis.2017.11.010. PubMed PMID: 29155026; eng.
  • Gauthier S, Molinuevo JL. Benefits of combined cholinesterase inhibitor and memantine treatment in moderate-severe Alzheimer’s disease. Alzheimers Dement. 2013 May;9(3):326–331. DOI:10.1016/j.jalz.2011.11.005. PubMed PMID: 23110864; eng.
  • Nagpal K, Singh SK, Mishra DN. Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opin Drug Deliv. 2013 Jan 01;10(7):927–955. DOI:10.1517/17425247.2013.762354.
  • Contestabile A. The history of the cholinergic hypothesis. Behav Brain Res. 2011 Aug 10;221(2):334–340. PubMed PMID: 20060018; eng. DOI:10.1016/j.bbr.2009.12.044
  • Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009 Apr;30(4):379–387. PubMed PMID: 19343058; PubMed Central PMCID: PMCPmc4002277. eng. DOI:10.1038/aps.2009.24
  • Conti E, Gregori M, Radice I, et al. Multifunctional liposomes interact with Abeta in human biological fluids: therapeutic implications for Alzheimer’s disease. Neurochem Int. 2017 Feb 24. DOI:10.1016/j.neuint.2017.02.012. PubMed PMID: 28238790; eng.
  • Brambilla D, Verpillot R, Le DB, et al. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS nano. 2012 Jul 24;6(7):5897–5908. PubMed PMID: 22686577; eng. DOI:10.1021/nn300489k
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science (New York, NY). 2002 Jul 19;297(5580):353–356. DOI:10.1126/science.1072994. PubMed PMID: 12130773; eng.
  • Bana L, Minniti S, Salvati E, et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Abeta aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine. 2014 Oct;10(7):1583–1590. PubMed PMID: 24333591; eng.
  • Sano M. Tarenflurbil: mechanisms and myths. Arch Neurol. 2010 Jun;67(6):750–752. DOI:10.1001/archneurol.2010.94. PubMed PMID: 20558395; PubMed Central PMCID: PMCPmc3526376. eng.
  • Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med. 2013 Jul 25;369(4):341–350. PubMed PMID: 23883379; eng.
  • Crehan H, Lemere CA. Chapter 7 - anti-amyloid-β immunotherapy for alzheimer’s disease A2. In: Wolfe MS, eds. Developing therapeutics for alzheimer’s disease. Academic Press: Boston; 2016. p. 193–226.
  • Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016 Sep 1;537(7618):50–56. PubMed PMID: 27582220; eng.
  • Castelli F, Puglia C, Sarpietro MG, et al. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. Int J Pharm. 2005 Nov 04;304(1–2):231–238. PubMed PMID: 16188405; eng.
  • Miller BW, Willett KC, Desilets AR. Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease. Ann Pharmacother. 2011 Nov;45(11):1416–1424. DOI:10.1345/aph.1Q238. PubMed PMID: 22028424; eng.
  • Parihar MS, Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci. 2004 Jun;11(5):456–467. DOI:10.1016/j.jocn.2003.12.007. PubMed PMID: 15177383; eng.
  • Iqbal K, Alonso AC, Chen S, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta. 2005 Jan 03;1739(2–3):198–210. PubMed PMID: 15615638; eng.
  • Martin L, Latypova X, Cm W, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev. 2013 Jan;12(1):289–309. DOI:10.1016/j.arr.2012.06.003. PubMed PMID: 22742992; eng.
  • Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta. 2014 Aug;1842(8):1219–1231. DOI:10.1016/j.bbadis.2013.09.010. PubMed PMID: 24071439; PubMed Central PMCID: PMCPmc3962811. eng.
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012 Jul 20;161(2):264–273. DOI:10.1016/j.jconrel.2011.08.017. PubMed PMID: 21872624; eng.
  • Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004 Oct;104(1):29–45. DOI:10.1016/j.pharmthera.2004.08.001. PubMed PMID: 15500907; eng.
  • Brasnjevic I, Steinbusch HW, Schmitz C, et al. Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol. 2009 Apr;87(4):212–251. PubMed PMID: 19395337; eng.
  • Su Y, Sinko PJ. Drug delivery across the blood–brain barrier: why is it difficult? how to measure and improve it? Expert Opin Drug Deliv. 2006 MAY 01;3(3):419–435. DOI:10.1517/17425247.3.3.419.
  • Rip J, Schenk GJ, De Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv. 2009 Mar 01;6(3):227–237. DOI:10.1517/17425240902806383.
  • Gaillard PJ, Visser CC, De Boer AG. Targeted delivery across the blood–brain barrier. Expert Opin Drug Deliv. 2005 Mar 01;2(2):299–309. DOI:10.1517/17425247.2.2.299.
  • Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. J Neurochem. 1998 May;70(5):1781–1792. PubMed PMID: 9572261; eng.
  • Choonara YE, Kumar P, Modi G, et al. Improving drug delivery technology for treating neurodegenerative diseases. Expert Opin Drug Deliv. 2016 Jul 02;13(7):1029–1043. DOI:10.1517/17425247.2016.1162152.
  • Pardridge WM. Drug targeting to the brain. Pharm Res. 2007 Sep;24(9):1733–1744. DOI:10.1007/s11095-007-9324-2. PubMed PMID: 17554607; eng.
  • Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier. Methods Enzymol. 2012;503:269–292. DOI:10.1016/b978-0-12-396962-0.00011-2. PubMed PMID: 22230573; eng.
  • Soni V, Jain A, Khare P, et al. Potential approaches for drug delivery to the brain: past, present, and future. Crit Rev Ther Drug Carrier Syst. 2010;27(3):187–236. PubMed PMID: 20540687; eng.
  • Jain KK. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond). 2012 Aug;7(8):1225–1233. DOI:10.2217/nnm.12.86. PubMed PMID: 22931448; eng.
  • Jain A, Sk J. Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit Rev Ther Drug Carrier Syst. 2015;32(2):149–180. PubMed PMID: 25955883; eng.
  • Antimisiaris SG, Mourtas S, Markoutsa E, et al. Nanoparticles for diagnosis and/or treatment of alzheimer’s disease. In: Advanced healthcare materials. John Wiley & Sons, Inc.; 2014. p. 87–179.
  • Saraiva C, Praca C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016 Aug 10;235:34–47. DOI:10.1016/j.jconrel.2016.05.044. PubMed PMID: 27208862; eng.
  • Kumaraswamy P, Sethuraman S, Krishnan UM. Development of a dual nanocarrier system as a potential stratagem against amyloid-induced toxicity. Expert Opin Drug Deliv. 2014 Aug 01;11(8):1131–1147. DOI:10.1517/17425247.2014.912211.
  • Sahni JK, Doggui S, Ali J, et al. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release. 2011 Jun 10;152(2):208–231. PubMed PMID: 21134407; eng.
  • Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–1681. PubMed PMID: 26601723; PubMed Central PMCID: PMCPmc4964712. eng.
  • Bonifacio BV, Silva PB, Ramos MA, et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1–15. DOI:10.2147/ijn.s52634. PubMed PMID: 24363556; PubMed Central PMCID: PMCPmc3862741. eng.
  • Sunasee R, Adokoh CK, Darkwa J, et al. Therapeutic potential of carbohydrate-based polymeric and nanoparticle systems. Expert Opin Drug Deliv. 2014 Jun 01;11(6):867–884. DOI:10.1517/17425247.2014.902048.
  • Lorscheidt S, Lamprecht A. Safety assessment of nanoparticles for drug delivery by means of classic in vitro assays and beyond. Expert Opin Drug Deliv. 2016 Nov 01;13(11):1545–1558. DOI:10.1080/17425247.2016.1198773.
  • Weissig V, Guzman-Villanueva D. Nanocarrier-based antioxidant therapy: promise or delusion? Expert Opin Drug Deliv. 2015 Nov 02;12(11):1783–1790. DOI:10.1517/17425247.2015.1063611.
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631. DOI:10.1146/annurev-pharmtox-010814-124852. PubMed PMID: 25340933; PubMed Central PMCID: PMCPmc5051266. eng.
  • Barbu E, É M, Tsibouklis J, et al. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier. Expert Opin Drug Deliv. 2009 Jun 01;6(6):553–565. DOI:10.1517/17425240902939143.
  • Tosi G, Costantino L, Ruozi B, et al. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv. 2008 Feb 01;5(2):155–174. DOI:10.1517/17425247.5.2.155.
  • Hartig W, Paulke BR, Varga C, et al. Electron microscopic analysis of nanoparticles delivering thioflavin-T after intrahippocampal injection in mouse: implications for targeting beta-amyloid in Alzheimer’s disease. Neurosci Lett. 2003 Feb 27;338(2):174–176. PubMed PMID: 12566180; eng.
  • Sanchez-Lopez E, Ettcheto M, Ma E, et al. New potential strategies for Alzheimer’s disease prevention: pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9. Nanomedicine. 2017 Apr;13(3):1171–1182. PubMed PMID: 27986603; eng.
  • Liu Y, An S, Li J, et al. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials. 2016 Feb;80:33–45. PubMed PMID: 26706474; eng.
  • Loureiro JA, Gomes B, Fricker G, et al. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces. 2016 Sep 01;145:8–13. DOI:10.1016/j.colsurfb.2016.04.041. PubMed PMID: 27131092; eng.
  • Bondi ML, Montana G, Craparo EF, et al. Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: preparation, characterization and cytotoxicity Studies. Curr Nanosci. 2009;5(1):26–32.
  • Patel PA, Patil SC, Kalaria DR, et al. Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A. Int J Pharm. 2013 Mar 25;446(1–2):16–23. PubMed PMID: 23410989; eng.
  • Do TD, Ul Amin F, Noh Y, et al. Guidance of magnetic nanocontainers for treating Alzheimer’s disease using an electromagnetic, targeted drug-delivery actuator. J Biomed Nanotechnol. 2016 Mar;12(3):569–574. PubMed PMID: 27280254; eng.
  • Agyare EK, Curran GL, Ramakrishnan M, et al. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer’s disease and cerebral amyloid angiopathy. Pharm Res. 2008 Nov;25(11):2674–2684. PubMed PMID: 18712585; PubMed Central PMCID: PMCPmc3766361. eng.
  • Baeza A, Colilla M, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv. 2015 Feb 01;12(2):319–337. DOI:10.1517/17425247.2014.953051.
  • Sagar V, Nair M. Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders. Expert Opin Drug Deliv. 2017;1–16. DOI:10.1080/17425247.2017.1297794
  • Alexander A, Ajazuddin, Patel RJ, et al. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release. 2016 Nov 10; 241:110–124. DOI:10.1016/j.jconrel.2016.09.017. PubMed PMID: 27663228; eng.
  • Alexander A, Saraf S, Saraf S. Understanding the role of poloxamer 407 based thermoreversible in situ gelling hydrogel for delivery of pegylated melphalan conjugate. Curr Drug Deliv. 2016;13(4):621–630. PubMed PMID: 26845559; eng.
  • Jeswani G, Alexander A, Saraf S, et al. Recent approaches for reducing hemolytic activity of chemotherapeutic agents. J Control Release. 2015 Aug 10;211:10–21. DOI:10.1016/j.jconrel.2015.06.001. PubMed PMID: 26047758; eng.
  • Alexander A, Saraf S, Saraf S. A comparative study of chitosan and poloxamer based thermosensitive hydrogel for the delivery of PEGylated melphalan conjugates. Drug Dev Ind Pharm. 2015;41(12):1954–1961. DOI:10.3109/03639045.2015.1011167. PubMed PMID: 25678314; eng.
  • Alexander A, Ajazuddin, Khan J, et al. Formulation and evaluation of chitosan-based long-acting injectable hydrogel for PEGylated melphalan conjugate. J Pharm Pharmacol. 2014 Sep;66(9):1240–1250. PubMed PMID: 24824413; eng.
  • Alexander A, Ajazuddin, Khan J, et al. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J Control Release. 2013 Dec 28;172(3):715–729. PubMed PMID: 24144918; eng.
  • Sahu S, Saraf S, Cd K, et al. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci. 2013 Jul 01;16(13):601–609. PubMed PMID: 24505982; eng.
  • Ajazuddin, Alexander A, Khan J, et al. Advancement in stimuli triggered in situ gelling delivery for local and systemic route. Expert Opin Drug Deliv. 2012 Dec;9(12):1573–1592. PubMed PMID: 23075325; eng.
  • Alexander A, Dwivedi S Ajazuddin, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012 Nov 28;164(1):26–40. PubMed PMID: 23064010; eng.
  • Grabrucker AM, Ruozi B, Belletti D, et al. Nanoparticle transport across the blood brain barrier. Tissue barriers. 2016 Jan-Mar;4(1):e1153568. PubMed PMID: 27141426; PubMed Central PMCID: PMCPmc4836460. eng.
  • Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science (New York, NY). 1983 Mar 11;219(4589):1184–1190. PubMed PMID: 6338589; eng.
  • Adem A, Mohammed AK, Winblad B. Multiple effects of tetrahydroaminoacridine on the cholinergic system: biochemical and behavioural aspects. Journal of neural transmission. Parkinsons Dis. 1990;2(2):113–128. PubMed PMID: 2222779; eng.
  • Reichman WE. Current pharmacologic options for patients with Alzheimer’s disease. Ann Gen Hosp Psychiatry. 2003 Jan 29;2(1):1. PubMed PMID: 12605726; PubMed Central PMCID: PMCPmc149431. eng.
  • Hartvig P, Askmark H, Aquilonius SM, et al. Clinical pharmacokinetics of intravenous and oral 9-amino-1,2,3,4-tetrahydroacridine, tacrine. Eur J Clin Pharmacol. 1990;38(3):259–263. PubMed PMID: 2340845; eng.
  • Luppi B, Bigucci F, Cerchiara T, et al. Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opin Drug Deliv. 2010 Jul 01;7(7):811–828. DOI:10.1517/17425247.2010.495981.
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004 Nov 05;100(1):5–28. DOI:10.1016/j.jconrel.2004.08.010. PubMed PMID: 15491807; eng.
  • Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv. 2010 Oct 01;7(10):1191–1207. DOI:10.1517/17425247.2010.514604.
  • Felt O, Furrer P, Mayer JM, et al. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int J Pharm. 1999 Apr 15;180(2):185–193. PubMed PMID: 10370189; eng.
  • Amiji MM. Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis. Biomaterials. 1995 May;16(8):593–599. PubMed PMID: 7548609; eng.
  • Mittal S, Cohen A, Maysinger D. In vitro effects of brain derived neurotrophic factor released from microspheres. Neuroreport. 1994 Dec 20;5(18):2577–2582. PubMed PMID: 7696608; eng.
  • Aktas Y, Andrieux K, Alonso MJ, et al. Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int J Pharm. 2005 Jul 25;298(2):378–383. PubMed PMID: 15893439; eng.
  • Wu Y, Yang W, Wang C, et al. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm. 2005 May 13;295(1–2):235–245. PubMed PMID: 15848008; eng.
  • Begum AN, Jones MR, Lim GP, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther. 2008 Jul;326(1):196–208. PubMed PMID: 18417733; PubMed Central PMCID: PMCPmc2527621. eng.
  • Genta I, Costantini M, Asti A, et al. Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Carbohydr Polym. 1998 Jul 01;36(2):81–88. DOI:10.1016/S0144-8617(98)00022-8.
  • Wilson B, Samanta MK, Santhi K, et al. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine. 2010 Feb;6(1):144–152. PubMed PMID: 19446656; eng.
  • Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug safety. 1998 Dec;19(6):465–480. PubMed PMID: 9880090; eng.
  • Williams BR, Nazarians A, Gill MA. A review of rivastigmine: a reversible cholinesterase inhibitor. Clin Ther. 2003 Jun;25(6):1634–1653. PubMed PMID: 12860489; eng.
  • Wilson B, Samanta MK, Santhi K, et al. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008 Mar 20; 1200:159–168. DOI:10.1016/j.brainres.2008.01.039. PubMed PMID: 18291351; eng.
  • Kreuter J, Alyautdin RN, Kharkevich DA, et al. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 1995 Mar 13;674(1):171–174. PubMed PMID: 7773690; eng.
  • Schroeder U, Sommerfeld P, Ulrich S, et al. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci. 1998 Nov;87(11):1305–1307. PubMed PMID: 9811481; eng.
  • Alyautdin RN, Tezikov EB, Ramge P, et al. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul. 1998 Jan-Feb;15(1):67–74. PubMed PMID: 9463808; eng.
  • Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res. 1999 Oct;16(10):1564–1569. PubMed PMID: 10554098; eng.
  • Alyautdin RN, Petrov VE, Langer K, et al. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res. 1997 Mar;14(3):325–328. PubMed PMID: 9098875; eng.
  • Friese A, Seiller E, Quack G, et al. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm. 2000 Mar;49(2):103–109. PubMed PMID: 10704892; eng.
  • Verdun C, Couvreur P, Vranckx H, et al. Development of a nanoparticle controlled-release formulation for human use. ‎J Control Release. 1986 Jan 01;3(1):205–210. DOI:10.1016/0168-3659(86)90081-7.
  • Reddy LH, Murthy RS. Pharmacokinetics and biodistribution studies of Doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles synthesized by two different techniques. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2004 Dec;148(2):161–166. PubMed PMID: 15744366; eng.
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001 Mar 23;47(1):65–81. PubMed PMID: 11251246; eng.
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002 Jun;10(4):317–325. PubMed PMID: 12164380; eng.
  • Atwood CS, Obrenovich ME, Liu T, et al. Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain research Brain research reviews. 2003 Sep;43(1):1–16. PubMed PMID: 14499458; eng.
  • Dong J, Atwood CS, Anderson VE, et al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry. 2003 Mar 18;42(10):2768–2773. PubMed PMID: 12627941; eng.
  • Ehmann WD, Markesbery WR, Alauddin M, et al. Brain trace elements in Alzheimer’s disease. Neurotoxicology. 1986 Spring;7(1):195–206. PubMed PMID: 3714121; eng.
  • Cherny RA, Barnham KJ, Lynch T, et al. Chelation and intercalation: complementary properties in a compound for the treatment of Alzheimer’s disease. J Struct Biol. 2000 Jun;130(2–3):209–216. PubMed PMID: 10940226; eng.
  • Nguyen M, Robert A, Sournia-Saquet A, et al. Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer’s disease. Chemistry. 2014 May 26;20(22):6771–6785. PubMed PMID: 24797103; eng.
  • Franz KJ. Clawing back: broadening the notion of metal chelators in medicine. Curr Opin Chem Biol. 2013 Apr;17(2):143–149. DOI:10.1016/j.cbpa.2012.12.021. PubMed PMID: 23332666; PubMed Central PMCID: PMCPmc3634900. eng.
  • Jagota S, Rajadas J. Effect of phenolic compounds against Abeta aggregation and Abeta-induced toxicity in transgenic C. elegans. Neurochem Res. 2012 Jan;37(1):40–48. PubMed PMID: 21858698; eng. DOI:10.1007/s11064-011-0580-5
  • Ohta K, Mizuno A, Li S, et al. Endoplasmic reticulum stress enhances gamma-secretase activity. Biochem Biophys Res Commun. 2011 Dec 16;416(3–4):362–366. PubMed PMID: 22115781; eng.
  • Sun S, Chen W, Cao W, et al. Research on the chelation between quercetin and Cr(III) ion by Density Functional Theory (DFT) method. J Mol Structure: THEOCHEM. 2008 Jul 15;860(1–3):40–44. DOI:10.1016/j.theochem.2008.03.020.
  • Spencer JP, Chowrimootoo G, Choudhury R, et al. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett. 1999 Sep 17;458(2):224–230. PubMed PMID: 10481070; eng.
  • Jain AK, Das M, Swarnakar NK, et al. Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst. 2011;28(1):1–45. PubMed PMID: 21395514; eng.
  • Ansari MA, Abdul HM, Joshi G, et al. Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer’s disease. J Nutr Biochem. 2009 Apr;20(4):269–275. PubMed PMID: 18602817; PubMed Central PMCID: PMCPmc2737260. eng.
  • Sun D, Li N, Zhang W, et al. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B Biointerfaces. 2016 Dec 01; 148:116–129. DOI:10.1016/j.colsurfb.2016.08.052. PubMed PMID: 27591943; eng.
  • Cui Z, Lockman PR, Atwood CS, et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm. 2005 Feb;59(2):263–272. PubMed PMID: 15661498; eng.
  • Martin FJ, Papahadjopoulos D. Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. J Biol Chem. 1982 Jan 10;257(1):286–288. PubMed PMID: 7053372; eng.
  • Kato N, Nakamura M, Uchiyama T. 1H NMR studies of the reactions of copper(I) and copper(II) with D-penicillamine and glutathione. J Inorg Biochem. 1999 Jun 15;75(2):117–121. PubMed PMID: 10450606; eng.
  • De Boer AG, Gaillard PJ. Strategies to improve drug delivery across the blood-brain barrier. Clin Pharmacokinet. 2007;46(7):553–576. DOI:10.2165/00003088-200746070-00002. PubMed PMID: 17596102; eng.
  • Hu K, Li J, Shen Y, et al. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release. 2009 Feb 20;134(1):55–61. PubMed PMID: 19038299; eng.
  • Huang R, Ke W, Liu Y, et al. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials. 2008 Jan;29(2):238–246. PubMed PMID: 17935779; eng.
  • Suzuki YA, Lopez V, Lonnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci. 2005 Nov;62(22):2560–2575. DOI:10.1007/s00018-005-5371-1. PubMed PMID: 16261254; eng.
  • Huang RQ, Ke WL, Qu YH, et al. Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain. J Biomed Sci. 2007 Jan;14(1):121–128. PubMed PMID: 17048089; eng.
  • Zhong ZR, Liu J, Deng Y, et al. Preparation and characterization of a novel nonviral gene transfer system: procationic-liposome-protamine-DNA complexes. Drug Deliv. 2007 Mar;14(3):177–183. PubMed PMID: 17454038; eng.
  • Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx: journal Am Soc Exp NeuroTherapeutics. 2005 Jan;2(1):108–119. DOI:10.1602/neurorx.2.1.108. PubMed PMID: 15717062; PubMed Central PMCID: PMCPmc539329. eng.
  • Lu W, Zhang Y, Tan YZ, et al. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release. 2005 Oct 20;107(3):428–448. PubMed PMID: 16176844; eng.
  • Olivier JC, Huertas R, Lee HJ, et al. Synthesis of pegylated immunonanoparticles. Pharm Res. 2002 Aug;19(8):1137–1143. PubMed PMID: 12240939; eng.
  • Agrawal M, Ajazuddin, Tripathi DK, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017 May 24;260:61–77. DOI:10.1016/j.jconrel.2017.05.019. PubMed PMID: 28549949; eng.
  • Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials. 2014 Jan;35(1):456–465. PubMed PMID: 24099709; eng.
  • Xu YL, Zhao J, Ma RY, et al. [Influence of H102 on the expression of amyloid protein and amyloid precursor protein in the hippocampus of APP695 transgenic mice]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2010 Aug;26(3):302–306. PubMed PMID: 21038675; chi.
  • Soto C, Estrada L. Amyloid inhibitors and beta-sheet breakers. Subcell Biochem. 2005;38:351–364. PubMed PMID: 15709488; eng.
  • Zhang C, Zheng X, Wan X, et al. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J Control Release. 2014 Oct 28;192:317–324. DOI:10.1016/j.jconrel.2014.07.050. PubMed PMID: 25102404; eng.
  • Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers. In: Torchilin V, editor. Multifunctional pharmaceutical nanocarriers. New York, NY: Springer New York; 2008. p. 67–80.
  • Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art. Saudi Pharm J. 2016 Mar;24(2):133–139. DOI:10.1016/j.jsps.2014.04.001. PubMed PMID: 27013905; PubMed Central PMCID: PMCPmc4792897. eng.
  • Eckmann DM, Composto RJ, Tsourkas A, et al. Nanogel carrier design for targeted drug delivery. Journal materials chemistry B. 2014 Dec 14;2(46):8085–8097. PubMed PMID: 25485112; PubMed Central PMCID: PMCPmc4251498. eng.
  • Dorwal D. Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci. 2012;4(3):67–74.
  • Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat reviews Neurosci. 2005 Jan;6(1):11–22. DOI:10.1038/nrn1587. PubMed PMID: 15611723; eng.
  • Ikeda K, Okada T, Sawada S, et al. Inhibition of the formation of amyloid beta-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett. 2006 Dec 11;580(28–29):6587–6595. PubMed PMID: 17125770; eng.
  • Morimoto N, Endo T, Iwasaki Y, et al. Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: interaction with proteins and chaperone-like activity. Biomacromolecules. 2005 Jul-Aug;6(4):1829–1834. PubMed PMID: 16004415; eng.
  • Ayame H, Morimoto N, Akiyoshi K. Self-assembled cationic nanogels for intracellular protein delivery. Bioconjug Chem. 2008 Apr;19(4):882–890. DOI:10.1021/bc700422s. PubMed PMID: 18336000; eng.
  • Pilakka-Kanthikeel S, Raymond A, Vs A, et al. Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1)-facilitated HIV restriction in astrocytes is regulated by miRNA-181a. J Neuroinflammation. 2015 Apr 8;12:66. 10.1186/s12974-015-0285-9. PubMed PMID: 25890101; PubMed Central PMCID: PMCPmc4410490. eng.
  • Boridy S, Takahashi H, Akiyoshi K, et al. The binding of pullulan modified cholesteryl nanogels to Abeta oligomers and their suppression of cytotoxicity. Biomaterials. 2009 Oct;30(29):5583–5591. DOI:10.1016/j.biomaterials.2009.06.010. PubMed PMID: 19577802; eng.
  • Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523–580. PubMed PMID: 20402623; PubMed Central PMCID: PMCPmc2885142. eng.
  • Chen ZL, Huang M, Wang XR, et al. Transferrin-modified liposome promotes alpha-mangostin to penetrate the blood-brain barrier. Nanomedicine. 2016 Feb;12(2):421–430. PubMed PMID: 26711963; eng.
  • Tanifum EA, Dasgupta I, Srivastava M, et al. Intravenous delivery of targeted liposomes to amyloid-beta pathology in APP/PSEN1 transgenic mice. PloS one. 2012;7(10):e48515. DOI:10.1371/journal.pone.0048515. PubMed PMID: 23119043; PubMed Central PMCID: PMCPmc3485335. eng.
  • Kuo YC, Chou PR. Neuroprotection against degeneration of sk-N-mc cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin. J Pharm Sci. 2014 Aug;103(8):2484–2497. DOI:10.1002/jps.24081. PubMed PMID: 25041794; eng.
  • Kuo YC, Wang CT. Protection of SK-N-MC cells against beta-amyloid peptide-induced degeneration using neuron growth factor-loaded liposomes with surface lactoferrin. Biomaterials. 2014 Jul;35(22):5954–5964. DOI:10.1016/j.biomaterials.2014.03.082. PubMed PMID: 24746790; eng.
  • Kuo YC, Lin CY. Targeting delivery of liposomes with conjugated p-aminophenyl-alpha-d-manno-pyranoside and apolipoprotein E for inhibiting neuronal degeneration insulted with beta-amyloid peptide. J Drug Target. 2015 Feb;23(2):147–158. DOI:10.3109/1061186x.2014.965716. PubMed PMID: 25268274; eng.
  • Chen H, Tang L, Qin Y, et al. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur journal pharmaceutical sciences: official journal Eur Fed Pharm Sci. 2010 May 12;40(2):94–102. PubMed PMID: 20298779; eng.
  • Yu Y, Pang Z, Lu W, et al. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery. Pharm Res. 2012 Jan;29(1):83–96. PubMed PMID: 21979908; eng.
  • Xie F, Yao N, Qin Y, et al. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting. Int J Nanomedicine. 2012;7:163–175. DOI:10.2147/ijn.s23771. PubMed PMID: 22275832; PubMed Central PMCID: PMCPmc3263409. eng.
  • Rotman M, Welling MM, Bunschoten A, et al. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer’s disease. J Control Release. 2015 Apr 10;203:40–50. DOI:10.1016/j.jconrel.2015.02.012. PubMed PMID: 25668771; eng.
  • Lindqvist A, Rip J, Gaillard PJ, et al. Enhanced brain delivery of the opioid peptide DAMGO in glutathione pegylated liposomes: a microdialysis study. Mol Pharm. 2013 May 06;10(5):1533–1541. PubMed PMID: 22934681; eng.
  • Rip J, Chen L, Hartman R, et al. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target. 2014 Jun;22(5):460–467. PubMed PMID: 24524555; PubMed Central PMCID: PMCPmc4651142. eng.
  • Balducci C, Mancini S. Multifunctional liposomes reduce brain beta-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. Journal of Neuroscience. 2014 Oct 15;34(42):14022–14031. DOI:10.1523/jneurosci.0284-14.2014. PubMed PMID: 25319699.
  • Mourtas S, Lazar AN, Markoutsa E, et al. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem. 2014 Jun 10;80:175–183. DOI:10.1016/j.ejmech.2014.04.050. PubMed PMID: 24780594; eng.
  • Ordonez-Gutierrez L, Re F, Bereczki E, et al. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-beta levels in APP/PS1 transgenic mice. Nanomedicine. 2015 Feb;11(2):421–430. PubMed PMID: 25461285; eng.
  • Zheng X, Shao X, Zhang C, et al. Intranasal H102 Peptide-Loaded Liposomes for Brain Delivery to Treat Alzheimer’s Disease. Pharm Res. 2015 Dec;32(12):3837–3849. 10.1007/s11095-015-1744-9. PubMed PMID: 26113236; eng.
  • Li W, Zhou Y, Zhao N, et al. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol. 2012 Sep;34(2):272–279. PubMed PMID: 22613079; eng.
  • Yang ZZ, Zhang YQ, Wang ZZ, et al. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm. 2013 Aug 16;452(1–2):344–354. PubMed PMID: 23680731; eng.
  • Blennow K, De Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet (London, England). 2006 Jul 29;368(9533):387–403. DOI:10.1016/s0140-6736(06)69113-7. PubMed PMID: 16876668; eng.
  • Raschetti R, Albanese E, Vanacore N, et al. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med. 2007 Nov 27;4(11):e338. PubMed PMID: 18044984; PubMed Central PMCID: PMCPmc2082649. eng.
  • Camps P, Munoz-Torrero D. Cholinergic drugs in pharmacotherapy of Alzheimer’s disease. Mini Rev Med Chem. 2002 Feb;2(1):11–25. PubMed PMID: 12369954; eng.
  • Wang RH, Bejar C, Weinstock M. Gender differences in the effect of rivastigmine on brain cholinesterase activity and cognitive function in rats. Neuropharmacology. 2000 Jan 28;39(3):497–506. PubMed PMID: 10698015; eng.
  • Ismail MF, Elmeshad AN, Salem NA. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer’s disease. Int J Nanomedicine. 2013;8:393–406. DOI:10.2147/ijn.s39232. PubMed PMID: 23378761; PubMed Central PMCID: PMCPmc3558309. eng.
  • Matsuoka Y, Saito M, LaFrancois J, et al. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. J neuroscience: official journal Soc Neurosci. 2003 Jan 01;23(1):29–33. PubMed PMID: 12514198; eng.
  • Mancini S, Minniti S, Gregori M, et al. The hunt for brain Abeta oligomers by peripherally circulating multi-functional nanoparticles: potential therapeutic approach for Alzheimer disease. Nanomedicine. 2016 Jan;12(1):43–52. DOI:10.1016/j.nano.2015.09.003. PubMed PMID: 26410276; eng.
  • Mourtas S, Canovi M, Zona C, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-beta1-42 peptide. Biomaterials. 2011 Feb;32(6):1635–1645. PubMed PMID: 21131044; eng.
  • Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv. 2012 Nov 01;9(11):1347–1364. DOI:10.1517/17425247.2012.724676.
  • Sarkar G, Curran GL, Mahlum E, et al. A carrier for non-covalent delivery of functional beta-galactosidase and antibodies against amyloid plaques and IgM to the brain. PloS one. 2011;6(12):e28881. DOI:10.1371/journal.pone.0028881. PubMed PMID: 22216132; PubMed Central PMCID: PMCPmc3244419. eng.
  • Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis. 2010 Jan;37(1):48–57. DOI:10.1016/j.nbd.2009.07.028. PubMed PMID: 19664710; eng.
  • Shi Y, Su Z, Li S, et al. Multistep targeted nano drug delivery system aiming at leukemic stem cells and minimal residual disease. Mol Pharm. 2013 Jun 03;10(6):2479–2489. DOI:10.1021/mp4001266.
  • Lim S-J, Kim C-K. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm. 2002 Aug 28;243(1):135–146. DOI:10.1016/S0378-5173(02)00269-7.
  • Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015 Apr;5(2):123–127. 10.1007/s13205-014-0214-0. PubMed PMID: 28324579; PubMed Central PMCID: PMCPmc4362737. eng.
  • Yang P, Cai X, Zhou K, et al. A novel oil-body nanoemulsion formulation of ginkgolide B: pharmacokinetics study and in vivo pharmacodynamics evaluations. J Pharm Sci. 2014 Apr;103(4):1075–1084. PubMed PMID: 24496859; eng.
  • Kuo F, Subramanian B, Kotyla T, et al. Nanoemulsions of an anti-oxidant synergy formulation containing gamma tocopherol have enhanced bioavailability and anti-inflammatory properties. Int J Pharm. 2008 Nov 03;363(1–2):206–213. PubMed PMID: 18718513; eng.
  • Wu H, Zhou A, Lu C, et al. Examination of lymphatic transport of puerarin in unconscious lymph duct-cannulated rats after administration in microemulsion drug delivery systems. Eur journal pharmaceutical sciences: official journal Eur Fed Pharm Sci. 2011 Mar 18;42(4):348–353. PubMed PMID: 21216284; eng.
  • Gaoe H, Pang Z, Pan S, et al. Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharm Res. 2012 Feb;35(2):333–341. PubMed PMID: 22370788; eng.
  • Aguzzi A, O’Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. ‎Nat Rev Drug. 2010 Mar;9(3):237–248. DOI:10.1038/nrd3050. PubMed PMID: 20190788; eng.
  • Morales R, Green KM, Soto C. Cross currents in protein misfolding disorders: interactions and therapy. CNS Neurol Disord Drug Targets. 2009 Nov;8(5):363–371. PubMed PMID: 19702573; PubMed Central PMCID: PMCPmc2804467. eng.
  • Ashe KH, Aguzzi A. Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion. 2013 Jan-Feb;7(1):55–59. DOI:10.4161/pri.23061. PubMed PMID: 23208281; PubMed Central PMCID: PMCPmc3609051. eng.
  • Perluigi M, Coccia R, Butterfield DA. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal. 2012 Dec 01;17(11):1590–1609. DOI:10.1089/ars.2011.4406. PubMed PMID: 22114878; PubMed Central PMCID: PMCPmc3449441. eng.
  • Schubert SY, Lansky EP, Neeman I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J Ethnopharmacol. 1999 Jul;66(1):11–17. PubMed PMID: 10432202; eng.
  • Kaufman M, Wiesman Z. Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylglycerol fingerprinting. J Agric Food Chem. 2007 Dec 12;55(25):10405–10413. DOI:10.1021/jf072741q. PubMed PMID: 18004807; eng.
  • Shi C, Wu F, Zhu XC, et al. Incorporation of beta-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3beta signaling. Biochim Biophys Acta. 2013 Mar;1830(3):2538–2544. PubMed PMID: 23266618; eng.
  • Friedman-Levi Y, Meiner Z, Canello T, et al. Fatal prion disease in a mouse model of genetic E200K Creutzfeldt-Jakob disease. PLoS Pathog. 2011 Nov;7(11):e1002350. PubMed PMID: 22072968; PubMed Central PMCID: PMCPmc3207931. eng.
  • Sawant RR, Torchilin VP. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting. Mol Membr Biol. 2010 Oct;27(7):232–246. DOI:10.3109/09687688.2010.516276. PubMed PMID: 20929339; eng.
  • Mizrahi M, Friedman-Levi Y, Larush L, et al. Pomegranate seed oil nanoemulsions for the prevention and treatment of neurodegenerative diseases: the case of genetic CJD. Nanomedicine. 2014 Aug;10(6):1353–1363. DOI:10.1016/j.nano.2014.03.015. PubMed PMID: 24704590; eng.
  • Yankner BA. Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron. 1996 May;16(5):921–932. PubMed PMID: 8630250; eng.
  • Shi C, Zhao L, Zhu B, et al. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against beta-amyloid peptide-induced toxicity in SH-SY5Y cells. Chem Biol Interact. 2009 Sep 14;181(1):115–123. PubMed PMID: 19464278; eng.
  • Xiao Q, Wang C, Li J, et al. Ginkgolide B protects hippocampal neurons from apoptosis induced by beta-amyloid 25-35 partly via up-regulation of brain-derived neurotrophic factor. Eur J Pharmacol. 2010 Nov 25;647(1–3):48–54. PubMed PMID: 20709055; eng.
  • Misra S, Chopra K, Sinha VR, et al. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016 May;23(4):1434–1443. DOI:10.3109/10717544.2015.1089956. PubMed PMID: 26405825; eng.
  • Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009 Jul;71(4):349–358. DOI:10.4103/0250-474x.57282. PubMed PMID: 20502539; PubMed Central PMCID: PMCPmc2865805. eng.
  • Patel M, Souto EB, Singh KK. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin Drug Deliv. 2013 Jul 01;10(7):889–905. DOI:10.1517/17425247.2013.784742.
  • Sachdeva AK, Misra S, Pal Kaur I, et al. Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: behavioral and biochemical evidence. Eur J Pharmacol. 2015 Jan 15;747:132–140. DOI:10.1016/j.ejphar.2014.11.014. PubMed PMID: 25449035; eng.
  • Laserra S, Basit A, Sozio P, et al. Solid lipid nanoparticles loaded with lipoyl-memantine codrug: preparation and characterization. Int J Pharm. 2015 May 15;485(1–2):183–191. PubMed PMID: 25747452; eng.
  • Esposito E, Fantin M, Marti M, et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res. 2008 Jul;25(7):1521–1530. PubMed PMID: 18172580; eng.
  • Kaur IP, Bhandari R, Bhandari S, et al. Potential of solid lipid nanoparticles in brain targeting. J Control Release. 2008 Apr 21;127(2):97–109. PubMed PMID: 18313785; eng.
  • Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289–300. PubMed PMID: 18019829; PubMed Central PMCID: PMCPmc2676658. eng.
  • Dhawan K, Dhawan S, Sharma A. Passiflora: a review update. J Ethnopharmacol. 2004 Sep;94(1):1–23. DOI:10.1016/j.jep.2004.02.023. PubMed PMID: 15261959; eng.
  • Cacciatore I, Ciulla M, Fornasari E, et al. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv. 2016 Aug 02;13(8):1121–1131. DOI:10.1080/17425247.2016.1178237.
  • Huber A, Stuchbury G, Burkle A, et al. Neuroprotective therapies for Alzheimer’s disease. Curr Pharm Des. 2006;12(6):705–717. PubMed PMID: 16472161; eng.
  • Richard PU, Duskey JT, Stolarov S, et al. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv. 2015 Sep 02;12(9):1527–1545. DOI:10.1517/17425247.2015.1036738.
  • Kitagawa S, Tanaka Y, Tanaka M, et al. Enhanced skin delivery of quercetin by microemulsion. J Pharm Pharmacol. 2009 Jul;61(7):855–860. PubMed PMID: 19589226; eng.
  • Bondi ML, Craparo EF, Giammona G, et al. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond). 2010 Jan;5(1):25–32. PubMed PMID: 20025461; eng.
  • Wong HL, Chattopadhyay N, Wu XY, et al. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev. 2010 Mar 18;62(4–5):503–517. PubMed PMID: 19914319; eng.
  • Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol. 2011 Mar;63(3):342–351. DOI:10.1111/j.2042-7158.2010.01225.x. PubMed PMID: 21749381; eng.
  • Bhat BG, Chandrasekhara N. Studies on the metabolism of piperine: absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology. 1986 Jul;40(1):83–92. PubMed PMID: 3715893; eng.
  • Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol. 2004 May;4(5):484–488. PubMed PMID: 15503433; eng.
  • Wagner S, Zensi A, Wien SL, et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PloS one. 2012;7(3):e32568. DOI:10.1371/journal.pone.0032568. PubMed PMID: 22396775; PubMed Central PMCID: PMCPmc3291552. eng.
  • Yusuf M, Khan M, Khan RA, et al. Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target. 2012 Dec 11. DOI:10.3109/1061186x.2012.747529. PubMed PMID: 23231324; eng.
  • Parihar VK, Prabhakar KR, Veerapur VP, et al. Effect of sesamol on radiation-induced cytotoxicity in Swiss albino mice. Mutat Res. 2006 Dec 10;611(1–2):9–16. PubMed PMID: 17045515; eng.
  • Prasad NR, Mahesh T, Menon VP, et al. Photoprotective effect of sesamol on UVB-radiation induced oxidative stress in human blood lymphocytes in vitro. Environ Toxicol Pharmacol. 2005 Jul;20(1):1–5. PubMed PMID: 21783559; eng.
  • Hou RC, Chen YS, Chen CH, et al. Protective effect of 1,2,4-benzenetriol on LPS-induced NO production by BV2 microglial cells. J Biomed Sci. 2006 Jan;13(1):89–99. PubMed PMID: 16308662; eng.
  • Sharma S, Kaur IP. Development and evaluation of sesamol as an antiaging agent. Int J Dermatol. 2006 Mar;45(3):200–208. DOI:10.1111/j.1365-4632.2004.02537.x. PubMed PMID: 16533216; eng.
  • Maelicke A, Samochocki M, Jostock R, et al. Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry. 2001 Feb 01;49(3):279–288. PubMed PMID: 11230879; eng.
  • Hernandez CM, Kayed R, Zheng H, et al. Loss of alpha7 nicotinic receptors enhances beta-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease. J neuroscience: official journal Soc Neurosci. 2010 Feb 17;30(7):2442–2453. PubMed PMID: 20164328; PubMed Central PMCID: PMCPmc2947456. eng.
  • Corrigan OI, Li X. Quantifying drug release from PLGA nanoparticulates. Eur journal pharmaceutical sciences: official journal Eur Fed Pharm Sci. 2009 Jun 28;37(3–4):477–485. DOI:10.1016/j.ejps.2009.04.004. PubMed PMID: 19379812; eng.
  • Sozio P, Cerasa LS, Laserra S, et al. Memantine-sulfur containing antioxidant conjugates as potential prodrugs to improve the treatment of Alzheimer’s disease. Eur journal pharmaceutical sciences: official journal Eur Fed Pharm Sci. 2013 May 13;49(2):187–198. PubMed PMID: 23454012; eng.
  • Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014 Jan;76(Pt A):27–50. DOI:10.1016/j.neuropharm.2013.07.004. PubMed PMID: 23891641; eng.
  • Shahgaldian P, Da Silva E, Coleman AW, et al. Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): a detailed study of preparation and stability parameters. Int J Pharm. 2003 Mar 06;253(1–2):23–38. PubMed PMID: 12593934; eng.
  • Khan S, Baboota S, Ali J, et al. Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig. 2015 Oct-Dec;5(4):182–191. PubMed PMID: 26682188; PubMed Central PMCID: PMCPmc4674999. eng.
  • Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002 Aug 21;242(1–2):121–128. PubMed PMID: 12176234; eng.
  • Varshosaz J, Eskandari S, Tabakhian M. Production and optimization of valproic acid nanostructured lipid carriers by the Taguchi design. Pharm Dev Technol. 2010 Jan-Feb;15(1):89–96. DOI:10.3109/10837450903013568. PubMed PMID: 19552542; eng.
  • Lancelot A, Sierra T, Serrano JL. Nanostructured liquid-crystalline particles for drug delivery. Expert Opin Drug Deliv. 2014 Apr 01;11(4):547–564. DOI:10.1517/17425247.2014.884556.
  • Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009 Jan 21;366(1–2):170–184. DOI:10.1016/j.ijpharm.2008.10.003. PubMed PMID: 18992314; eng.
  • Kim JO, Kabanov AV, Bronich TK. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release. 2009 Sep 15;138(3):197–204. DOI:10.1016/j.jconrel.2009.04.019. PubMed PMID: 19386272; PubMed Central PMCID: PMCPmc2728168. eng.
  • Liu J, Lee H, Allen C. Formulation of drugs in block copolymer micelles: drug loading and release. Curr Pharm Des. 2006;12(36):4685–4701. PubMed PMID: 17168772; eng.
  • Huynh NT, Passirani C, Saulnier P, et al. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009 Sep 11;379(2):201–209. PubMed PMID: 19409468; eng.
  • Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004 May 07;56(9):1257–1272. PubMed PMID: 15109768; eng. DOI:10.1016/j.addr.2003.12.002
  • Lambert JD, Hong J, Kim DH, et al. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. J Nutr. 2004 Aug;134(8):1948–1952. PubMed PMID: 15284381; eng.
  • Smith A, Giunta B, Pc B, et al. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm. 2010 Apr 15;389(1–2):207–212. PubMed PMID: 20083179; eng.
  • Nanjwade BK, Kadam VT, Manvi FV. Formulation and characterization of nanostructured lipid carrier of ubiquinone (Coenzyme Q10). J Biomed Nanotechnol. 2013 Mar;9(3):450–460. PubMed PMID: 23621001; eng.
  • Arroyo A, Navarro F, Gomez-Diaz C, et al. Interactions between ascorbyl free radical and coenzyme Q at the plasma membrane. J Bioenerg Biomembr. 2000 Apr;32(2):199–210. PubMed PMID: 11768753; eng.
  • Jores K, Mehnert W, Drechsler M, et al. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release. 2004 Mar 05;95(2):217–227. PubMed PMID: 14980770; eng.
  • Hu FQ, Jiang SP, Du YZ, et al. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces. 2005 Nov 10;45(3–4):167–173. PubMed PMID: 16198092; eng.
  • Bahadar H, Maqbool F, Niaz K, et al. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20(1):1–11. PubMed PMID: 26286636; PubMed Central PMCID: PMCPmc4689276. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.