558
Views
4
CrossRef citations to date
0
Altmetric
Review

Silica nanoparticles on the oral delivery of insulin

, , , , , , , , , & show all
Pages 805-820 | Received 30 Mar 2018, Accepted 18 Jul 2018, Published online: 25 Jul 2018

References

  • Banting F, Best CH, Collip JB, et al. Pancreatic extracts in the treatment of diabetes mellitus. CAN MED ASSOC J. 1922;12(3):141.
  • Kaklotar D, Agrawal P, Abdulla A, et al. Transition from passive to active targeting of oral insulin nanomedicines: enhancement in bioavailability and glycemic control in diabetes. NANOMEDICINE-UK. 2016;11(11):1465–1486.
  • Owens DR. New horizons—alternative routes for insulin therapy. NAT REV DRUG DISCOV. 2002;1(7):529–540.
  • Lakkireddy HR, Urmann M, Besenius M, et al. Oral delivery of diabetes peptides—comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. ADV DRUG DELIVER REV. 2016;106:196–222.
  • Aguirre TA, Teijeiroosorio D, Rosa M, et al. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. ADV DRUG DELIVER REV. 2016;106:223–241.
  • Fretzen A, Witowski S, Grossi A, et al. inventors; Google Patents, assignee. Formulations Comprising Linaclotide. 2011. United States: Publication number: 20110059903
  • Gedawy A, Martinez J, Al-Salami H, et al. Oral insulin delivery: existing barriers and current counter-strategies. J PHARM PHARMACOL. 2018;70:2.
  • Vincent C. Inventor; Google Patents, assignee. Process for producing low-bulk density silica. 1971. United States. Publisher number: 3556725.
  • Kresge C, Leonowicz M, Roth W, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(6397):710–712.
  • Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc. 1998;120(24):6024–6036.
  • Schmidt-Winkel P, Lukens WW, Zhao D, et al. Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc. 1999;121(1):254–255.
  • Choi SR, Jang DJ, Kim S, et al. Polymer-coated spherical mesoporous silica for pH-controlled delivery of insulin. J MATER CHEM B. 2014;2(6):616–619.
  • Panessa-Warren BJ, Warrren JB, Maye MM, et al. Nanoparticle Interactions with Living Systems: in Vivo and In Vitro Biocompatibility. Berlin Heidelberg: Springer; 2009.
  • Meynen V, Cool P, Vansant E. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials. 2009;125(3):170–223.
  • Mahkam M, Pakravan A. Synthesis and Characterization of pH‐Sensitive Positive‐charge Silica Nanoparticles for Oral Anionic Drug Delivery. J CHIN CHEM SOC-TAIP. 2013;60(3):293–296.
  • Sun L, Zhang X, Wu Z, et al. Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo. POLYM CHEM-UK. 2014;5(6):1999–2009.
  • Kang TS, Wang L, Sarkissian CN, et al. Converting an injectable protein therapeutic into an oral form: phenylalanine ammonia lyase for phenylketonuria. MOL GENET METAB. 2010;99(1):4–9.
  • Ruiz-Rodriguez PE, Meshulam D, Lesmes U. Characterization of Pickering O/W Emulsions Stabilized by Silica Nanoparticles and Their Responsiveness to In vitro Digestion Conditions. FOOD BIOPHYS. 2014;9(4):406–415.
  • Andreani T, Miziara L, Lorenzón EN, et al. Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: interactions with mucin and biomembrane models. EUR J PHARM BIOPHARM. 2015;93:118–126.
  • Andreani T, Alr DS, Kiill CP, et al. Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. INT J PHARMACEUT. 2014;473(1–2):627–635.
  • Guha A, Biswas N, Bhattacharjee K, et al. pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation. In:  Vladimir Torchilin (ed.), DRUG DELIV. 2016. p. 1.India: Taylor and Francis.
  • Andreani T, Kiill CP, Alr DS, et al. Surface engineering of silica nanoparticles for oral insulin delivery: characterization and cell toxicity studies. COLLOID SURFACE B. 2014;123:916–923.
  • Gribova O. inventor; Google Patents, assignee. Methods and compositions for oral administration of protein and peptide therapeutic agents. 2015. United States. Publisher number: 8936786.
  • Gribova O. inventor; Google Patents, assignee. Methods and compositions for oral administration of insulin. 2009. United States. Publisher nubmer: 20100278922.
  • Jain RN, Huang X, Das S, et al. Functionalized mesoporous silica nanoparticles for glucose‐ and pH‐stimulated release of insulin. Z ANORG ALLG CHEM. 2014;640(3‐4):616–623.
  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26(1):62–69.
  • Nandiyanto ABD, Kim S-G, Iskandar F, et al. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. MICROPOR MESOPOR MAT. 2009;120(3):447–453.
  • Lu F, Wu SH, Hung Y, et al. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small. 2009;5(12):1408.
  • Siavashani AZ, Nazarpak MH, Fayyazbakhsh F, et al. Effect of amino-functionalization on insulin delivery and cell viability for two types of silica mesoporous structures. J MATER SCI. 2016;51(24):10897–10909.
  • Tarn D, Ashley CE, Xue M, et al. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. 2013;46(3):792–801.
  • Feliczak-Guzik A, Jadach B, Piotrowska H, et al. Synthesis and characterization of SBA-16 type mesoporous materials containing amine groups. Microporous and Mesoporous Materials. 2016;220:231–238.
  • Yu Y-J, Xing J-L, Pang J-L, et al. Facile synthesis of size controllable dendritic mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2014;6(24):22655–22665.
  • Wu S-H, Mou C-Y, Lin H-P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42(9):3862–3875.
  • Eilleia S, Soliman M, Niedermayer S, et al. Examining insulin adsorption onto mesoporous silica microparticles for oral delivery. CURR DRUG DELIV. 2017;15:541–553.
  • Zhao Y, Trewyn BG, Slowing II, et al. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J AM CHEM SOC. 2009;131(24):8398–8400.
  • Zhen Z, He D, Cai L, et al. Alizarin complexone functionalized mesoporous silica nanoparticles: a smart system integrating glucose-responsive double-drugs release and real-time monitoring capabilities. ACS APPL MATER INTER. 2016;8(13):8358–8366.
  • Oroval M, Díez P, Aznar E, et al. Self‐regulated glucose‐sensitive neoglycoenzyme‐capped mesoporous silica nanoparticles for insulin delivery. Chemistry. 2017;23(6):1353–1360.
  • Moerz ST, Huber P. Protein adsorption into mesopores: a combination of electrostatic interaction, counterion release, and van der Waals dorces. Langmuir. 2014;30(10):2729–2737.
  • Fan J, Lei J, Wang L, et al. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. CHEM COMMUN. 2003;9(17):2140.
  • Sang LC, Vinu A, Coppens MO. General description of the adsorption of proteins at their iso-electric point in nanoporous materials. Langmuir. 2011;27(22):13828–13837.
  • Meka AK, Niu Y, Karmakar S, et al. Facile synthesis of large‐pore bicontinuous cubic mesoporous silica nanoparticles for intracellular gene delivery. ChemNanoMat. 2016;2(3):220–225.
  • Kovalainen M, Mönkäre J, Riikonen J, et al. Novel delivery systems for improving the clinical use of peptides. PHARMACOL REV. 2015;67(3):541–561.
  • Hao N, Li L, Tang F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int Mater Rev. 2017;62(2):57–77.
  • Fu WH, Guan Y, Wang YM, et al. A facile synthesis of monodispersed mesoporous silica nanospheres with Pm3n structure. Microporous and Mesoporous Materials. 2016;220:168–174.
  • Puddu V, Perry CC. Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions. ACS Nano. 2012;6(7):6356.
  • Liu D, He X, Wang K, et al. Biocompatible silica nanoparticles− insulin conjugates for mesenchymal stem cell adipogenic differentiation. BIOCONJUGATE CHEM. 2010;21(9):1673–1684.
  • Jiang F, Liu Y, Wang X, et al. pH-sensitive release of insulin-loaded mesoporous silica particles and its coordination mechanism. EUR J PHARM SCI. 2018;119:1–12.
  • Seo J, Kim JH, Lee M, et al. Size-dependent interactions of silica nanoparticles with a flat silica surface. J Colloid Interface Sci. 2016;483:177.
  • Zou Z, He D, Cai L, et al. Alizarin complexone functionalized mesoporous silica nanoparticles: A smart system integrating glucose-responsive double-drugs release and real-time monitoring capabilities. ACS APPL MATER INTER. 2016;8(13):8358–8366.
  • Chiriac AP, Neamtu I, Nita LE, et al. Sol-Gel-based materials for biomedical applications. Prog Mater Sci. 2016;77:1–79.
  • He Q, Shi J, Zhu M, et al. The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. MICROPOR MESOPOR MAT. 2010;131(1):314–320.
  • Xie G, Sun J, Zhong G, et al. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. ARCH TOXICOL. 2010;84(3):183–190.
  • Van Der Zande M, Vandebriel RJ, Groot MJ, et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol. 2014;11(1):8.
  • Tarutani T. Polymerization of silicic acid. A Review. ANAL SCI.. 1989;5(3):245–252.
  • Mourabit SE, Guillot M, Toquer G, et al. Stability of mesoporous silica under acidic conditions. RSC ADV. 2012;2(29):10916–10924.
  • Finnie KS, Waller DJ, Perret FL, et al. Biodegradability of sol–gel silica microparticles for drug delivery. J SOL-GEL SCI TECHN. 2009;49(1):12–18.
  • Napierska D, Thomassen LC, Lison D, et al. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010;7(1):39.
  • Diab R, Canilho N, Pavel IA, et al. Silica-based systems for oral delivery of drugs, macromolecules and cells. In:  A. Amirfazli, R. Miller, and R. Sedev. (eds.), Advances in Colloid and Interface Science. 2017. France: Elsevier.
  • Su XD, Teng ZG, Chen GT, et al. Unique biological degradation behavior of Stöber mesoporous silica nanoparticles from their interiors to their exteriors. J BIOMED NANOTECHNOL. 2015;11(4):722–729.
  • Shen D, Yang J, Li X, et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. NANO LETT. 2014;14(2):923–932.
  • Li L, Liu T, Fu C, et al. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine: Nanotechnology, Biol Med. 2015;11(8):1915–1924.
  • Hao N, Liu H, Li L, et al. In vitro degradation behavior of silica nanoparticles under physiological conditions. J NANOSCI NANOTECHNO. 2012;12(8):6346–6354.
  • Hinkley GK, Roberts SM. Factors Affecting the Oral Bioavailability of Nanomaterials. 2014. United States: Wiley
  • Cauda V, Schlossbauer A, Bein T. Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly (ethylene glycol). MICROPOR MESOPOR MAT. 2010;132(1):60–71.
  • É P-E, Ruiz-Rico M, De La Torre C, et al. Stability of different mesoporous silica particles during an in vitro digestion. MICROPOR MESOPOR MAT. 2016;230:196–207.
  • Izquierdo-Barba I, Colilla M, Manzano M, et al. In vitro stability of SBA-15 under physiological conditions. MICROPOR MESOPOR MAT. 2010;132(3):442–452.
  • Guillet-Nicolas R, Popat A, Bridot JL, et al. pH-responsive nutraceutical-mesoporous silica nanoconjugates with enhanced colloidal stability. ANGEW CHEM. 2013;52(8):2318–2322.
  • Matsukuma D, Maejima Y, Ikenaga Y, et al. Amphiphilic copolymer of poly (ethylene glycol)-block-polypyridine; synthesis, physicochemical characterization, and adsorption onto silica nanoparticle. J NANOSCI NANOTECHNO. 2014;14(9):6774–6780.
  • Pappenheimer JR. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J Membr Biol. 1987;100(1):137–148.
  • Rodgers LS, Fanning AS. Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton. 2011;68(12):653.
  • Neves JD, Sarmento B. Mucosal Delivery of Biopharmaceuticals.. US: Springer; 2014.
  • Li X, Yu M, Fan W, et al. Orally active-targeted drug delivery systems for proteins and peptides. EXPERT OPIN DRUG DEL. 2014;11(9):1435.
  • Choonara BF, Choonara YE, Kumar P, et al. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. BIOTECHNOL ADV. 2014;32(7):1269–1282.
  • Cromwell O, Häfner D, Nandy A. Recombinant allergens for specific immunotherapy. J ALLERGY CLIN IMMUN. 2011;127(4):865–872.
  • Krug SM, Amasheh M, Dittmann I, et al. Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials. 2013;34(1):275.
  • Berardi A, Bisharat L. Nanotechnology systems for oral drug delivery: challenges and opportunities. Nanotechnology in Drug Delivery. 2016. Amman, Jordan: One Central Press
  • Su FY, Lin KJ, Sonaje K, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33(9):2801.
  • Sung HW, Tu H. inventors; CA, assignee. Pharmaceutical composition of nanoparticles. 2011. United States. Publisher number: 8119102
  • Shrestha N. Mesoporous silicon systems for oral protein/peptide-based diabetes mellitus therapy. 2016. Helsinki, Finland: University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology. (https://helda.helsinki.fi/handle/10138/160833)
  • Z L, JC B, A B,, et al. Mesoporous silica nanoparticles in biomedical applications. CHEM SOC REV. 2012;43(27):2590–2605.
  • Huang DM, Hung Y, Ko BS, et al. Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J. 2005;19(14):2014.
  • Tsai CP, Chen CY, Hung Y, et al. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem. 2009;19(32):5737–5743.
  • Chen M-C, Sonaje K, Chen K-J, et al. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;32(36):9826–9838.
  • Beloqui A, Rieux AD, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. ADV DRUG DELIVER REV. 2016;106(Pt B):242–255.
  • Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. NANO TODAY. 2014;9(2):223.
  • Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J CONTROL RELEASE. 2016;240:504.
  • Des Rieux A, Fievez V, Garinot H, et al. Nanoparticles as Potential Oral Delivery Systems of Proteins and Vaccines: A Mechanistic Approach. . J CONTROL RELEASE. 2006;116(1):1.
  • Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake?. EUR J PHARM BIOPHARM. 2000;50(1):147–160.
  • Florence AT, Sakthivel T, Toth I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J CONTROL RELEASE. 2000;65(1–2):253–259.
  • Singh B, Maharjan S, Jiang T, et al. Attuning hydroxypropyl methylcellulose phthalate to oral delivery vehicle for effective and selective delivery of protein vaccine in ileum. Biomaterials. 2015;59:144–159.
  • Xia D, Tao J, He Y, et al. Enhanced transport of nanocage stabilized pure nanodrug across intestinal epithelial barrier mimicking Listeria monocytogenes. Biomaterials. 2015;37(37C):320–332.
  • Buda A, Sands C, Jepson MA. Use of fluorescence imaging to investigate the structure and function of intestinal M cells. ADV DRUG DELIVER REV. 2005;57(1):123–134.
  • Gu JM, Robinson JR, Leung SH. Binding of acrylic polymers to mucin/epithelial surfaces: structure-property relationships. CRIT REV THER DRUG. 1988;5(1):21.
  • Chung T-H, Wu S-H, Yao M, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials. 2007;28(19):2959–2966.
  • Lehr C-M, Poelma FGJ, Junginger HE, et al. An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int J Pharm. 1991;70(3):235–240.
  • Mcginn BJ, Morrison JD. Investigations into the absorption of insulin and insulin derivatives from the small intestine of the anaesthetised rat. J CONTROL RELEASE. 2016;232:120–130.
  • Bhattacharjee S, Mahon E, Harrison SM, et al. Nanoparticle passage through porcine jejunal mucus: microfluidics and rheology. In: Tatiana K. Bronich (eds.), NANOMED-NANOTECHNOL. 2016. Ireland: Elsevier.
  • Lai SK, Wang -Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–171.
  • Li X, Guo S, Zhu C, et al. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials. 2013;34(37):9678–9687.
  • He Q, Zhang J, Chen F, et al. An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles. Biomaterials. 2010;31(30):7785.
  • Zhu Y, Fang Y, Borchardt L, et al. PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles. MICROPOR MESOPOR MAT. 2011;141(1–3):199–206.
  • Suteewong T, Sai H, Cohen R, et al. Highly aminated mesoporous silica nanoparticles with cubic pore structure. J AM CHEM SOC. 2011;133(2):172–175.
  • Xu Q, Ensign LM, Boylan NJ, et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano. 2015;9(9):9217.
  • Yoshida T, Yoshioka Y, Takahashi H, et al. Intestinal absorption and biological effects of orally administered amorphous silica particles. Nanoscale Res Lett. 2014;9(1):532.
  • Paek HJ, Chung HE, Lee J, et al. Quantitative determination of silica nanoparticles in biological matrices and their pharmacokinetics and toxicokinetics in rats. Sci Advanced Mater. 2014;6(7):1605–1610(6).
  • Griffin BT, Guo J, Presas E, et al. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. ADV DRUG DELIVER REV. 2016;106(Pt B):367.
  • Cho M, Cho WS, Choi M, et al. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. TOXICOL LETT. 2009;189(3):177–183.
  • He Q, Zhang Z, Gao F, et al. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small. 2011;7(2):271–280.
  • Fu C, Liu T, Li L, et al. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34(10):2565–2575.
  • Tamba B, Dondas A, Leon M, et al. Silica nanoparticles: preparation, characterization and in vitro/in vivo biodistribution studies. EUR J PHARM SCI. 2015;71:46–55.
  • Dekkers S, Bouwmeester H, Bos PM, et al. Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica. NANOTOXICOLOGY. 2013;7(4):367–377.
  • Administration OD. Efficacy Safety and Tolerability of Multiple Doses of Oshadi Icp (Oshadi Oral Insulin) in Patients With Type 1 Diabetes Mellitus - Phase II Clinical Study 2017. Available from: https://clinicaltrials.gov/ct2/show/study/NCT01973920
  • Siavashani AZ, Nazarpak MH, Fayyazbakhsh F, et al. Effect of amino-functionalization on insulin delivery and cell viability for two types of silica mesoporous structures. J Mater Sci. 2016;51(24):10897–10909.
  • Esmaeili A, Mousavi SN. Synthesis of a novel structure for the oral delivery of insulin and the study of its effect on diabetic rats. Life Sciences. 2017;186:43–49.
  • Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. NAT REV DRUG DISCOV. 2007;6(3):231–248.
  • Nguyen TH, Tan A, Santos L, et al. Silica-lipid hybrid (SLH) formulations enhance the oral bioavailability and efficacy of celecoxib: an in vivo evaluation. J CONTROL RELEASE. 2013;167(1):85.
  • Mohanraj VJ, Barnes TJ, Prestidge CA. Silica nanoparticle coated liposomes: A new type of hybrid nanocapsule for proteins. INT J PHARMACEUT. 2010;392(1):285–293.
  • Dwivedi N, Arunagirinathan MA, Sharma S, et al. Silica-coated liposomes for insulin delivery. J NANOMATER. 2010;2010(1):139–143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.