1,209
Views
5
CrossRef citations to date
0
Altmetric
Review

Solid lipid nanocarriers in drug delivery: characterization and design

&
Pages 771-785 | Received 23 Mar 2018, Accepted 20 Jul 2018, Published online: 17 Aug 2018

References

  • Schwarz C, Mehnert W, Lucks JS, et al. Solid lipid nanoparticles (sln) for controlled drug-delivery .1. production, characterization and sterilization. J Control Release. 1994;30(1):83–96.
  • Maretti E, Rossi T, Bondi M, et al. Inhaled solid lipid microparticles to target alveolar macrophages for tuberculosis. Int J Pharm. 2014;462(1–2):74–82.
  • Zhao SN, Van Minh L, Li N, et al. Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release. Colloids Surf B-Biointerfaces. 2016;145:95–103.
  • Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017;264:306–332.
  • Zhang RX, Ahmed T, Li LY, et al. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale. 2017;9(4):1334–1355.
  • Almelda AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev. 2007;59(6):478–490.
  • Borkar N, Xia DN, Holm R, et al. Investigating the correlation between in vivo absorption and in vitro release of fenofibrate from lipid matrix particles in biorelevant medium. Eur J Pharm Sci. 2014;51:204–210.
  • Mu H, Høy C-E. The digestion of dietary triacylglycerols. Prog Lipid Res. 2004;43:105–133.
  • Mu H, Porsgaard T. The metabolism of structured triacylglycerols. Prog Lipid Res. 2005;44:430–448.
  • Christophersen PC, Zhang L, Yang M, et al. Solid lipid particles for oral delivery of peptide and protein drugs I - Elucidating the release mechanism of lysozyme during lipolysis. Eur J Pharmaceutics Biopharmaceutics. 2013;85(3):473–480.
  • Christophersen PC, Zhang L, Mullertz A, et al. Solid lipid particles for oral delivery of peptide and protein drugs ii - the digestion of trilaurin protects desmopressin from proteolytic degradation. Pharm Res. 2014 Mar;31:2420–2428.
  • Christophersen PC, Birch D, Saarinen J, et al. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy. J Control Release. 2015;197:111–120.
  • Irby D, Du CG, Li F. Lipid-Drug Conjugate for Enhancing Drug Delivery. Mol Pharm. 2017;14(5):1325–1338.
  • Song YH, Shin E, Wang H, et al. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system. J Control Release. 2016;229:106–119.
  • Adhikari P, Pal P, Das AK, et al. Nano lipid-drug conjugate: an integrated review. Int J Pharm. 2017;529(1–2):629–641.
  • Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–S155.
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharmaceutics Biopharmaceutics. 2000;50(1):161–177.
  • Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (sln, nlc, ldc) for oral drug delivery. Drug Dev Ind Pharm. 2008;34(12):1394–1405.
  • Muller RH, Mehnert W, Lucks JS, et al. Solid lipid nanoparticles (sln) - an alternative colloidal carrier system for controlled drug-delivery. Eur J Pharmaceutics Biopharmaceutics. 1995;41(1):62–69.
  • Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?. Eur J Pharm Sci. 2012;47(1):139–151.
  • Balguri SP, Adelli GR, Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharmaceutics Biopharmaceutics. 2016;109:224–235.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5).
  • Ta HT, Truong NP, Whittaker AK, et al. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. (1744–7593 (Electronic)).
  • Decuzzi P, Godin B, Tanaka T, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release. 2010;141(3):320–327.
  • Christie WW. Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res. 1985;26:507–512.
  • Mu H, Kalo P, Xu X, et al. Chromatographic methods in the monitoring of lipase-catalyzed interesterification. Eur J Lipid Sci Technol. 2000;102(3):202–211.
  • Rosiaux Y, Jannin V, Hughes S, et al. Solid lipid excipients - Matrix agents for sustained drug delivery. J Control Release. 2014;188:18–30.
  • Souto EB, Mehnert W, Muller RH. Polymorphic behaviour of Compritol (R) 888 ATO as bulk lipid and as SLN and NLC. J Microencapsul. 2006;23(4):417–433.
  • Xia DN, Cui FD, Gan Y, et al. Design of lipid matrix particles for fenofibrate: effect of polymorphism of glycerol monostearate on drug incorporation and release. J Pharm Sci. 2014;103(2):697–705.
  • Liu J, Christophersen PC, Yang M, Nielsen Hm Auid- Orcid: Http:/, Mu H. The impact of particle preparation methods and polymorphic stability of lipid excipients on protein distribution in microparticles. (1520–5762 (Electronic)).
  • Wu C, Yang M, Baldursdottir SG, et al. Lipid and PLGA hybrid microparticles as carriers for protein delivery. J Drug Delivery Sci Tech. 2018;43:65–72.
  • Mu HL, Holm R, Mullertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215–224.
  • Radornska-Soukharev A. Stability of lipid exciplents in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):411–418.
  • Jenning V, Thunemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199(2):167–177.
  • Bunjes H. Structural properties of solid lipid based colloidal drug delivery systems. Curr Opin Colloid Interface Sci. 2011;16(5):405–411.
  • Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm. 2003;257(1–2):153–160.
  • Bunjes H, Steiniger F, Richter W. Visualizing the structure of triglyceride nanoparticles in different crystal modifications. Langmuir. 2007;23(7):4005–4011.
  • Bunjes H, Koch MHJ, Westesen K. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J Pharm Sci. 2003;92(7):1509–1520.
  • Helgason T, Awad TS, Kristbergsson K, et al. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Colloid Interface Sci. 2009;334(1):75–81.
  • Gamboa CK, Samir R, Wu C, et al. Solid lipid particles as drug carriers - effects of particle preparation methods and lipid excipients on particle characteristics. Pharmaceutical Nanotechnology, 6(2):124–132, 2018.
  • Wei W, Lu XN, Wang Z, et al. Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids. J Colloid Interface Sci. 2017;505:392–401.
  • Wei W, Feng FQ, Perez B, et al. Biocatalytic synthesis of ultra-long-chain fatty acid sugar alcohol monoesters. Green Chem. 2015;17(6):3475–3489.
  • Leonardi A, Bucolo C, Drago F, et al. Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. Int J Pharm. 2015;478(1):180–186.
  • Christophersen PC, Vaghela D, Mullertz A, et al. Solid lipid particles for oral delivery of peptide and protein drugs iii - the effect of fed state conditions on the in vitro release and degradation of desmopressin. Aaps J. 2014;16(4):875–883.
  • Meyer JD, Manning MC. Hydrophobic ion pairing: altering the solubility properties of biomolecules. Pharm Res. 1998;15(2):188–193.
  • Pinkerton NM, Grandeury A, Fisch A, et al. Formation of stable nanocarriers by in situ ion pairing during block-copolymer-directed rapid precipitation. Mol Pharm. 2013;10(1):319–328.
  • Adjei A, Rao S, Garren J, et al. Effect of ion-pairing on 1-octanol-water partitioning of peptide drugs .1. the nonapeptide leuprolide acetate. Int J Pharm. 1993;90(2):141–149.
  • Griesser J, Hetenyi G, Moser M, et al. Hydrophobic ion pairing: key to highly payloaded self-emulsifying peptide drug delivery systems. Int J Pharm. 2017;520(1–2):267–274.
  • Olbrich C, Gessner A, Schroder W, et al. Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene - cytotoxicity testing and mouse serum adsorption. J Control Release. 2004;96(3):425–435.
  • Yuan H, Jiang SP, Du YZ, et al. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids Surf B-Biointerfaces. 2009;70(2):248–253.
  • Jenning V, Lippacher A, Gohla SH. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J Microencapsul. 2002;19(1):1–10.
  • Mehnert W, Mader K. Solid lipid nanoparticles - Production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–196.
  • Duran-Lobato M, Enguix-Gonzalez A, Fernandez-Arevalo M, et al. Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach. J Nanoparticle Res. 2013;15(2).
  • Hippalgaonkar K, Adelli GR, Hippalgaonkar K, et al. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J Ocul Pharmacol Ther. 2013;29(2):216–228.
  • Sjostrom B, Bergenstahl B. Preparation of submicron drug particles in lecithin-stabilized o/w emulsions 1 model studies precipitation cholesteryl acetate. Int J Pharmaceutics. 1992;88(1–3):53–62.
  • Yuan H, Huang LF, Du YZ, et al. Solid lipid nanoparticles prepared by solvent diffusion method in a nanoreactor system. Colloids Surf B-Biointerfaces. 2008;61(2):132–137.
  • Patlolla RR, Chougule M, Patel AR, et al. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release. 2010;144(2):233–241.
  • Bruge F, Damiani E, Puglia C, et al. Nanostructured lipid carriers loaded with CoQ(10): effect on human dermal fibroblasts under normal and UVA-mediated oxidative conditions. Int J Pharm. 2013;455(1–2):348–356.
  • Liu Y, Wang L, Zhao YQ, et al. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin. Int J Pharm. 2014;476(1–2):169–177.
  • Yu Q, Hu XW, Ma YH, et al. Lipids-based nanostructured lipid carriers (NLCs) for improved oral bioavailability of sirolimus. Drug Deliv. 2016;23(4):1469–1475.
  • Liu YJ, Salituro GM, Lee KJ, et al. Modulating drug release and enhancing the oral bioavailability of torcetrapib with solid lipid dispersion formulations. AAPS PharmSciTech. 2015;16(5):1091–1100.
  • Freitas C, Muller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN (TM)) and crystallinity of the lipid phase. Eur J Pharmaceutics Biopharmaceutics. 1999;47(2):125–132.
  • Cavalli R, Gasco MR, Barresi AA, et al. Evaporative drying of aqueous dispersions of solid lipid nanoparticles. Drug Dev Ind Pharm. 2001;27(9):919–924.
  • Xia DN, Shrestha N, Van De Streek J, et al. Spray drying of fenofibrate loaded nanostructured lipid carriers. Asian J Pharm Sci. 2016;11(4):507–515.
  • Lin CH, Chen CH, Lin ZC, et al. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal. 2017;25(2):219–234.
  • Gaur PK, Mishra S, Bajpai M, et al. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. Biomed Res Int. 2014:363404. p.1–9.
  • Elbahwy IA, Ibrahim HM, Ismael HR, et al. Enhancing bioavailability and controlling the release of glibenclamide from optimized solid lipid nanoparticles. J Drug Deliv Sci Technol. 2017;38:78–89.
  • Khan S, Baboota S, Ali J, et al. Chlorogenic acid stabilized nanostructured lipid carriers (NLC) of atorvastatin: formulation, design and in vivo evaluation. Drug Dev Ind Pharm. 2016;42(2):209–220.
  • Brunner HR. The new oral angiotensin II antagonist olmesartan medoxomil: a concise overview. J Hum Hypertens. 2002;16:S13–S16.
  • Kaithwas V, Dora CP, Kushwah V, et al. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids Surf B-Biointerfaces. 2017;154:10–20.
  • Shangguan MZ, Lu Y, Qi JP, et al. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin. J Biomater Appl. 2014;28(6):887–896.
  • Mu H, Høy C-E. Effect of medium-chain fatty acids on lymphatic absorption of essential fatty acids in specific structured lipids. Lipids. 2000;35(1):83–89.
  • Almeida JPM, Chen AL, Foster A, et al. In vivo biodistribution of nanoparticles. Nanomedicine. 2011;6(5):815–835.
  • Hirsjarvi S, Sancey L, Dufort S, et al. Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting. Int J Pharm. 2013;453(2):594–600.
  • Fundaro A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after. Iv Administration Rats Pharmacological Research. 2000;42(4):337–343.
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release. 2005;107(2):215–228.
  • Zara GP, Cavalli R, Bargoni A, et al. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target. 2002;10(4):327–335.
  • Ballot S, Noiret N, Hindre F, et al. Tc-99m/(188)re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur J Nucl Med Mol Imaging. 2006;33(5):602–607.
  • Bargoni A, Cavalli R, Zara GP, et al. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II Tissue distribution. Pharmacological Res. 2001;43(5):497–502.
  • Garcia-Fuentes M, Prego C, Torres D, et al. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci. 2005;25(1):133–143.
  • Reithmeier H, Herrmann J, Gopferich A. Lipid microparticles as a parenteral controlled release device for peptides. J Control Release. 2001;73(2–3):339–350.
  • Almeida AJ, Runge S, Muller RH. Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm. 1997;149(2):255–265.
  • Hu FQ, Hong Y, Yuan H. Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm. 2004;273(1–2):29–35.
  • Zhang N, Ping QN, Huang GH, et al. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm. 2006;327(1–2):153–159.
  • Del Curto MD, Chicco D, D’Antonio M, et al. Lipid microparticles as sustained release system for a GnRH antagonist (Antide). J Control Release. 2003;89(2):297–310.
  • Garcia-Fuentes M, Torres D, Alonso MJ. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int J Pharm. 2005;296(1–2):122–132.
  • Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–1272.
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target. 2006;14(9):632–645.
  • Jia LJ, Zhang DR, Li ZY, et al. Nanostructured lipid carriers for parenteral delivery of silybin: biodistribution and pharmacokinetic studies. Colloids Surf B-Biointerfaces. 2010;80(2):213–218.
  • Du B, Yan Y, Li Y, et al. Preparation and passive target of 5-fluorouracil solid lipid nanoparticles. Pharm Dev Technol. 2010;15(4):346–353.
  • Esposito E, Boschi A, Ravani L, et al. Biodistribution of nanostructured lipid carriers: A tomographic study. Eur J Pharmaceutics Biopharmaceutics. 2015;89:145–156.
  • Joshi MD, Muller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharmaceutics Biopharmaceutics. 2009;71(2):161–172.
  • Wong HL, Rauth AM, Bendayan R, et al. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharmaceutics Biopharmaceutics. 2007;65(3):300–308.
  • Wong HL, Bendayan R, Rauth AM, et al. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):491–504.
  • Liu DH, Liu ZH, Wang LL, et al. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B-Biointerfaces. 2011;85(2):262–269.
  • Chen HB, Chang XL, Du DR, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release. 2006;110(2):296–306.
  • Reddy LH, Sharma RK, Chuttani K, et al. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release. 2005;105(3):185–198.
  • Lockman PR, Oyewumi MO, Koziara JM, et al. Brain uptake of thiamine-coated nanoparticles. J Control Release. 2003;93(3):271–282.
  • Wang F, Li L, Liu B, et al. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Biomed Pharmacother. 2017;86:595–604.
  • Qu J, Zhang LQ, Chen ZH, et al. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy?. Drug Deliv. 2016;23(9):3408–3416.
  • Koziara JM, Whisman TR, Tseng MT, et al. In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J Control Release. 2006;112(3):312–319.
  • Dong XW, Mattingly CA, Tseng MT, et al. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting p-glycoprotein and depleting ATP. Cancer Res. 2009;69(9):3918–3926.
  • Lu W, He LC, Wang CH, et al. The use of solid lipid nanoparticles to target a lipophilic molecule to the liver after intravenous administration to mice. Int J Biol Macromol. 2008;43(3):320–324.
  • Wang WY, Zhao XL, Hu HY, et al. Galactosylated solid lipid nanoparticles with cucurbitacin B improves the liver targetability. Drug Deliv. 2010;17(3):114–122.
  • Cavalli R, Caputo O, Gasco MR. Solid Lipospheres of Doxorubicin and Idarubicin. Int J Pharm. 1993;89(1):R9–R12.
  • Barbu E, Molnar E, Tsibouklis J, et al. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin Drug Deliv. 2009;6(6):553–565.
  • Yang SC, Lu LF, Cai Y, et al. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release. 1999;59(3):299–307.
  • Gupta Y, Jain A, Jain SK. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol. 2007;59(7):935–940.
  • Peng Q, Mu HL. The potential of protein-nanomaterial interaction for advanced drug delivery. J Control Release. 2016;225:121–132.
  • Gessner A, Olbrich C, Schroder W, et al. The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. Int J Pharm. 2001;214(1–2):87–91.
  • Jain S, Patel N, Shah MK, et al. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J Pharm Sci. 2017;106(2):423–445.
  • Lauterbach A, Muller-Goymann CC. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharmaceutics Biopharmaceutics. 2015;97:152–163.
  • Roberts MS, Mohammed Y, Pastore MN, et al. Topical and cutaneous delivery using nanosystems. J Control Release. 2017;247:86–105.
  • Han F, Yin R, Che X, et al. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: design, characterization and in vivo evaluation. Int J Pharm. 2012;439(1–2):349–357.
  • Pople PV, Singh KK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm. 2010;398(1–2):165–178.
  • Adib ZM, Ghanbarzadeh S, Kouhsoltani M, et al. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: a histological study. Advanced Pharm Bull. 2016;6(1):31–36.
  • Iannuccelli V, Coppi G, Romagnoli M, et al. In vivo detection of lipid-based nano- and microparticles in the outermost human stratum corneum by EDX analysis. Int J Pharm. 2013;447(1–2):204–212.
  • Kuchler S, Radowski MR, Blaschke T, et al. Nanoparticles for skin penetration enhancement - A comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharmaceutics Biopharmaceutics. 2009;71(2):243–250.
  • Vidlarova L, Hanus J, Vesely M, et al. Effect of lipid nanoparticle formulations on skin delivery of a lipophilic substance. Eur J Pharmaceutics Biopharmaceutics. 2016;108:289–296.
  • Schlupp P, Blaschke T, Kramer KD, et al. Drug Release and Skin Penetration from Solid Lipid Nanoparticles and a Base Cream: A Systematic Approach from a Comparison of Three Glucocorticoids. Skin Pharmacol Physiol. 2011;24(4):199–209.
  • Garidel P, Folting B, Schaller I, et al. The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide: palmiticacid: cholesterolmodel systems. Biophys Chem. 2010;150(1–3):144–156.
  • Lv QZ, Yu AH, Xi YW, et al. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm. 2009;372(1–2):191–198.
  • Jenning V, Gysler A, Schafer-Korting M, et al. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharmaceutics Biopharmaceutics. 2000;49(3):211–218.
  • González-Mira E, Nikolić S, García ML, et al. Potential use of nanostructured lipid carriers for topical delivery of flurbiprofen. J Pharm Sci. 2011;100(1):242–251.
  • Puglia C, Blasi P, Rizza L, et al. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm. 2008;357(1–2):295–304.
  • Jensen LB, Petersson K, Nielsen HM. In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin. Eur J Pharmaceutics Biopharmaceutics. 2011;79(1):68–75.
  • Pathak P, Nagarsenker M. Formulation and evaluation of lidocaine lipid nanosystems for dermal delivery. AAPS PharmSciTech. 2009;10(3):985–992.
  • You PJ, Yuan R, Chen CY. Design and evaluation of lidocaine- and prilocaine-coloaded nanoparticulate drug delivery systems for topical anesthetic analgesic therapy: a comparison between solid lipid nanoparticles and nanostructured lipid carriers. Drug Des Dev Ther. 2017;11:2743–2752.
  • Uner M, Karaman EF, Aydogmus Z. Solid lipid nanoparticles and nanostructured lipid carriers of loratadine for topical application: physicochemical stability and drug penetration through rat skin. Trop J Pharm Res. 2014;13(5):653–660.
  • Fang JY, Fang CL, Liu CH, et al. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharmaceutics Biopharmaceutics. 2008;70(2):633–640.
  • Patzelt A, Mak WC, Jung S, et al. Do nanoparticles have a future in dermal drug delivery?. J Control Release. 2017;246:174–182.
  • Vogt A, Wischke C, Neffe AT, et al. Nanocarriers for drug delivery into and through the skin - Do existing technologies match clinical challenges?. J Control Release. 2016;242:3–15.
  • Keck CM, Anantaworasakul P, Patel M, et al. A new concept for the treatment of atopic dermatitis: silver-nanolipid complex (sNLC). Int J Pharm. 2014;462(1–2):44–51.
  • Janagam DR, Wu LF, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64.
  • Sanchez-Lopez E, Espina M, Doktorovova S, et al. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. Eur J Pharmaceutics Biopharmaceutics. 2017;110:58–69.
  • Cavalli R, Morel S, Gasco MR, et al. Preparation and evaluation in-vitro of colloidal lipospheres containing pilocarpine as ion-pair. Int J Pharm. 1995;117(2):243–246.
  • Cavalli R, Gasco MR, Chetoni P, et al. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm. 2002;238(1–2):241–245.
  • Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur J Pharmaceutics Biopharmaceutics. 2016;109:214–223.
  • Gokce EH, Sandri G, Egrilmez S, et al. Cyclosporine A-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res. 2009;34(11):996–1003.
  • Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–562.
  • Fangueiro JF, Calpena AC, Clares B, et al. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): in vivo,in vitro and ex vivo studies. Int J Pharm. 2016;502(1–2):161–169.
  • Fangueiro JF, Andreani T, Egea MA, et al. Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity. Int J Pharm. 2014;461(1–2):64–73.
  • Fangueiro JF, Andreani T, Fernandes L, et al. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids Surf B-Biointerfaces. 2014;123:452–460.
  • Sandri G, Bonferoni MC, Gokce EH, et al. Chitosan-associated SLN: in vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems. J Microencapsul. 2010;27(8):735–746.
  • Basaran E, Demirel M, Sirmagul B, et al. Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul. 2010;27(1):37–47.
  • Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15(9):1326–1331.
  • Wang FZ, Chen L, Zhang DS, et al. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J Drug Target. 2014;22(9):849–858.
  • Araujo J, Nikolic S, Egea MA, et al. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B-Biointerfaces. 2011;88(1):150–157.
  • Puglia C, Blasi P, Ostacolo C, et al. Innovative nanoparticles enhance n-palmitoylethanolamide intraocular delivery. Front Pharmacol. 2018;285(9):1–7.
  • Liu R, Liu ZD, Zhang CG, et al. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. J Pharm Sci. 2012;101(10):3833–3844.
  • Luo QH, Zhao JM, Zhang XR, et al. Nanostructured lipid carrier (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm. 2011;403(1–2):185–191.
  • Ustundag-Okur N, Gokce EH, Bozbiyik DI, et al. Preparation and in vitro-in vivo evaluation of ofioxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci. 2014;63:204–215.
  • Zhang WJ, Liu JL, Zhang Q, et al. Enhanced cellular uptake and anti-proliferating effect of chitosan hydrochlorides modified genistein loaded NLC on human lens epithelial cells. Int J Pharm. 2014;471(1–2):118–126.
  • Zhang WJ, Li XD, Ye TT, et al. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int J Nanomedicine. 2014;9:4305–4315.
  • Shen J, Wang Y, Ping QN, et al. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release. 2009;137(3–4):217–223.
  • Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release. 2015;219:500–518.
  • Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.
  • Yang W, Peters JI, Williams RO. Inhaled nanoparticles - A current review. Int J Pharm. 2008;356(1–2):239–247.
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014;75:81–91.
  • Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharmaceutics Biopharmaceutics. 2014;86(1):7–22.
  • Patil-Gadhe A, Kyadarkunte A, Patole M, et al. Montelukast-loaded nanostructured lipid carriers: part II Pulmonary drug delivery and in vitro-in vivo aerosol performance. Eur J Pharmaceutics Biopharmaceutics. 2014;88(1):169–177.
  • Videira M, Almeida AJ, Fabra A. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine-Nanotechnology Biol Med. 2012;8(7):1208–1215.
  • Maretti E, Costantino L, Rustichelli C, et al. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl alpha-D-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm. 2017;528(1–2):440–451.
  • Chuan JL, Li YZ, Yang LK, et al. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles. J Nanoparticle Res. 2013;15(5).
  • Zhao Y, Chang YX, Hu X, et al. Solid lipid nanoparticles for sustained pulmonary delivery of Yuxingcao essential oil: preparation, characterization and in vivo evaluation. Int J Pharm. 2017;516(1–2):364–371.
  • Li YZ, Sun X, Gong T, et al. Inhalable microparticles as carriers for pulmonary delivery of thymopentin-loaded solid lipid nanoparticles. Pharm Res. 2010;27(9):1977–1986.
  • Cipolla D, Shekunov B, Blanchard J, et al. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev. 2014;75:53–80.
  • Patel PA, Patil SC, Kalaria DR, et al. Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A. Int J Pharm. 2013;446(1–2):16–23.
  • Pople PV, Singh KK. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech. 2006;7(4):E63-E69.
  • Siram K, Chellan VR, Natarajan T, et al. Solid lipid nanoparticles of diethylcarbamazine citrate for enhanced delivery to the lymphatics: in vitro and in vivo evaluation. Expert Opin Drug Deliv. 2014;11(9):1351–1365.
  • Kupetz E, Bunjes H. Lipid nanoparticles: drug localization is substance-specific and achievable load depends on the size and physical state of the particles. J Control Release. 2014;189:54–64.
  • Akbari J, Saeedi M, Morteza-Semnani K, et al. The design of naproxen solid lipid nanoparticles to target skin layers. Colloids Surf B-Biointerfaces. 2016;145:626–633.
  • Silva AC, Gonzalez-Mira E, Garcia ML, et al. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf B-Biointerfaces. 2011;86(1):158–165.
  • Sebti T, Amighi K. Preparation and in vitro evaluation of lipidic carriers and fillers for inhalation. Eur J Pharmaceutics Biopharmaceutics. 2006;63(1):51–58.
  • Pilcer G, Sebti T, Amighi K. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm Res. 2006;23(5):931–940.
  • Hashem FM, Nasr M, Khairy A. In vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate. Pharm Dev Technol. 2014;19(7):824–832.
  • Lin CC, Chen F, Ye TT, et al. A novel oral delivery system consisting in “drug-in cyclodextrin-in nanostructured lipid carriers” for poorly water-soluble drug: vinpocetine. Int J Pharm. 2014;465(1–2):90–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.