242
Views
18
CrossRef citations to date
0
Altmetric
Review

Lung cancer: active therapeutic targeting and inhalational nanoproduct design

, , , , &
Pages 1223-1247 | Received 12 Jul 2018, Accepted 08 Nov 2018, Published online: 20 Nov 2018

References

  • Torre LA, Siegel RL, Jemal, A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1–19.
  • Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–594.
  • Siegel R, DeSantis C, Virgo K, et al. Cancer treatment and survivorship statistics. Cancer J Clin. 2012;62:220–241.
  • Litzky LA. Pulmonary sarcomatous tumors. Arch Pathol Lab Med. 2008;132:1104–1117.
  • Zorzetto M, Ferrari S, Saracino L, et al. MET genetic lesions in non-small-cell lung cancer: pharmacological and clinical implications. Transl Lung Cancer Res. 2012;1:194–207.
  • Sher T, Dy GK, Adjei AA. Small cell lung cancer. Mayo Clin Proc. 2008;83:355–367.
  • Pikor LA, Ramnarine VR, Lam S, et al. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer. 2013;82:179–189.
  • Panagopoulos N, Leivaditis V, Koletsis E, et al. Pancoast tumors: characteristics and preoperative assessment. J Thorac Dis. 2014;6:S108–15.
  • Horn L, Pao W, David H, et al. Neoplasms of the lung. In: Harrison’s principles of internal medicine, 18th ed. New York, NY: McGraw-Hill Professional Publishing; 2011.
  • Porth C. Respiratory tract infections, neoplasms, and childhood disorders. In: Essentials of pathophysiology: concepts of altered health states, 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2011. p. 554–557.
  • Travis W, Brambilla E, Müller-Hermelin K, et al. WHO classification of tumours: pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon: World Health Organization, IARC Press; 2004.
  • Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thoracic Oncol. 2015;10:1243–1260.
  • Colby T, Koss M, Travis W. Tumors of the lower respiratory tract. In: Rosai J, Sobin L, editors. Atlas of tumor pathology. Washington, DC: Armed Forces Inst Patho; 1995. p. 14.
  • Tomashefski JF, Connors AF, Rosenthal ES, et al. Peripheral vs central squamous cell carcinoma of the lung. A comparison of clinical features, histopathology, and survival. . Arch Pathol Lab Med. 1990;114:468–474.
  • de Groot P, Munden RF. Lung cancer epidemiology, risk factors, and prevention. Rad Clin North Am. 2012;50:863–876.
  • Aplin AE, Howe A, Alahari SK, et al. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev. 1998;50:197–263.
  • Katare DP, Mishra S, Kharkwal H, et al. Protein-drug conjugates: a new class of biotherapeutics. Kharkwal H, Janaswamy S, editors. UK: Cabi; 2017. p. 93–106.
  • Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res. 2003;42:439–462.
  • Waters MJ. The growth hormone receptor. Growth Hormone IGF Res. 2016;28:6–10.
  • Cheng CY, Perevedentseva E, Tu JS, et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl Phys Lett. 2007;90:163903.
  • Cao G, Lu H, Feng J, et al. Lung cancer risk associated with Thr495Pro polymorphism of GHR in Chinese population. Jap J Clin Oncol. 2008;38:308–316.
  • Cadranel J, Ruppert AM, Beau-Faller M, et al. Therapeutic strategy for advanced EGFR mutant non-small-cell lung carcinoma. Crit Rev Oncol/Hematol. 2013;88:477–493.
  • Nakamura H, Kawasaki N, Taguchi M, et al. Survival impact of epidermal growth factor receptor overexpression in patients with non-small cell lung cancer: a meta-analysis. Thorax. 2006;61:140–145.
  • Stuttfeld E, Ballmer-Hofer K. Structure and function of VEGF receptors. IUBMB Life. 2009;61:915–922.
  • Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114:853–865.
  • Goel HL, Mercurio AM. VEGF targets the tumour cell. Cancer. 2013;13:871–882.
  • Danish Q, Mokhdomi TA, Bukhari S, et al. The ensemble of genetic factors and angiogenic signals via VEGF receptors in lung cancer progression. Cancer Biomarkers Sect A Dis Markers. 2015;15:619–633.
  • Carrillo de Santa Pau E, Arias FC, Caso Peláez E, et al. Prognostic significance of the expression of vascular endothelial growth factors A, B, C, and D and their receptors R1, R2, and R3 in patients with nonsmall cell lung cancer. Cancer. 2009;115:1701–1712.
  • Decaussin M, Sartelet H, Robert C, et al. Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): correlation with angiogenesis and survival. J Pathol. 1999;188:369–377.
  • Seto T, Higashiyama M, Funai H, et al. Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer. 2006;53:91–96.
  • Pajares MJ, Agorreta J, Larrayoz M, et al. Expression of tumor-derived vascular endothelial growth factor and its receptors is associated with outcome in early squamous cell carcinoma of the lung. J Clin Oncol. 2012;30:1129–1136.
  • Li Q, Dong X, Gu W, et al. Clinical significance of co-expression of VEGF-C and VEGFR-3 in non-small cell lung cancer. Chin Med J. 2003;116:727–730.
  • Kojima H, Shijubo N, Yamada G, et al. Clinical significance of vascular endothelial growth factor-C and vascular endothelial growth factor receptor 3 in patients with T1 lung adenocarcinoma. Cancer. 2005;104:1668–1677.
  • Su JL, Yang PC, Shih JY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell. 2006;9:209–223.
  • Ahmad I, Iwata T, Leung HY. Mechanisms of FGFR-mediated carcinogenesis. Biochim Biophys Acta Mol Cell Res. 2012;1823:850–860.
  • Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41.
  • Dutt A, Ramos AH, Hammerman PS, et al. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PloS One. 2011;6:e20351.
  • Templeton AK, Miyamoto S, Babu A, et al. Cancer stem cells: progress and challenges in lung cancer. Stem Cell Investig. 2014 Apr;1:9.
  • Penno MB, August JT, Baylin SB, et al. Expression of CD44 in human lung tumors. Cancer Res. 1994;54:1381–1387.
  • Chinni SR, Falchetto K, Gercel-Taylor N, et al. Humoral immune responses to cathepsin D and glucose-regulated protein 78 in ovarian cancer patients. Clin Cancer Res. 1997;3:1557–1564.
  • Wang FL, Wei LX. Expression of CD44 variant exon 6 in lung cancers. Acta Acad Med Sin. 2001;23:401–402.
  • Zhao S, He JL, Qiu ZX, et al. Prognostic value of CD44 variant exon 6 expression in non-small cell lung cancer: a meta-analysis. Asian Pacific J Cancer Prevent. 2014;15:6761–6766.
  • Hynes RO. Integrins: bidirectional allosteric signaling machines. Cell. 2002;110:673–687.
  • Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–280.
  • Bartolazzi A, Cerboni C, Flamini G, et al. Expression of alpha 3 beta 1 integrin receptor and its ligands in human lung tumors. Int J Cancer. 1995;64:248–252.
  • Barr LF, Campbell SE, Bochner BS, et al. Association of the decreased expression of α 3 β 1 integrin with the altered cell : environmental interactions and enhanced soft agar cloning ability of c-myc-overexpressing small cell lung cancer cells. Cancer Res. 1998;58:5537–5545.
  • Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nature Rev Immunol. 2011;11:597–606.
  • Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12:121–127.
  • Wu B, Chien EYT, Mol CD, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Sci. 2010;330:1066–1071.
  • Saintigny P, Burger JA. Recent advances in non-small cell lung cancer biology and clinical management. Discov Med. 2012;13:287–297.
  • Wald O, Izhar U, Amir G, et al. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J Immunol. 2006;177:6983–6990.
  • Nelson RM, Venot A, Bevilacqua MP, et al. Carbohydrate-protein interactions in vascular biology. Annu Rev Cell Dev Biol. 1995;11:601–631.
  • Varki A. Selectin ligands. Proc Nat Acad Sci USA. 1994;91:7390–7397.
  • Guney N, Soydinc HO, Derin D, et al. Serum levels of intercellular adhesion molecule ICAM-1 and E-selectin in advanced stage non-small cell lung cancer. Med Oncol. 2008;25:194–200.
  • Hiratsuka S, Goel S, Kamoun WS, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Nat Acad Sci USA. 2011;108:3725–3730.
  • Martín-Satué M, Marrugat R, Cancelas JA, et al. Enhanced expression of α (1, 3)-fucosyltransferase genes correlates with E-selectin-mediated adhesion and metastatic potential of human lung adenocarcinoma cells. Cancer Res. 1998;58:1544–1550.
  • Gong L, Mi HJ, Zhu H, et al. P-selectin-mediated platelet activation promotes adhesion of non-small cell lung carcinoma cells on vascular endothelial cells under flow. Mol Med Rep. 2012;5:935–942.
  • Litvinov SV, Balzar M, Winter MJ, et al. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins. J Cell Biol. 1997;139:1337–1348.
  • Balzar M, Winter MJ, de Boer CJ, et al. The biology of the 17-1A antigen (Ep-CAM). J Mol Med. 1999;77:699–712.
  • Went P, Vasei M, Bubendorf L, et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer. 2006;94:128–135.
  • Piyathilake CJ, Frost AR, Weiss H, et al. The expression of Ep-CAM (17-1A) in squamous cell cancers of the lung. Human Patho. 2000;31:482–487.
  • Kim Y, Kim HS, Cui ZY, et al. Clinicopathological implications of EpCAM expression in adenocarcinoma of the lung. Anticancer Res. 2009;29:1817–1822.
  • Varnum BC, Young C, Elliott G, et al. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature. 1995;373:623–626.
  • Costa M, Bellosta P, Basilico C. Cleavage and release of a soluble form of the receptor tyrosine kinase ARK in vitro and in vivo. J Cell Physiol. 1996;168:737–744.
  • O’Bryan JP, Fridell YW, Koski R, et al. The transforming receptor tyrosine kinase Axl, is post-translationally regulated by proteolytic cleavage. J Biol Chem. 1995;270:551–557.
  • Paccez JD, Vogelsang M, Parker MI, et al. The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications. Int J Cancer. 2014;134:1024–1033.
  • Shieh YS, Lai CY, Kao YR, et al. Expression of axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia. 2005;7:1058–1064.
  • Wimmel A, Glitz D, Kraus A, et al. Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer. 2001;37:2264–2274.
  • Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta Gen Sub. 2012;1820:291–317.
  • Pun SH, Tack F, Bellocq NC, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther. 2004;3:641–650.
  • Dowlati A, Loo M, Bury T, et al. Soluble and cell-associated transferrin receptor in lung cancer. Br J Cancer. 1997;75:1802–1806.
  • Whitney JF, Clark JM, Griffin TW, et al. Transferrin receptor expression in nonsmall cell lung cancer. Cancer. 1995;76:20–25.
  • Zhu X, Zhang H, Lin Y, et al. Mechanisms of gambogic acid-induced apoptosis in non-small cell lung cancer cells in relation to transferrin receptors. J Chemother. 2009;21:666–672.
  • Kukulj S, Jaganjac M, Boranic M, et al. Altered iron metabolism, inflammation, transferrin receptors, and ferritin expression in non-small-cell lung cancer. Med Oncol. 2010;27:268–277.
  • Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3:673–682.
  • Cassatella MA. On the production of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2L) by human neutrophils. J Leukocyte Biol. 2006;79:1140–1149.
  • Daniels RA, Turley H, Kimberley FC, et al. Expression of TRAIL and TRAIL receptors in normal and malignant tissues. Cell Res. 2005;15:430–438.
  • Spierings DCJ, de Vries EGE, Timens W, et al. Expression of TRAIL and TRAIL death receptors in stage III non-small cell lung cancer tumors. Clin Cancer Res. 2003;9:3397–3405.
  • Matherly LH, Goldman ID. Membrane transport of folates. Vitamins and hormones. 2003;66:403–456.
  • Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev. 2004;56:1067–1084.
  • Parker N, Turk MJ, Westrick E, et al. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Analy Biochem. 2005;338:284–293.
  • Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994;73:2432–2443.
  • Cagle PT, Zhai QJ, Murphy L, et al. Folate receptor in adenocarcinoma and squamous cell carcinoma of the lung: potential target for folate-linked therapeutic agents. Arch Patho Lab Med. 2013;137:241–244.
  • Nunez MI, Behrens C, Woods DM, et al. High expression of folate receptor alpha in lung cancer correlates with adenocarcinoma histology and EGFR mutation J. Thoracic Oncol. 2012;7:833–840.
  • O’Shannessy DJ, Yu G, Smale R, et al. Folate receptor alpha expression in lung cancer: diagnostic and prognostic significance. Oncotarget. 2012;3:414–425.
  • Shi H, Guo J, Li C, et al. A current review of folate receptor alpha as a potential tumor target in non-small-cell lung cancer. Drug Des Dev Ther. 2015;9:4989–4996.
  • Jordinson M, Calam J, Pignatelli M. Lectins: from basic science to clinical application in cancer prevention. Exp Opin Investigat Drugs. 1998;7:1389–1403.
  • Thöm I, Schult-Kronefeld O, Burkholder I, et al. Lectin histochemistry of metastatic adenocarcinomas of the lung. Lung Cancer. 2007;56:391–397.
  • Donington JS, Pass HI. Surgical approach to locally advanced non-small cell lung cancer. Cancer J. 2013;19:217–221.
  • Liauw SL, Connell PP, Weichselbaum RR. New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transi Med. 2013;5:173sr2.
  • Yu E, Lewis C, Luisa Trejos A, et al. Lung cancer brachytherapy: robotics-assisted minimally invasive approach. Curr Resp Med Rev. 2011;7:340–353.
  • Kalemkerian GP. Advances in pharmacotherapy of small cell lung cancer. Exp Opin Pharmacother. 2014;15:2385–2396.
  • Clegg A, Scott DA, Hewitson P, et al. Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: a systematic review. Thorax. 2002;57:20–28.
  • Waqar SN, Subramanian J, Morgensztern D, et al. Chemotherapy of lung cancer. In: Perry’s the chemotherapy source book. 5th ed. Walters Kluwer: Lippincott Williams and Wilkins; 2012. 385–400.
  • Stevens EA, Rodriguez CP. Genomic medicine and targeted therapy for solid tumors. J Surg Oncol. 2015;111:38–42.
  • Smith RE. Trends in recommendations for myelosuppressive chemotherapy for the treatment of solid tumors. J Nat Compr Cancer Network. 2006;4:649–658.
  • Hughes GA. Nanostructure-mediated drug delivery. Nanomed Nanotechnol Biol Med. 2005;1:22–30.
  • Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retinal Eye Res. 2010;29:596–609.
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. Am Chem Soc Pub. 2009;3:16–20.
  • Lee SH, Heng D, Ng WK, et al. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm. 2011;403:192–200.
  • Plapied L, Duhem N, Des Rieux A, et al. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Coll Interf Sci. 2011;16:228–237.
  • Betancourt T, Doiron A, Homan KA, et al. Controlled release and nanotechnology. In: de Villiers MM, Aramwit P, Kwon GS, editors. Nanotechnology in drug delivery. New York: Springer ; 2009. p. 283–312.
  • Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022.
  • Agarwal A, Saraf S, Asthana A, et al. Ligand based dendritic systems for tumor targeting. Int J Pharm. 2008;350:3–13.
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60:1615–1626.
  • Toporkiewicz M, Meissner J, Matusewicz L, et al. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes and challenges. Int. J. Nanomed.. 2015;10:1399–1414.
  • Abdelaziz HM, Gaber M, Abd-Elwakil MM, et al. Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release. 2018;269:374–392.
  • Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2:3–44.
  • Ge Y, Zhang Y, He S, et al. Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett. 2009;4:287–295.
  • Lee H, Yu MK, Park S, et al. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc. 2007;129:12739–12745.
  • Hwang DW, Ko HY, Lee JH, et al. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nuc Med. 2010;51:98–105.
  • Brunel FM, Lewis JD, Destito G, et al. Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett. 2010;10:1093–1097.
  • Aryal S, Hu CMJ, Zhang L. Polymer–cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano. 2010;4:251–258.
  • Mannich C, Krösche W. Ueber ein Kondensationsprodukt aus Formaldehyd. Ammoniak und Antipyrin. Arch Pharm. 1912;250:647–667.
  • Xie J, Chen K, Lee HY, et al. Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin alpha(v)beta3-rich tumor cells. J Am Chem Soc. 2008;130:7542–7543.
  • Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem. 2001;40:2004–2021.
  • von Maltzahn G, Ren Y, Park JH, et al. In vivo tumor cell targeting with “click” nanoparticles. Bioconj Chem. 2008;19:1570–1578.
  • Santra S, Kaittanis C, Grimm J, et al. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small. 2009;5:1862–1868.
  • Hein CD, Liu XM, Wang D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res. 2008;25:2216–2230.
  • Devaraj NK, Upadhyay R, Haun JB, et al. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew Chem. 2009;48:7013–7016.
  • Haun JB, Devaraj NK, Hilderbrand SA, et al. Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nature Nanotechnol. 2010;5:660–665.
  • Lu RM, Chang YL, Chen MS, et al. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomat. 2011;32:3265–3274.
  • Mitchell GP, Mirkin CA, Letsinger RL. Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc. 1999;121:8122–8123.
  • Pathak S, Choi SK, Arnheim N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc. 2001;123:4103–4104.
  • Willard DM, Carillo LL, Jung J, et al. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett. 2001;1:469–474.
  • Lu W, Zhang G, Zhang R, et al. Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res. 2010;70:3177–3188.
  • Dixit V, Van Den Bossche J, Sherman DM, et al. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconj Chem. 2006;17:603–609.
  • Heo DN, Yang DH, Moon HJ, et al. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomat. 2012;33:856–866.
  • Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res. 2006;12:6677–6686.
  • Mok H, Veiseh O, Fang C, et al. pH-Sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol Pharm. 2010;7:1930–1939.
  • Yu MK, Park J, Jeong YY, et al. Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery. Nanotechnol. 2010;21:415102.
  • Veiseh O, Sun C, Fang C, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res. 2009;69:6200–6207.
  • Wu P, He X, Wang K, et al. A novel methotrexate delivery system based on chitosan-methotrexate covalently conjugated nanoparticles. J Biomed Nanotechnol. 2009;5:557–564.
  • Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res. 1999;5:83–94.
  • Zhang XQ, Xu X, Lam R, et al. Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA-nanoparticle conjugates. ACS Nano. 2011;5:6962–6970.
  • Liu T, Li X, Qian Y, et al. Multifunctional pH-disintegrable micellar nanoparticles of asymmetrically functionalized β-cyclodextrin-based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties. Biomat. 2012;33:2521–2531.
  • Doane T, Burda C. Nanoparticle mediated non-covalent drug delivery. Adv Drug Deliv Rev. 2013;65:607–621.
  • Green NM. Avidin and streptavidin. Methods Enzymol. 1990;184:51–67.
  • Fehring V, Schaeper U, Ahrens K, et al. Delivery of therapeutic siRNA to the lung endothelium via novel Lipoplex formulation DACC. Mol Ther. 2014;22:811–820.
  • Won YY, Sharma R, Konieczny SF. Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. J Control Release. 2009;139:88–93.
  • Essex S, Navarro G, Sabhachandani P. Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multidrug-resistant tumors. Gene Ther. 2015;22:257–266.
  • Jain TK, Morales MA, Sahoo SK, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm. 2005;2:194–205.
  • Zhang L, Lu J, Jin Y, et al. Folate-conjugated beta-cyclodextrin-based polymeric micelles with enhanced doxorubicin antitumor efficacy. Coll Surf B Biointerf. 2014;122:260–269.
  • Artemov D, Mori N, Okollie B, et al. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med. 2003;49:403–408.
  • Varshney M, Yang L, Su XL, et al. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157: h7in ground beef. J Food Prot. 2005;68:1804–1811.
  • Zhou J, Rossi JJ. Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol Ther Nucleic Acids. 2014;3:e169.
  • Hicke BJ, Stephens AW, Gould T, et al. Tumor targeting by an aptamer. J Nuc Med. 2006;47:668–678.
  • Frederick CA, Williams LD, Ughetto G, et al. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochem. 1990;29:2538–2549.
  • Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4:3689–3696.
  • Yu MK, Kim D, Lee IH, et al. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011;7:2241–2249.
  • Torchilin V. Antibody-modified liposomes for cancer chemotherapy. Exp Opin Drug Deliv. 2008;5:1003–1025.
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nature Rev Cancer. 2002;2:750–763.
  • Li S, Schmitz KR, Jeffrey PD, et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 2005;7:301–311.
  • Humblet Y. Cetuximab: an IgG(1) monoclonal antibody for the treatment of epidermal growth factor receptor-expressing tumours. Exp Opin Pharmacother. 2004;5:1621–1633.
  • Karra N, Nassar T, Ripin AN, et al. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small. 2013;9:4221–4236.
  • Danesi R, Pasqualetti G, Giovannetti E, et al. Pharmacogenomics in non-small-cell lung cancer chemotherapy. Adv Drug Deliv Rev. 2009;61:408–417.
  • Wang XB, Zhou HY. Molecularly targeted gemcitabine-loaded nanoparticulate system towards the treatment of EGFR overexpressing lung cancer. Biomed Pharmacother. 2015;70:123–128.
  • Maya S, Sarmento B, Lakshmanan V, et al. Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells. Int J Biol Macromol. 2014;69:532–541.
  • Lee YK, Lee TS, Song IH, et al. Inhibition of pulmonary cancer progression by epidermal growth factor receptor-targeted transfection with Bcl-2 and survivin siRNAs. Cancer Gene Ther. 2015;22:335–343.
  • Jo S, Noh S, Jin Z, et al. Simple and efficient capture of EGFR-expressing tumor cells using magnetic nanoparticles. Sens Actuators B Chem. 2014;201:144–152.
  • Ahmad I, Longenecker M, Samuel J, et al. Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res. 1993;53:1484–1488.
  • Xu H, Ma H, Yang P, et al. Targeted polymer-drug conjugates: current progress and future perspective. Coll Surf B Biointerf. 2015;136:729–734.
  • McGuire M, Li S, Brown K. Biopanning of phage displayed peptide libraries for the isolation of cell-specific ligands. In: Rasooly A, Herold KE, editors. Biosensors and biodetection SE-18. Totowa, NJ: Humana Press 504; 2009. p. 291–321.
  • Chang CC, Chen PH, Chu HL, et al. Laser induced popcornlike conformational transition of nanodiamond as a nanoknife. Appl Phys Lett. 2008;93:33905.
  • Cheng L, Huang FZ, Cheng LF, et al. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int J Nanomed. 2014;9:921–935.
  • Togami K, Miyao A, Miyakoshi K, et al. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis. Biol Pharm Bull. 2015;38:270–276.
  • Wu Y, Lu CT, Li WF, et al. Preparation and antitumor activity of bFGF-mediated active targeting doxorubicin microbubbles. Drug Dev Ind Pharm. 2013;39:1712–1719.
  • Chang DK, Lin CT, Wu CH, et al. A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer. PloS One. 2009;4:e4171.
  • El-Mousawi M, Tchistiakova L, Yurchenko L, et al. A vascular endothelial growth factor high affinity receptor 1-specific peptide with antiangiogenic activity identified using a phage display peptide library. The J Biol Chem. 2003;278:46681–46691.
  • Chang DK, Li PC, Lu RM, et al. Peptide-mediated liposomal Doxorubicin enhances drug delivery efficiency and therapeutic efficacy in animal models. PloS One. 2013;8:e83239.
  • Hai-Tao Z, Hui-Cheng L, Zheng-Wu L, et al. A tumor-penetrating peptide modification enhances the antitumor activity of endostatin in vivo. Anticancer Drugs. 2011;22:409–415.
  • Teesalu T, Sugahara KN, Kotamraju VR, et al. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci. 2009;106:16157–16162.
  • Lao X, Li B, Liu M, et al. Increased antitumor activity of tumor-specific peptide modified thymopentin. Biochimie. 2014;107:277–285.
  • Shen J, Meng Q, Sui H, et al. iRGD conjugated TPGS mediates codelivery of paclitaxel and survivin shRNA for the reversal of lung cancer resistance. Mol Pharm. 2014;11:2579–2591.
  • Dewan MZ, Ahmed S, Iwasaki Y, et al. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006;60:273–276.
  • Tang CH, Tan TW, Fu WM, et al. Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis. Carcinogen. 2008;29:35–43.
  • Tsutsumi H, Tanaka T, Ohashi N, et al. Therapeutic potential of the chemokine receptor CXCR4 antagonists as multifunctional agents. Biopolym. 2007;88:279–289.
  • Wang RT, Zhi XY, Yao SY, et al. LFC131 peptide-conjugated polymeric nanoparticles for the effective delivery of docetaxel in CXCR4 overexpressed lung cancer cells. Coll Surf B Biointerf. 2015;133:43–50.
  • Chittasupho C, Lirdprapamongkol K, Kewsuwan P, et al. Targeted delivery of doxorubicin to A549 lung cancer cells by CXCR4 antagonist conjugated PLGA nanoparticles. Eur J Pharm Biopharm. 2014;88:529–538.
  • Liang Z, Yang N, Jiang Y, et al. Targeting docetaxel-PLA nanoparticles simultaneously inhibit tumor growth and liver metastases of small cell lung cancer. Int J Pharm. 2015;494:337–345.
  • Gao H, Zhang Q, Yang Y, et al. Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy. Int J Pharm. 2015;478:240–250.
  • Pooja D, Kulhari H, Tunki L, et al. Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles. RSC Adv. 2015;5:49122–49131.
  • Kannagi R, Izawa M, Koike T, et al. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004;95:377–384.
  • Shamay Y, Raviv L, Golan M, et al. Inhibition of primary and metastatic tumors in mice by E-selectin-targeted polymer–drug conjugates. J Control Release. 2015;217:102–112.
  • Fukuda MN, Ohyama C, Lowitz K, et al. A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res. 2000;60:450–456.
  • Raza A, Franklin MJ, Dudek AZ. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol. 2010;85:593–598.
  • Guan Y, Luan X, Xu J, et al. Selective eradication of tumor vascular pericytes by peptide- conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomat. 2014;35:3060–3070.
  • Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol. 2010;188:759–768.
  • Simberg D, Duza T, Park JH, et al. Biomimetic amplification of nanoparticle homing to tumors. Proc Nat Acad Sci. 2007;104:932–936.
  • Kruse AM, Meenach SA, Anderson KW, et al. Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater. 2014;10:2622–2629.
  • Fang X, Tan W. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res. 2010;43:48–57.
  • Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Exp Opin Drug Deliv. 2006;3:311–324.
  • Alibolandi M, Ramezani M, Abnous K, et al. In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J Control Release. 2015;209:88–100.
  • Askarian S, Abnous K, Taghavi S, et al. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Coll Surf B Biointerf. 2015;136:355–364.
  • Esposito CL, Cerchia L, Catuogno S, et al. Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther. 2014;22:1151–1163.
  • Yu L, Hu Y, Duan J, et al. A novel approach of targeted immunotherapy against adenocarcinoma cells with nanoparticles modified by CD16 and MUC1 aptamers. J Nanomat. 2015;2015:316968.
  • Kaur J, Tikoo K. Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation. Oncogene. 2015;34:5216–5228.
  • Ohannesian DW, Lotan D, Thomas P, et al. Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res. 1995;55:2191–2199.
  • Elgavish S, Shaanan B. Lectin-carbohydrate interactions: different folds, common recognition principles. Trends Biochem Sci. 1997;22:462–467.
  • Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9:7081–7092.
  • Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. 2004;95:930–935.
  • Ruhela D, Kivimäe S, Szoka FC. Chemoenzymatic synthesis of oligohyaluronan-lipid conjugates. Bioconj Chem. 2014;25:718–723.
  • Lin CM, Kao WC, Yeh CA, et al. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells. Nanotechnol. 2015;26:105101.
  • Quan YH, Kim B, Park J, et al. Highly sensitive and selective anticancer effect by conjugated HA-cisplatin in non-small cell lung cancer overexpressed with CD44. Expt Lung Res. 2014;40:475–484.
  • Wang SJ, Huo ZJ, Liu K, et al. Ligand-conjugated pH-sensitive polymeric micelles for the targeted delivery of gefitinib in lung cancers. RSC Adv. 2015;5:73184–73193.
  • Drabovich AP, Berezovski MV, Musheev MU, et al. Selection of smart small-molecule ligands: the proof of principle. Analy Chem. 2009;81:490–494.
  • Muthukumar T, Chamundeeswari M, Prabhavathi S, et al. Carbon nanoparticle from a natural source fabricated for folate receptor targeting, imaging and drug delivery application in A549 lung cancer cells. Eur J Pharm Biopharm. 2014;88:730–736.
  • Zhang Z, Hu Y, Yang J, et al. Facile synthesis of folic acid-modified iron oxide nanoparticles for targeted MR imaging for pulmonary tumor xenografts. Mol Imag Biol. 2016;18:569–578.
  • Wang S, Luo J, Lantrip DA, et al. Design and synthesis of [111In]DPTA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjugate Chem. 1997;8:673–679.
  • Rosière R, Van Woensel M, Gelbcke M, et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharm. 2018;15:899–910.
  • Rosière R, Van Woensel M, Mathieu V, et al. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Int J Pharm. 2016;501:148–159.
  • Hu L, Pang S, Hu Q, et al. Enhanced antitumor efficacy of folate targeted nanoparticles co-loaded with docetaxel and curcumin. Biomed Pharmacother. 2015;75:26–32.
  • Sung J, Padilla D, Garcia-Contreras L, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009;26:1847–1855.
  • Cheow WS, Chang MW, Hadinoto K. Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm Res. 2010;27:1597–1609.
  • Suk JS, Lai SK, Boylan NJ, et al. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomed. 2011;6:365–375.
  • Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60:863–875.
  • Roa WH, Azarmi S, Al-Hallak MHDK, et al. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release. 2011;150:49–55.
  • Mangal S, Gao W, Li T, et al. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin. 2017;38:782–797.
  • Komenek S, Luesakul U, Ekgasit S, et al. Nanogold-gallate chitosan-targeted pulmonary delivery for treatment of lung cancer. AAPS PharmSciTech. 2017;18:1104–1115.
  • Sarkar S, Osama K, Jamal QMS, et al. Advances and implications in nanotechnology for lung cancer management. Curr Drug Metab. 2017;18:30–38.
  • Traini D, Young PM. Formulation of inhalation medicines. In: Colombo P, Traini D, Buttini F, editors. Inhalation drug delivery: techniques and products. West Sussex: John Wiley & Sons, Ltd; 2012. p. 31–45.
  • Carvalho TC, Peters JI, Williams RO. Influence of particle size on regional lung deposition–what evidence is there? Int J Pharm. 2011;406:1–10.
  • Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392:1–19.
  • Tsapis N, Bennett D, Jackson B, et al. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Nat Acad Sci. 2002;99:12001–12005.
  • Noraizaan AN, Wong TW. Physicochemical effects of lactose microcarrier on inhalation performance of rifampicin in polymeric nanoparticles. Powder Technol. 2017;310:272–281.
  • Wong TW, John P. Advances in spray drying technology for nanoparticle formation. In: Aliofkhazraei M, editor. Handbook of nanoparticles. 1 ed. Switzerland: Springer International Publishing; 2016. p. 329–346.
  • Hadinoto K, Cheow WS. Hollow spherical nanoparticulate aggregates as potential ultrasound contrast agent: shell thickness characterization. Drug Dev Ind Pharm. 2009;35:1167–1179.
  • Kho K, Hadinoto K. Aqueous re-dispersibility characterization of spray-dried hollow spherical silica nano-aggregates. Powder Technol. 2010;198:354–363.
  • Anton N, Jakhmola A, Vandamme TF. Trojan microparticles for drug delivery. Pharma. 2012;4:1–25.
  • Kawakami K, Sumitani C, Yoshihashi Y, et al. Investigation of the dynamic process during spray-drying to improve aerodynamic performance of inhalation particles. Int J Pharm. 2010;390:250–259.
  • Cheow WS, Li S, Hadinoto K. Spray drying formulation of hollow spherical aggregates of silica nanoparticles by experimental design. Chem Eng Res Des. 2010;88:673–685.
  • Hadinoto K, Phanapavudhikul P, Kewu Z, et al. Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. Int J Pharm. 2007;333:187–198.
  • Kho K, Hadinoto K. Effects of excipient formulation on the morphology and aqueous re-dispersibility of dry-powder silica nano-aggregates. Coll Surf A Physicochem Eng Aspects. 2010;359:71–81.
  • Tomoda K, Ohkoshi T, Nakajima T, et al. Preparation and properties of inhalable nanocomposite particles: effects of the size, weight ratio of the primary nanoparticles in nanocomposite particles and temperature at a spray-dryer inlet upon properties of nanocomposite particles. Coll Surf B Biointerf. 2008;64:70–76.
  • Yamamoto H, Hoshina W, Kurashima H, et al. Engineering of poly(DL-lactic-co-glycolic acid) nanocomposite particles for dry powder inhalation dosage forms of insulin with the spray-fluidized bed granulating system. Adv Powder Technol. 2007;18:215–228.
  • Lebhardt T, Roesler S, Uusitalo HP, et al. Surfactant-free redispersible nanoparticles in fast-dissolving composite microcarriers for dry-powder inhalation. Eur J Pharm Biopharm. 2011;78:90–96.
  • Ali ME, Lamprecht A. Spray freeze drying for dry powder inhalation of nanoparticles. Eur J Pharm Biopharm. 2014;87:510–517.
  • Kunda NK, Alfagih IM, Dennison SR, et al. Bovine serum albumin adsorbed PGA-CO-PDL nanocarriers for vaccine delivery via dry powder inhalation. Pharm Res. 2015;32:1341–1353.
  • Stocke NA, Meenach SA, Arnold SM, et al. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying. Int J Pharm. 2015;479:320–328.
  • Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Coll Interf Sci. 2003;265:296–303.
  • Sham JOH, Zhang Y, Finlay WH, et al. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm. 2004;269:457–467.
  • Ely L, Roa W, Finlay WH, et al. Effervescent dry powder for respiratory drug delivery. Eur J Pharm Biopharm. 2007;65:346–353.
  • Al-Qadi S, Grenha A, Carrión-Recio D, et al. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Controlled Release. 2012;157:383–390.
  • Jensen DK, Jensen LB, Koocheki S, et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J Controlled Release. 2012;157:141–148.
  • Abdelwahed W, Degobert G, Fessi H. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. Int J Pharm. 2006;309:178–188.
  • Abdelwahed W, Degobert G, Stainmesse S, et al. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688–1713.
  • Cheow WS, Ng MLL, Kho K, et al. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Int J Pharm. 2011;404:289–300.
  • Azarmi S, Löbenberg R, Roa WH, et al. Formulation and in vivo evaluation of effervescent inhalable carrier particles for pulmonary delivery of nanoparticles. Drug Dev Ind Pharm. 2008;34:943–947.
  • El-Gendy N, Gorman EM, Munson EJ, et al. Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci. 2009;98:2731–2746.
  • El-Gendy N, Desai V, Berkland C. Agglomerates of ciprofloxacin nanoparticles yield fine dry powder aerosols. J Pharm Innovat. 2010;5:79–87.
  • El-Gendy N, Berkland C. Combination chemotherapeutic dry powder aerosols via controlled nanoparticle agglomeration. Pharm Res. 2009;26:1752–1763.
  • El-Gendy N, Aillon KL, Berkland C. Dry powdered aerosols of diatrizoic acid nanoparticle agglomerates as a lung contrast agent. Int J Pharm. 2010;391:305–312.
  • Plumley C, Gorman EM, El-Gendy N, et al. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm. 2009;369:136–143.
  • Price DN, Stromberg LR, Kunda NK, et al. In vivo pulmonary delivery and magnetic targeting of dry powder nano-in-microparticles. Mol Pharm. 2017;14:4741–4750.
  • Zhang T, Chen Y, Ge Y, et al. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm Sin B. 2018;8:440–448.
  • Chen R, Xu L, Fan Q, et al. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery. Drug Deliv. 2017;24:1191–1203.
  • Card JW, Zeldin DC, Bonner JC, et al. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol. 2008;295:L400–11.
  • Menon JU, Kuriakose A, Iyer R, et al. Dual-drug containing core-shell nanoparticles for lung cancer therapy. Sci Rep. 2017;7:13249.
  • Yan Y, Liu L, Xiong H, et al. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc Acad Sci USA. 2016;113:E5702–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.