656
Views
18
CrossRef citations to date
0
Altmetric
Review

Strategies for modifying drug residence time and ocular bioavailability to decrease treatment frequency for back of the eye diseases

, , , &
Pages 43-57 | Received 28 Apr 2018, Accepted 26 Nov 2018, Published online: 07 Dec 2018

References

  • Congdon N, O’Colmain B, Klaver CCW, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122:477–485.
  • Vision Problems in the U.S. [Website]. [cited 2018 Oct 1]. Available from: www.visionproblemsus.org
  • Cohen SY, Dubois L, Ayrault S, et al. Ranibizumab for exudative AMD in a clinical setting: differences between 2007 and 2010. Graefes Arch Clin Exp Ophthalmol. 2013;251:2499–2503.
  • Holz FG, Tadayoni R, Beatty S, et al. Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration. Br J Ophthalmol. 2015;99:220–226.
  • Souied E, Nghiem-Buffet S, Leteneux C, et al. Ranibizumab prefilled syringes: benefits of reduced syringe preparation times and less complex preparation procedures. Eur J Ophthalmol. 2015;25:529–534.
  • Pawlina W, Ross MH. Histology. Lww. Philadelphia; 2015.
  • Peyman GA, Vastine DW, Meisels HI. The experimental and clinical use of intravitreal antibiotics to treat bacterial and fungal endophthalmitis. Doc Ophthalmol. 1975;39:183–201.
  • Avery RL, Luttrull JK. Inventors; US Patent Office, assignee. Intravitreal medicine delivery patent 5,830,173. 1998
  • Maurice D. Review: practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther. 2001;17:393–401.
  • Feigenbaum A, Kornblüth W. Intravitreal injection of Penicillin in a case of incipient abscess of the vitreous following extracapsular cataract extraction. Perfect cure. Ophthalmologica. 1945;110:300–305.
  • Baum J, Peyman GA, Barza M. Intravitreal administration of antibiotic in the treatment of bacterial endophthalmitis. III. Consensus. Surv Ophthalmol. 1982;26:204–206.
  • Davis JL, Gilger BC, Robinson MR. Novel approaches to ocular drug delivery. Curr Opin Mol Ther. 2004;3:195–205.
  • Short BG. Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol. 2008;36:49–62.
  • Keren G, Alhalel A, Bartov E, et al. The intravitreal penetration of orally administered ciprofloxacin in humans. Invest Ophthalmol Vis Sci. 1991;32:2388–2392.
  • Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3:275–287.
  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. Aaps J. 2010;12:348–360.
  • Agrahari V, Agrahari V, Mandal A, et al. How are we improving the delivery to back of the eye? Advances and challenges of novel therapeutic approaches. Expert Opin Drug Deliv. 2017;14:1145–1162.
  • del Amo EM, Rimpelä A-K, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–185.
  • Villegas VM, Aranguren LA, Kovach JL, et al. Current advances in the treatment of neovascular age-related macular degeneration. Expert Opin Drug Deliv. 2017;14:273–282.
  • Maurice DM, Mishima S. Ocular pharmacokinetics. Pharmacology of the Eye. Berlin, Heidelberg: Springer; 1984. p. 19–116.
  • Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. editors. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51:5403–5420.
  • Aguirre SA, Gukasyan HJ, Younis HS, et al. Safety assessment of formulation vehicles following intravitreal administration in rabbits. Pharm Res. 2018;35:173–182.
  • Rowe-Rendleman CL, Rowe-Rendleman SAD, Kompella B, et al. Drug and gene delivery to the back of the eye: from bench to bedside. Invest Ophthalmol Vis Sci. 2014;55:2714–2730.
  • Bishop PN. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res. 2000;19:323–344.
  • Russell SR, Shepherd JD, Hageman GS. Distribution of glycoconjugates in the human retinal internal limiting membrane. Invest Ophthalmol Vis Sci. 1991;32:1986–1995.
  • Kim H, Robinson SB, Csaky KG. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res. 2009;26:329–337.
  • Dalkara D, Kolstad KD, Caporale N, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17:2096–2102.
  • Thrimawithana TR, Young S, Bunt CR, et al. Drug delivery to the posterior segment of the eye: challenges and opportunities. Drug Deliv Lett. 2011;1:40–44.
  • Al-Zamil W, Yassin S. Recent developments in age-related macular degeneration: a review. Cia. 2017;Volume 12:1313–1330.
  • Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res. 2015;49:67–81.
  • Cherepanoff S, McMenamin P, Gillies MC, et al. Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol. 2010;94:918–925.
  • Klein ML, Ferris III FL, Armstrong J, et al. Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology. 2008;115:1026–1031.
  • van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age‐related macular degeneration and therapeutic opportunities. J Pathol. 2014;232:151–164.
  • Dunaief JL, Dentchev T, Ying G-S, et al. The role of apoptosis in age-related macular degeneration. Arch Ophthalmol. 2002;120:1435–1442.
  • Kwak N, Okamoto N, Wood JM, et al. VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2000;41:3158–3164.
  • Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119:2537–2548.
  • Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2009;355:1419–1431.
  • Brown DM, Campochiaro PA, Bhisitkul RB, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology. 2011;118:1594–1602.
  • Mordenti J, Cuthbertson RA, Ferrara N, et al. Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and fab antibodies in rhesus monkeys following intravitreal administration. Toxicol Pathol. 1999;27:536–544.
  • Sadiq MA, Agarwal A, Soliman MK, et al. Sustained-release fluocinolone acetonide intravitreal insert for macular edema: clinical pharmacology and safety evaluation. Expert Opin Drug Saf. 2015;14:1147–1156.
  • Novack GD. Ophthalmic drug delivery: development and regulatory considerations. Clin Pharmacol Ther. 2009;85:539–543.
  • Wang J, Jiang A, Joshi M, et al. Drug delivery implants in the treatment of vitreous inflammation. Mediators Inflamm. 2013;2013:7806–7834.
  • Wong FY, Tsang K, Lo AY. Delivery of therapeutics to posterior eye segment: cell-encapsulating systems. Neural Regen Res. 2017;12:576–582.
  • Yasin MN, Svirskis D, Seyfoddin A, et al. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release. 2014;196:208–221.
  • Lim JI, Niec M, Wong V. One year results of a phase 1 study of the safety and tolerability of combination therapy using sustained release intravitreal triamcinolone acetonide and ranibizumab for subfoveal neovascular AMD. Br J Ophthalmol. 2015;99:618–623.
  • Cardillo JA, Souza-Filho AA, Oliveira AG. Intravitreal Bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol. 2006;81:675–682.
  • Press release FILLY 12 month results FINAL [Internet]. [2]. 2017. Available from: http://apellis.com/pdfs/Press%20Release%20FILLY%2012%20Month%20Results%20FINAL%20FINAL%20170823.pdf
  • Drolet DW, Green LS, Gold L, et al. Fit for the eye: aptamers in ocular disorders. Nucleic Acid Ther. 2016;26:127–146.
  • Bansal P, Garg S, Sharma Y, et al. Posterior segment drug delivery devices: current and novel therapies in development. J Ocul Pharmacol Ther. 2016;32:135–144.
  • Eleftheriadou M, Vazquez-Alfageme C, Citu CM, et al. Long-term outcomes of aflibercept treatment for neovascular age-related macular degeneration in a clinical setting. Am J Ophthalmol. 2017;174:160–168.
  • Wells JA III, Berger BB, Gonzales C, et al. Multicenter phase 1 clinical trial targeting tissue factor for the treatment of neovascular AMD. Invest Ophthalmol Vis Sci. 2012;53:450.
  • Yeh S, Kurup SK, Wang RC, et al. Suprachoroidal injection of triamcinolone acetonide, CLS-TA, for macular edema due to noninfectious uveitis: a randomized, phase 2 study (DOGWOOD). Retina (Philadelphia, Pa). 2018;1–9.
  • Santarelli M, Diplotti L, Samassa F, et al. Advances in pharmacotherapy for wet age-related macular degeneration. Expert Opin Pharmacother. 2015;16:1769–1781.
  • Kidron H, del Amo EM, Vellonen K-S, et al. Prediction of the vitreal half-life of small molecular drug-like compounds. Pharm Res. 2012;29:3302–3311.
  • Del Amo EM, Vellonen K-S, Kidron H, et al. Intravitreal clearance and volume of distribution of compounds in rabbits: in silico prediction and pharmacokinetic simulations for drug development. Eur J Pharm Biopharm. 2015;95:215–226.
  • Saunders LJ, Zhu H, Bunce C, et al. Ophthalmic statistics note 5: diagnostic tests—sensitivity and specificity. Br J Ophthalmol. 2015;99:1168–1170.
  • Fauser S, Muether PS. Clinical correlation to differences in ranibizumab and aflibercept vascular endothelial growth factor suppression. Br J Ophthalmol. 2016;100:1494–1498.
  • Xu L, Lu T, Tuomi L, et al. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest Ophthalmol Vis Sci. 2013;54:1616–1624.
  • Hutton-Smith LA, Gaffney EA, Bryne HM, et al. Theoretical insights into the retinal dynamics of vascular endothelial growth factor in patients treated with ranibizumab, based on an ocular pharmacokinetic/pharmacodynamic model. Mol Pharm. 2018;15:2770–2784.
  • Hutton-Smith LA, Gaffney EA, Byrne HM, et al. Ocular pharmacokinetics of therapeutic antibodies given by intravitreal injection: estimation of retinal permeabilities using a 3-compartment semi-mechanistic model. Mol Pharm. 2017;14:2690–2696.
  • Pitkanen L, Ranta V-P, Moilanen H, et al. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005;46:641–646.
  • Hutton-Smith LA, Gaffney EA, Byrne HM, et al. A mechanistic model of the intravitreal pharmacokinetics of large molecules and the pharmacodynamic suppression of ocular vascular endothelial growth factor levels by ranibizumab in patients with neovascular age-related macular degeneration. Mol Pharm. 2016;13:2941–2950.
  • Papadopoulos N, Martin J, Ruan Q, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. 2012;15:171–185.
  • Yang J, Wang X, Fuh G, et al. Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A. Mol Pharm. 2014;11:3421–3430.
  • Christoforidis JB, Williams MM, Kothandaraman S, et al. Pharmacokinetic properties of intravitreal I-124-aflibercept in a rabbit model using PET/CT. Curr Eye Res. 2012;37:1171–1174.
  • Stewart MW. Aflibercept (VEGF Trap-eye): the newest anti-VEGF drug. Br J Ophthalmol. 2012;96:1157–1158.
  • Katz B, Macugen GM. (Pegaptanib Sodium), a novel ocular therapeutic that targets vascular endothelial growth factor (VEGF). Int Ophthalmol Clin. 2006;46:141–154.
  • Schmidt-Erfurth U, Eldem B, Guymer R, et al. Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study. Ophthalmology. 2011;118:831–839.
  • Sadda SR, Guymer R, Holz FG, et al. Consensus definition for atrophy associated with age-related macular degeneration on OCT classification of atrophy report 3. Ophthalmology. 2018;125:537–548
  • Gemenetzi M, Patel PJ. A systematic review of the treat and extend treatment regimen with anti-VEGF agents for neovascular age-related macular degeneration. Ophthalmol Ther. 2017;6:79–92.
  • Joseph M, Trinh HM, Cholkar K, et al. Recent perspectives on the delivery of biologics to back of the eye. Expert Opin Drug Deliv. 2017;14:631–645.
  • Mehta H, Tufail A, Daien V, et al. Real-world outcomes in patients with neovascular age-related macular degeneration treated with intravitreal vascular endothelial growth factor inhibitors. Prog Retin Eye Res. 2018;65:127–146.
  • Shelke NB, Kadam R, Tyagi P, et al. Intravitreal poly(l-lactide) microparticles sustain retinal and choroidal delivery of tg-0054, a hydrophilic drug intended for neovascular diseases. Drug Deliv Transl Res. 2011;1:76–90.
  • Zhang L, Si T, Fischer AJ, et al. Coaxial electrospray of ranibizumab-loaded microparticles for sustained release of anti-vegf therapies. PLoS ONE. 2015;10:e0135608.
  • Ye Z, Ji Y-L, Ma X, et al. Pharmacokinetics and distributions of bevacizumab by intravitreal injection of bevacizumab-PLGA microspheres in rabbits. Int J Ophthalmol. 2015;8:653–658.
  • Yandrapu SK, Upadhyay AK, Petrash JM, et al. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol Pharm. 2013;10:4676–4686.
  • de Kozak Y, Andrieux K, Villarroya H, et al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol. 2004;34:3702–3712.
  • Varshochian R, Riazi-Esfahani M, Jeddi-Tehrani M, et al. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J Biomed Mater Res A. 2015;103:3148–3156.
  • Huu VAN, Luo J, Zhu J, et al. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J Control Release. 2015;200:71–77.
  • Merodio M, Irache JM, Valamanesh F, et al. Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials. 2002;23:1587–1594.
  • MaF, NanK, LeeS, etal. Micelle formulation of hexadecyloxypropyl-cidofovir (HDP-CDV) as an intravitreal long-lasting delivery system. Eur J Pharm Biopharm. 2015;89:271–279.
  • Yu Y, Lau LCM, Lo AC-Y, et al. Injectable chemically crosslinked hydrogel for the controlled release of bevacizumab in vitreous: a 6-month in vivo study. Transl Vis Sci Technol. 2015;4:5.
  • Rauck BM, Friberg TR, Medina Mendez CA, et al. Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. Invest Ophthalmol Vis Sci. 2014;55:469–476.
  • Hu -C-C, Chaw J-R, Chen C-F, et al. Controlled release bevacizumab in thermoresponsive hydrogel found to inhibit angiogenesis. Biomed Mater Eng. 2014;24:1941–1950.
  • Lovett ML, Wang X, Yucel T, et al. Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics. Eur J Pharm Biopharm. 2015;95:271–278.
  • Xie B, Jin L, Luo Z, et al. An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease. Int J Pharm. 2015;490:375–383.
  • Fishman PH, Peyman GA, Lesar T. Intravitreal liposome-encapsulated gentamicin in a rabbit model. Prolonged therapeutic levels. Invest Ophthalmol Vis Sci. 1986;27:1103–1106.
  • Gupta SK, Velpandian T, Dhingra N, et al. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J Ocul Pharmacol Ther. 2000;16:511–518.
  • Abrishami M, Zarei-Ghanavati S, Soroush D, et al. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina (Philadelphia, Pa). 2009;29:699–703.
  • Lajavardi L, Camelo S, Agnely F, et al. New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release. 2009;139:22–30.
  • El-Samaligy MS, Rojanasakul Y, Charlton JF, et al. Ocular disposition of nanoencapsulated acyclovir and ganciclovir via intravitreal injection in rabbit’s eye. Drug Deliv. 2008;3:93–97.
  • Kaji H, Nagai N, Nishizawa M, et al. Drug delivery devices for retinal diseases. Adv Drug Deliv Rev. 2018;128:148–157.
  • Study of the efficacy and safety of the ranibizumab port delivery system (RPDS) for sustained delivery of ranibizumab in participants with subfoveal neovascular age-related macular degeneration (AMD) (LADDER) - full text view. ClinicalTrials.gov.
  • Zhang K, Hopkins JJ, Heier JS, et al. Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc Nat Acad Sci. 2011;108:6241–6245.
  • Sieving PA, Caruso RC, Tao W, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Nat Acad Sci. 2006;103:3896–3901.
  • Neurotech. NT-501 ECT [Website]. [cited 2018 Oct 1]. Available from: http://www.neurotechusa.com/cntfrenexus.html
  • Humayun M, Santos A, Altamirano JC, et al. Implantable micropump for drug delivery in patients with diabetic macular edema. Transl Vis Sci Technol. 2014;3:5.
  • Weiner AL. refillable devices for therapy of ophthalmic diseases. New York: Springer; 2011.
  • Meng E, Hoang T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv Drug Deliv Rev. 2012;64:1628–1638.
  • Green-Simms AE, Ekdawi NS, Bakri SJ. Survey of intravitreal injection techniques among retinal specialists in the United States. Am J Ophthalmol. 2011;151:329–332.
  • Rodrigues EB, Grumann A, Penha FM, et al. Effect of needle type and injection technique on pain level and vitreal reflux in intravitreal injection. J Ocul Pharmacol Ther. 2011;27:197–203.
  • Henise J, Hearn BR, Ashley GW, et al. Biodegradable tetra-PEG hydrogels as carriers for a releasable drug delivery system. Bioconjug Chem. 2015;26:270–278.
  • Pastor JC, Lopez MI, Saornil MA, et al. Intravitreal silicone and fluorosilicone oils: pathologic findings in rabbit eyes. Acta Ophthalmol (Copenh). 1992;70:651–658.
  • Giordano GG, Chevez-Barrios P, Refojo MF, et al. Biodegradation and tissue reaction to intravitreous biodegradable poly(D,L-lactic-co-glycolic)acid microspheres. Curr Eye Res. 1995;14:761–768.
  • Hida T, Sheta SM, Proia AD, et al. Experimental transvitreal cyanoacrylate retinopexy in a primate model. Am J Ophthalmol. 1987;103:782–789.
  • Adamson P, Wilde T, Dobrzynski E, et al. Single ocular injection of a sustained-release anti-VEGF delivers 6months pharmacokinetics and efficacy in a primate laser CNV model. J Control Release. 2016;244:1–13.
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–1135.
  • Rajagopal K, Wood J, Tran B, et al. Trehalose limits BSA aggregation in spray‐dried formulations at high temperatures: implications in preparing polymer implants for long‐term protein delivery. J Pharm Sci. 2013;102:2655–2666.
  • Chang DP, Garripelli VK, Rea J, et al. Investigation of fragment antibody stability and its release mechanism from poly(lactide‐co‐glycolide)–triacetin depots for sustained‐release applications. J Pharm Sci. 2015;104:3404–3417.
  • Ocular Therapeutix (OCUL) Presents at 19th Annual BIO CEO & Investor Conference; 2017 Feb 13; New York, NY. [cited 2018 Oct 1]. Available from: http://www.seekingalpha.com
  • Rau H, Knappe T, Laufer B, et al. Inventors; US Patent Office, assignee. VEGF Neutralizing Prodrugs for the Treatment of Ocular Conditions patent US20150297740. 2013
  • Carrasquillo KG, Ricker JA, Rigas IK, et al. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci. 2003;44:290–299.
  • Lawrence MS, Ashley G, Lewis AA, et al. The intravitreal pharmacokinetics of fluorophores conjugated to PEGs by noncleavable and self-cleaving linkers in nonhuman primates. Invest Ophthalmol Vis Sci. 2014;55:5254.
  • Bailon P, Won C-Y. PEG-modified biopharmaceuticals. Expert Opin Drug Deliv. 2009;6:1–16.
  • Chapman AP, Antoniw P, Spitali M, et al. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol. 1999;17:780–783.
  • Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev. 2002;54:531–545.
  • Abuchowski A, McCoy JR, Palczuk NC, et al. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977;252:3582–3586.
  • Zalipsky S, Gilon C, Zilkha A. Attachment of drugs to polyethylene glycols. Eur Polym J. 1983;19:1177–1183.
  • Delgado C, Francis GE, Fisher D. The uses and properties of PEG-linked proteins. Crit Rev Ther Drug Carrier Syst. 1992;9:249–304.
  • Nucci ML, Shorr R, Abuchowski A. The therapeutic value of poly(ethylene glycol)-modified proteins. Adv Drug Deliv Rev. 1991;6:133–151.
  • Harris JM, editor. Introduction to biotechnical and biomedical applications of poly (ethylene glycol). In: Poly (ethylene glycol) chemistry. New York: Springer; 1992. p. 1–14.
  • Grassi M, Bonora GM, Drioli S, et al. Pharmacokinetic analysis of multi PEG-theophylline conjugates. Comput Biol Chem. 2012;40:7–14.
  • Knadler MP, Nguyen T-H, Campanale K, et al. Addition of 20-kDa PEG to insulin lispro alters absorption and decreases clearance in animals. Pharm Res. 2016;33:1–10.
  • Shatz W, Hass PE, Mathieu M, et al. Contribution of antibody hydrodynamic size to vitreal clearance revealed through rabbit studies using a species-matched fab. Mol Pharm. 2016;13:2996–3003.
  • Eyetech Pharmaceuticals I. Pharmacology/Toxicology Review and Evaluation. In: Services DoHaH, editor. 2004. p. 1–114
  • CHMP. Macugen, INN-Pegaptanib sodium. CHMP, editor. EPAR: OSI Pharmaceuticals. p. 1–39
  • Drolet DW, Nelson J, Tucker CE, et al. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys. Pharm Res. 2000;17:1503–1510.
  • Rudmann DG, Alston JT, Hanson JC, et al. High molecular weight polyethylene glycol cellular distribution and peg-associated cytoplasmic vacuolation is molecular weight dependent and does not require conjugation to proteins. Toxicol Pathol. 2013;41:970–983.
  • Ginn C, Khalili H, Lever R, et al. PEGylation and its impact on the design of new protein-based medicines. Future Medicinal Chemistry. 2014;6:1829–1846.
  • Turecek PL, Bossard MJ, Schoetens F, et al. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci. 2016;105:460–475.
  • Ivens IA, Achanzar W, Baumann A, et al. PEGylated Biopharmaceuticals. Toxicol Pathol. 2015;43:959–983.
  • Hennig R, Veser A, Kirchhof S, et al. Branched polymer-drug conjugates for multivalent blockade of angiotensin II receptors. Mol Pharm. 2015;12:3292–3302.
  • Altiok EI, Santiago-Ortiz JL, Svedlund FL, et al. Multivalent hyaluronic acid bioconjugates improve sFlt-1 activity in vitro. Biomaterials. 2016;93:95–105.
  • Altiok EI, Browne S, Khuc E, et al. sFlt multivalent conjugates inhibit angiogenesis and improve half-life in vivo. PLoS ONE. 2016;93:1–14.
  • Robbie GJ, Criste R, Dall’Acqua WF, et al. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother. 2013;57:6147–6153.
  • Yeh P, Landais D, Lemaître M, et al. Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Nat Acad Sci. 1992;89:1904–1908.
  • O’Connor-Semmes RL, Lin J, Hodge RJ, et al. GSK2374697, a novel albumin-binding domain antibody (AlbudAb), extends systemic exposure of exendin-4: first study in humans--PK/PD and safety. Clin Pharmacol Ther. 2014;96:704–712.
  • Krohne TU, Liu Z, Holz FG, et al. Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am J Ophthalmol. 2012;154:682–686.
  • Krohne TU, Eter N, Holz FG, et al. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol. 2008;146:508–512.
  • Maurice DM. Protein dynamics in the eye studied with labelled proteins. Am J Ophthalmol. 1959;47:361–368.
  • Gadkar K, Pastuskovas CV, Le Couter JE, et al. Design and pharmacokinetic characterization of novel antibody formats for ocular therapeutics. Invest Ophthalmol Vis Sci. 2015;56:5390–5400.
  • Fuchs H, Igney F. Binding to ocular albumin as a half-life extension principle for intravitreally injected drugs: evidence from mechanistic rat and rabbit studies. J Ocul Pharmacol Ther. 2017;33:115–122.
  • Kim B-J, Zhou J, Martin B, et al. Transferrin fusion technology: a novel approach to prolonging biological half-life of insulinotropic peptides. J Pharmacol Exp Ther. 2010;334:682–692.
  • Kokavec J, Min SH, Tan MH, et al. Biochemical analysis of the living human vitreous. Clin Exp Ophthalmol. 2016;44:597–609.
  • Michael IP, Westenskow PD, Hacibekiroglu S, et al. Local acting sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Mol Med. 2014;6:604–623.
  • Clark SJ, Keenan TDL, Fielder HL, et al. Mapping the differential distribution of glycosaminoglycans in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci. 2011;52:6511–6521.
  • Laurent UBG, Fraser JRE. Turnover of hyaluronate in the aqueous humour and vitreous body of the rabbit. Exp Eye Res. 1983;36:493–503.
  • Bishop PN, Holmes DF, Kadler KE, et al. Age-related changes on the surface of vitreous collagen fibrils. Invest Ophthalmol Vis Sci. 2004;45:1041–1046.
  • Sebag J. The vitreous. New York (NY): Springer Science & Business Media; 2012.
  • Ghosh J, Roguska M, Nguyen AA, Inventors; US patent office, assignee. Compositions and methods for long acting molecules patent US20160297854. 2016.
  • Ghosh JG, Nguyen AA, Bigelow CE, et al. Long-acting protein drugs for the treatment of ocular diseases. Nat Commun. 2017;1–10.
  • Making eye health a population health imperative: vision for tomorrow. In: Teutsch SM, McCoy MA, Woodbury RB, Welp A, editors The national academies collection: reports funded by national institutes of health. Washington (DC): National Academies Press (US); 2016;1–23.
  • Englander M, Chen TC, Paschalis EI, et al. Intravitreal injections at the massachusetts eye and ear infirmary: analysis of treatment indications and postinjection endophthalmitis rates. Br J Ophthalmol. 2013;97:460–465.
  • Patel SR, Berezovsky DE, McCarey BE, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53:4433–4441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.