1,155
Views
75
CrossRef citations to date
0
Altmetric
Review

Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology

, , , & ORCID Icon
Pages 271-285 | Received 08 Dec 2018, Accepted 12 Feb 2019, Published online: 26 Feb 2019

References

  • Rubin L, Staddibm J. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22:11–28.
  • Persidsky Y, Ramirez S, Haorah J, et al. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006;1(3):223–236.
  • Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412.
  • Brightman M, Reese T. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648–677.
  • Serlin Y, Shelef I, Knyazer B, et al. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol. 2015;38:2–6.
  • Abbott N, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.
  • Moura R, Almeida A, Sarmento B. The role of non-endothelial cells on the penetration of nanoparticles through the blood brain barrier. Prog Neurobiol. 2017;159:39–49.
  • Jones A, Shusta E. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007;24(9):1759–1771.
  • Jefferies W, Brandor M, Hunt S, et al. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312:162–163.
  • Duffy K, Pardridge W. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 1997;420:32–38.
  • Régina A, Morchoisne S, Borson N, et al. Factor(s) released by glucose-deprived astrocytes enhance glucose transporter expression and activity in rat brain endothelial cells. Biochem Biophys Acta. 2001;1540(3):233–242.
  • Xiao G, Gan L. Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol. 2013;2013:7035–7045.
  • Jain K. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond). 2012;7:1225–1233.
  • Grabrucker A, Chabra R, Belletti D, et al. Nanoparticles as blood–brain barrier permeable CNS targeted drug delivery systems. Top Med Chem. 2014;10:71–90.
  • Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.
  • Campos-Bedolla R, Walter F, Veszelka S, et al. Role of the blood-brain barrier in the nutrition of the central nervous system. Arch Med Res. 2014;45:610–638.
  • Abbott N. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437–449.
  • Haddad-Tovólli R, Dragano N, Ramalho A, et al. Development and function of the blood-brain barrier in the context of metabolic control. Front Neurosci. 2017;11:224.
  • Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience. 2004;129:877–896.
  • Broux B, Gowing E, Prat A. Glial regulation of the blood-brain barrier in health and disease. Semin Immunopathol. 2015;37:577–590.
  • Tao-Cheng J, Brightman M. Development of membrane interactions between brain endothelial cells and astrocytes in vitro. Int J Dev Neurosci. 1988;6:25–37.
  • Nakagawa S, Deli M, Nakao S, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007;27(6):687–694.
  • Armulik A, Genové G, Mae M, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468:557–561.
  • Obermeier B, Verma A, Ransohoff R. The blood-brain barrier. Handb Clin Neurol. 2016;133:39–59.
  • Luissint A, Artus C, Glacial F, et al. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9(1):23.
  • Stamatovic S, Keep R, Andjelkovic A. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol. 2008;6(3):179–192.
  • Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol. 2002;38(6):323–337.
  • Dauchy S, Dutheil F, Weaver R, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem. 2008;107:1518–1528.
  • Begley D. ABC transporters and the blood-brain barrier. Curr Pharm Des. 2004;10(12):1295–1312.
  • Meyer R, Gehlhaus M, Knoth R, et al. Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab. 2007;8(4):297–306.
  • Mahringer A, Frickler G. ABC transporters at the blood-brain barrier. Expert Opin Drug Metabol Toxicol. 2016;12(5):499–508.
  • Barar J, Rafi M, Pourseif M, et al. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts. 2016;6(4):225–248.
  • Lajoie J, Shusta E. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631.
  • Abbott N, Patabendige A, Dolman D, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.
  • Wang Y, Lui P, Li J. Receptor-mediated therapeutic transport across the blood-brain barrier. Immunotherapy. 2009;1(6):983–993.
  • Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci. 2000;89(11):1371–1388.
  • Cheng Y, Zak O, Aisen P, et al. Structure of the human transferrin receptor-transferrin complex. Cell. 2004;116(4):565–576.
  • Moos T, Morgan E. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2000;20(1):77–95.
  • Leibman A, Aisen P. Distribution of iron between the binding-sites of transferrin in serum—methods and results in normal human subjects. Blood. 1979;53(6):1058–1065.
  • Omary M, Trowbridge I. Biosynthesis of the human serum transferrin receptor in cultured-cells. J Biol Chem. 1981;256(24):12888–12892.
  • Qian Z, Li H, Sun H, et al. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–587.
  • Inoue T, Cavanaugh P, Steck P, et al. Differences in transferrin response and numbers of transferrin receptors in rat and human mammary carcinoma lines of different metastatic potentials. J Cell Physiol. 1993;156(1):212–217.
  • Kawabata H, Yang R, Hirama T, et al. Molecular cloning of transferrin receptor 2—A new member of the transferrin receptor-like family. J Biol Chem. 1999;274(30):20826–20832.
  • Kawabata H, Nakamaki T, Ikonomi P, et al. Expression of transferrin receptor 2 in normal and neoplastic hematopoietic cells. Blood. 2001;98(9):2714–2719.
  • Mills E, Dong X-P, Wang F, et al. Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med Chem. 2010;2(1):51.
  • Dautry-Varsat A, Ciechanover A, Lodish H. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1983;80(8):2258–2262.
  • Bickel U, Yosikawa T, Pardridge W. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev. 2001;46(1–3):247–279.
  • Roberts R, Sandra A, Siek G, et al. Studies of the mechanism of iron transport across the blood-brain barrier. Ann Neurol. 1992;32(Suppl):S43–50.
  • Duck K, Connor J. Iron uptake and transport across physiological barriers. Biometals. 2016;29:573–591.
  • Johnsen K, Burkhart A, Melander F, et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci Rep. 2017;7(1). DOI:10.1038/s41598-017-11220-
  • Lee H, Engelhardt B, Lesley J, et al. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther. 2000;292(3):1048–1052.
  • Friden P, Olson T, Obar R, et al. Characterization, receptor mapping and blood-brain barrier transcytosis of antibodies to the human transferrin receptor. J Pharmacol Exp Ther. 1996;278(3):1491–1498.
  • Adamo M, Raizada M, LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol. 1989;3(1–2):71–100.
  • Masnikosa R, Baricevic I, Jones D, et al. Characterisation of insulin-like growth factor receptors and insulin receptors in the human placenta using lectin affinity methods. Growth Horm IGF Res. 2006;16(3):174–184.
  • Plum L, Schubert M, Bruning J. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16(2):59–65.
  • De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1(10):769–783.
  • Fu Z, Gilbert E, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.
  • Rhea E, Rask-Madsen C, Banks W. Insulin transport across the blood-brain barrier can occur independently of the insulin receptor. J Physiol. 2018;596(19):4753–4765.
  • Boado R, Zhang Y, Zhang Y, et al. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng. 2007;96(2):381–391.
  • Boado R, Hui E, Lu J, et al. Blood-brain barrier molecular trojan horse enables imaging of brain uptake of radioiodinated recombinant protein in the rhesus monkey. Bioconjug Chem. 2013;24(10):1741–1749.
  • Ohshima-Hosoyama S, Simmons H, Goecks N, et al. A monoclonal antibody–GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in Parkinsonian monkeys. PLoS One. 2012;7(6):e39036.
  • Defesche J. Lowdensity lipoprotein receptor - its structure, function, and mutations. Semin Vasc Med. 2004;4(1):5–11.
  • Sudhof T, Goldstein J, Brown M, et al. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985;228(4701):815–822.
  • Zhao Y, Li D, Zhao J, et al. The role of the low-density lipoprotein receptor-related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Rev Neurosci. 2016;27(6):623–634.
  • Gent J, Braakman I. Low-density lipoprotein receptor structure and folding. Cell Mol Life Sci. 2004;61(19–20):2461–2470.
  • Wang P, Xue Y, Shang X, et al. Diphtheria toxin mutant CRM197-mediated transcytosis across blood-brain barrier in vitro. Cell Mol Neurobiol. 2010;30(5):717–725.
  • Wang P, Liu Y, Shang X, et al. CRM197-induced blood-brain barrier permeability increase is mediated by upregulation of caveolin-1 protein. J Mol Neurosci. 2011;43(3):485–492.
  • Okamoto T, Schlegel A, Scherer P, et al. Caveolin, a family of scaffolding proteins for organizing ‘preassembled signaling complex’ at the plasma membrane. J Biol Chem. 1998;273(10):5419–5422.
  • Bathori G, Cervenak L, Karadi I. Caveolae–an alternative endocytotic pathway for targeted drug delivery. Crit Rev Ther Drug Carrier Syst. 2004;21(2):67–95.
  • Dehouck B, Dehouck M, Fruchart J, et al. Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol. 1994;126(2):465–473.
  • Sorrentino N, D’Orsi L, Sambri I, et al. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol Med. 2013;5(5):675–690.
  • Wang D, El-Amouri S, Dai M, et al. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood-brain barrier. Proc Natl Acad Sci USA. 2013;110(8):2999–3004.
  • Régina A, Demeule M, Ché C, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol. 2008;155(2):185–197.
  • Deng D, Xu C, Sun P, et al. Crystal structure of the human glucose transporter GLUT1. Nature. 2014;510:121–125.
  • Patching S. Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. 2017;54(2):1046–1077.
  • McAllister M, Krizanac-Bengez L, Macchia F, et al. Mechanisms of glucose transport at the blood-brain barrier: an in vitro study. Brain Res. 2001;904(1):20–30.
  • Farrell C, Pardridge W. Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proc Natl Acad Sci U S A. 1991;88(13):5779–5783.
  • Devraj K, Klinger M, Myers R, et al. GLUT-1 glucose transporters in the blood-brain barrier: differential phosphorylation. J Neurosci Res. 2011;89(12):1913–1925.
  • Joost H, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol. 2001;18(4):247–256.
  • Bhattacharyya S, Kattel K, Kim F. Modulating the glucose transport by engineering gold nanoparticles. J Nanomed Biotherapeutic Discovery. 2016;6:141.
  • Prokop J, Duff R, Ball H, et al. Leptin and leptin receptor: analysis of a structure to function relationship in interaction and evolution from humans to fish. Peptides. 2012;38(2):326–336.
  • Bacart J, Leloire A, Levoye A, et al. Evidence for leptin receptor isoforms heteromerization at the cell surface. FEBS Lett. 2010;584(11):2213–2217.
  • Maffei M, Fei H, Lee G, et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci U S A. 1995;92(15):6957–6960.
  • Schwartz M, Seeley R, Campfield L, et al. Identification of targets of leptin action in rat hypothalamus. J Clin Invest. 1996;98(5):1101–1106.
  • Sierra-Honigmann M, Nath A, Murakami C, et al. Biological action of leptin as an angiogenic factor. Science. 1998;281(5383):1683–1686.
  • Boado R, Golden P, Levin N, et al. Up-regulation of blood-brain barrier short-form leptin receptor gene products in rats fed a high fat diet. J Neurochem. 1998;71(4):1761–1764.
  • Amiri Darban S, Nikoofal-Sahlabadi S, Amiri N, et al. Targeting the leptin receptor: to evaluate therapeutic efficacy and anti-tumor effects of Doxil, in vitro and in vivo in mice bearing C26 colon carcinoma tumor. Colloids Surf B Biointerfaces. 2018;164:107–115.
  • Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005;346(4):967–989.
  • Albuquerque E, Pereira E, Alkondon M, et al. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89(1):73–120.
  • Alkondon M, Albuquerque E. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res. 2004;145:109–120.
  • Dineley K, Pandya A, Yakel J. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci. 2015;36(2):96–108.
  • Hueffer K, Khatri S, Rideout S, et al. Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS. Sci Rep. 2017;7(1):12818.
  • Wei X, Zhan C, Shen Q, et al. A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery. Angew Chem Int Ed Engl. 2015;54(10):3023–3027.
  • Vinante F, Rigo A. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel). 2013;5(6):1180–1201.
  • Gaillard P, Brink A, de Boer A. Diphtheria toxin receptor-targeted brain drug delivery. Int Congr Ser. 2005;1277:185–198.
  • Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treatbrain diseases. Neurobiol Dis. 2010;37(1):48–57.
  • Prabhudas M, Bowdish D, Drickamer K, et al. Standardizing scavenger receptor nomenclature. J Immunol. 2014;192(5):1997–2006.
  • Zani I, Stephen S, Mughal N, et al. Scavenger receptor structure and function in health and disease. Cells. 2015;4(2):178–201.
  • Chen Y, Wang X, Ben J, et al. The di-leucine motif contributes to class a scavenger receptor-mediated internalization of acetylated lipoproteins. Arterioscler Thromb Vasc Biol. 2006;26(6):1317–1322.
  • Srimanee A, Regberg J, Hällbrink M, et al. Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood-brain barrier model. Int J Pharm. 2016;500(1–2):128–135.
  • Li J, Paragas N, Ned R, et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell. 2009;16(1):35–46.
  • Lushchak V. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012. DOI:10.1155/2012/736837.
  • Kannan R, Chakrabarti R, Tang D, et al. GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res. 2000;852(2):374–382.
  • Kannan R, Mittuer A, Bao Y, et al. GSH transport in immortalized mouse brain endothelial cells: evidencefor apical localization of a sodium-dependentGSH transporter. J Neurochem. 1999;73(1):390–399.
  • Gaillard P, Appeldoorn C, Dorland R, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One. 2014;9(1):e82331.
  • Kuo T, Baker K, Yoshida M, et al. Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol. 2010;30(6):777–789.
  • Roopenian D, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–725.
  • Martins J, Kennedy P, Santos H, et al. A comprehensive review of the neonatal Fc receptor and its application in drug delivery. Pharmacol Ther. 2016;161:22–39.
  • Schlachetzki F, Zhu C, Pardridge W. Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J Neurochem. 2002;81(1):203–206.
  • Cooper P, Ciambrone G, Kliwinski C, et al. Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res. 2013;1534:13–21.
  • Vasiliou V, Vasiliou K, Nebert D. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3(3):281–290.
  • Doran A, Obach R, Smith B, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos. 2005;33(1):165–174.
  • Mahringer A, Ott M, Reinold I, et al. The ABC of the blood-brain barrier - regulation of drug efflux pumps. Curr Pharm Des. 2011;17(26):2762–2770.
  • Zhou S. Structure, function and regulation of P-glycoprotein andits clinical relevance in drug disposition. Xenobiotica. 2008;38:7–8.
  • Juliano R, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152–162.
  • Cordon-Cardo C, O’Brien J, Casais D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA. 1989;86(2):695–698.
  • Beaulieu E, Demeule M, Ghitescu L, et al. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J. 1997;326(Pt. 2):539–544.
  • Solazzo M, Fantappié O, Lasagna N, et al. P-gp localization in mitochondria and its functional characterization in multiple drug-resistant cell lines. Exp Cell Res. 2006;312(20):4070–4078.
  • Bendayan R, Lee G, Bendayan M. Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech. 2002;57(5):365–380.
  • Rosenberg M, Bikadi Z, Chan J, et al. The human breast cancer resistance protein (BCRP/ABCG2) shows conformational changes with mitoxantrone. Structure. 2010;18(4):482–493.
  • Hartz A, Bauer B. ABC transporters in the CNS - an inventory. Curr Pharm Biotechnol. 2011;12(4):656–673.
  • Bleau A, Huse J, Holland E. The ABCG2 resistance network of glioblastoma. Cell Cycle. 2009;8(18):2936–2944.
  • Ronaldson P, Bendayan M, Gingras D, et al. Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures. J Neurochem. 2004;89(3):788–800.
  • Gomes M, Kennedy P, Martins S, et al. Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood-brain barrier. Nanomedicine (Lond). 2017;12(12). DOI:10.2217/nnm-2017-0023
  • Yamazaki Y, Kanekiyo T. Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2017;18(9):E1965.
  • Tomimoto H, Akiguchi I, Suenaga T, et al. Alterations ofthe blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer’s diseasepatients. Stroke. 1996;27(11):2069–2074.
  • Carrano A, Hoozemans J, van der Vies S, et al. Neuroinflammation and blood-brain barrier changes in capillary amyloid angiopathy. Neurodegener Dis. 2012;10(1–4):329–331.
  • Kalaria R. The blood-brain barrier and cerebrovascular pathology in Alzheimer’s disease. Ann N Y Acad Sci. 1999;893:113–125.
  • Deane R, Wu Z, Sagare A, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron. 2004;43(3):333–344.
  • Shibata M, Yamada S, Kumar S, et al. Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest. 2000;106(12):1489–1499.
  • Coraci I, Husemann J, Berman J, et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am J Pathol. 2002;160(1):101–112.
  • Zhang H, Su Y, Zhou W, et al. Activated scavenger receptor a promotes glial internalization of Aβ. PLoS One. 2014;9(4):e94197.
  • Vogelgesang S, Cascorbi I, Schoreder E, et al. Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Phahrmacogenetics. 2002;12(7):535–541.
  • Chen X, Lan X, Roche I, et al. Caffeine protects against MPTP induced blood-brain barrier dysfunction in mouse striatum. J Neurochem. 2008;107(4):1147–1157.
  • Kortekaas R, Leenders K, van Oostrem J, et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57(2):176–179.
  • Gu X-L, Long C-X, Sun L, et al. Astrocytic expression of Parkinson’s disease-related A53T α-synuclein causes neurodegeneration in mice. Mol Brain. 2010;3:12.
  • Ayton S, Lei P, Mclean C, et al. Transferrin protects against Parkinsonian neurotoxicity and is deficient in Parkinson’s substantia nigra. Signal Transduct Target Ther. 2016;1:16015.
  • Van Tellingen O, Yetkin-Arik B, de Gooijer M, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1–12.
  • Aronica E, Gorter J, Redeker S, et al. Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia. 2005;46(6):849–857.
  • Choudhury H, Pandey M, Chin P, et al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv Transl Res. 2018;8(5):1545–1563.
  • Gong Y, Ma Y, Sinyuk M, et al. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro Oncol. 2016;18(1):48–57.
  • Kang E, Major S, Jorks D, et al. Blood-brain barrier opening to large molecules does not imply blood-brain barrier opening to small ions. Neurobiol Dis. 2013;52:204–218.
  • Haley M, Lawrence C. The blood–brain barrier after stroke: structural studies and the role of transcytotic vesicle. J Cereb Blood Flow Metab. 2017;37(2):456–470.
  • McCall A, Van Bueren A, Nipper V, et al. Forebrain ischemia increases GLUT1 protein in brain microvessels and parenchyma. J Cereb Blood Flow Metab. 1996;16(1):69–76.
  • Shah K, Boreddy P, Abbruscato T. Nicotine pre-exposure reduces stroke-induced glucose transporter-1 activity at the blood–brain barrier in mice. Fluids Barriers CNS. 2015;12:10.
  • Ueno M, Wu B, Nakagawa T, et al. The expression of LDL receptor in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model. Histochem Cell Biol. 2010;133(6):669–676.
  • Waubant E. Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers. 2006;22(4):235–244.
  • Updahyay R. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int. 2014;2014:869269.
  • Saini R, Saini S, Sharma S. Nanotechnology: the Future Medicine. J Cutan Aesthet Surg. 2010;3(1):32–33.
  • Zhang T, Li W, Meng G, et al. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci. 2016;4(2):219–229.
  • Kim B, Rutka J, Chan W. Nanomedicine. N Engl J Med. 2010;363(25):2434–2443.
  • Zhou Y, Peng Z, Seven E, et al. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270(28):290–303.
  • Mout R, Moyano D, Rana S, et al. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41(7):2539–2544.
  • Hoffman A. The origins and evolution of “controlled” drug delivery systems. J Control Release. 2008;132(3):153–163.
  • Tang H, Z H, Ye H, et al. Receptor-mediated endocytosis of nanoparticles: roles of shapes,orientations, and rotations of nanoparticles. J Phys Chem B. 2018;122(1):171–180.
  • Vácha R, Martinez-Veracoechea F, Frenkel D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 2011;11(12):5391–5395.
  • Meng X, Size Limit LX. Energy analysis of nanoparticles during wrapping process by membrane. Nanomaterials (Basel). 2018;8(11):899.
  • Grabrucker A, Chhabra R, Belletti D, et al. Topics in Medicinal Chemistry. Berlin: Springer; 2013.
  • Dilnawaz F, Sahoo S. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov Today. 2015;20(10):1256–1264.
  • Dixit S, Novak T, Miller K, et al. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7(5):1782–1790.
  • Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm. 2009;71(2):251–256.
  • Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB). J Drug Target. 2011;19(2):125–132.
  • Betzer O, Shilo M, Opochinsky R, et al. The effect of nanoparticle size on the ability to cross the blood–brain barrier: an in vivo study. Nanomedicine (Lond). 2017;12(13):1533–1546.
  • Zhang B, Sun X, Mei H, et al. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials. 2013;34(36):9171–9182.
  • Pinzón-Daza M, Garzón R, Couraud P, et al. The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells. Br J Pharmacol. 2012;167(7):1431–1447.
  • Gromnicova R, Davies H, Sreekanthreddy P, et al. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS One. 2013;8(12):e81043.
  • Anraku Y, Kuwahara H, Fukusato Y, et al. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat Commun. 2017;8(1):1001.
  • Tosi G, Badiali L, Ruozi B, et al. Can leptin-derived sequence-modified nanoparticles be suitable tools for brain delivery? Nanomedicine (Lond). 2012;7(3):365–382.
  • You L, Wang J, Liu T, et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian mice. ACS Nano. 2018;12(5):4123–4139.
  • Tosi G, Vilella A, Veratti P, et al. Exploiting bacterial pathways for BBB crossing with PLGA nanoparticles modified with a mutated form of diphtheria toxin (CRM197): in vivo experiments. Mol Pharm. 2015;12(10):3672–3684.
  • Kuo Y, Chung C. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells. Colloids Surf B Biointerfaces. 2012;2012(91):242–249.
  • Ashizawa A, Steindler D. ET-61 Novel lipid nanoparticles for the delivery of nucleic acids to glioblastoma. Neuro Oncol. 2014;16(Suppl 5):v92.
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002;10(4):317–325.
  • Gaillard P. Case study: to-BBB’s G-Technology, getting the best from drug-delivery research with industry-academia partnerships. Ther Deliv. 2011;2(11):1391–1394.
  • Gao H, Pang Z, Jiang X. Targeted delivery of nano-therapeutics for major disordersof the central nervous system. Pharm Res. 2013;30(10):2485–2498.
  • Malmo J, Sandvig A, Vårum K, et al. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach. PLoS One. 2013;8(1):e54182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.