319
Views
10
CrossRef citations to date
0
Altmetric
Review

Nanotechnological interventions in dermatophytosis: from oral to topical, a fresh perspective

, , &
Pages 377-396 | Received 03 Dec 2018, Accepted 08 Mar 2019, Published online: 03 Apr 2019

References

  • Nigam PK. Antifungal drugs and resistance: current concepts. Our Dermatol Online. 2015;6(2):212.
  • Achterman RR, Smith AR, Oliver BG, et al. Sequenced dermatophyte strains: growth rate, conidiation, drug susceptibilities, and virulence in an invertebrate model. Fungal Genet Biol. 2011;48(3):335–341.
  • White TC, Findley K, Dawson TL, et al. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb Perspect Med. 2014;4(8):a019802.
  • Baltazar LM, Ray A, Santos DA, et al. Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections. Front Microbiol. 2015;6:202.
  • Rajagopalan M, Inamadar A, Mittal A, et al. Expert Consensus on The Management of Dermatophytosis in India (ECTODERM India). BMC Dermatol. 2018;18(1):6.
  • White TC, Oliver BG, Gräser Y, et al. Generating and testing molecular hypotheses in the dermatophytes. Eukaryot Cell. 2008;7(8):1238–1245.
  • Zhan P, Liu W. The changing face of dermatophytic infections worldwide. Mycopathologia. 2017;182(1–2):77–86.
  • Philpot CM. Geographical distribution of the dermatophytes: a review. J Hyg (Lond). 1978;80(2):301–313.
  • Mirmirani P, Tucker LY. Epidemiologic trends in pediatric tinea capitis: a population-based study from Kaiser Permanente Northern California. J Am Acad Dermatol. 2013;69(6):916–921.
  • Borman AM, Campbell CK, Fraser M, et al. Analysis of the dermatophyte species isolated in the British Isles between 1980 and 2005 and review of worldwide dermatophyte trends over the last three decades. Med Mycol. 2007;45(2):131–141.
  • Zhan P, Geng C, Li Z, et al. Evolution of tinea capitis in the Nanchang area, Southern China: a 50-year survey (1965–2014). Mycoses. 2015;58(5):261–266.
  • Zhan P, Li D, Wang C, et al. Epidemiological changes in tinea capitis over the sixty years of economic growth in China. Med Mycol. 2015;53(7):691–698.
  • Mapelli ET, Cerri A, Bombonato C, et al. Tinea capitis in the paediatric population in Milan, Italy: the emergence of Trichophyton violaceum. Mycopathologia. 2013;176(3–4):243–246.
  • Zhu M, Li L, Wang J, et al. Tinea capitis in Southeastern China: a 16-year survey. Mycopathologia. 2010;169(4):235–239.
  • Duran-Valle MT, Regodon-Dominguez M, Velasco-Rodriguez MJ, et al. Outbreak of Trichophyton tonsurans ringworm in a health area of the community of Madrid (Spain). Rev Iberoam Micol. 2016;33(2):126–128.
  • Degreef HJ, DeDoncker PR. Current therapy of dermatophytosis. J Am Acad Dermatol. 1994;31(3):S25–S30.
  • Tainwala R, Sharma Y. Pathogenesis of dermatophytoses. Indian J Dermatol. 2011;56(3):259.
  • Vermout S, Tabart J, Baldo A, et al. Pathogenesis of dermatophytosis. Mycopathologia. 2008;166(5–6):267–275.
  • Aljabre SH, Richardson MD, Scott EM, et al. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol. 1993;18(3):231–235.
  • Odom R. Pathophysiology of dermatophyte infections. J Am Acad Dermatol. 1993;28(5):S2–S7.
  • Dogra SNT. Emerging atypical and unusual presentations of dermatophytosis in India. Clin Dermatol Rev. 2017;1(3):12–18.
  • Naglot ASD, Nath BK, Gogoi HK, et al. Recent trends of dermatophytosis in Northeast India (Assam) and interpretation with published studies. Int J Curr Microbiol Appl Sci. 2015;4(11):111–120.
  • Verma S, Madhu R. The Great Indian epidemic of superficial dermatophytosis: an appraisal. Indian J Dermatol. 2017;62(3):227–236.
  • Dogra S, Uprety S. The menace of chronic and recurrent dermatophytosis in India: is the problem deeper than we perceive? Indian Dermatol Online J. 2016;7(2):73–76.
  • Sahni K, Singh S, Dogra S. Newer topical treatments in skin and nail dermatophyte infections. Indian Dermatol Online J. 2018;9(3):149.
  • Rotta I, Ziegelmann PK, Otuki MF, et al. Efficacy of topical antifungals in the treatment of dermatophytosis: a mixed-treatment comparison meta-analysis involving 14 treatments. JAMA dermatol. 2013;149(3):341–349.
  • Villars V, Jones TC. Clinical efficacy and tolerability of terbinafine (Lamisil)—a new topical and systemic fungicidal drug for treatment of dermatomycoses. Clin Exp Dermatol. 1989;14(2):124–127.
  • Millikan LE, Galen WK, Gewirtzman GB, et al. Naftifine cream 1% versus econazole cream 1% in the treatment of tinea cruris and tinea corporis. J Am Acad Dermatol. 1988;18(1):52–56.
  • Van Zuuren E, Fedorowicz Z, El‐Gohary M. Evidence‐based topical treatments for tinea cruris and tinea corporis: a summary of a cochrane systematic review. Br J Dermatol. 2015;172(3):616–641.
  • Ryder NS. Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol. 1992;126(Suppl 39):2–7.
  • El-Gohary M, van Zuuren EJ, Fedorowicz Z, et al. Topical antifungal treatments for tinea cruris and tinea corporis. Cochrane Database Syst Rev. 2014;8:Cd009992.
  • Choudhary SV, Aghi T, Bisati S. Efficacy and safety of terbinafine hydrochloride 1% cream vs eberconazole nitrate 1% cream in localised tinea corporis and tinea cruris. Indian Dermatol Online J. 2014;5(2):128–131.
  • Gupta AK, Ryder JE, Cooper EA. Naftifine: a review. J Cutan Med Surg. 2008;12(2):51–58.
  • Stein Gold LF, Parish LC, Vlahovic T, et al. Efficacy and safety of naftifine HCl Gel 2% in the treatment of interdigital and moccasin type tinea pedis: pooled results from two multicenter, randomized, double-blind, vehicle-controlled trials. J Drugs Dermatol. 2013;12(8):911–918.
  • Stein Gold LF, Vlahovic T, Verma A, et al. Naftifine hydrochloride gel 2%: an effective topical treatment for moccasin-type tinea pedis. J Drugs Dermatol. 2015;14(10):1138–1144.
  • Vlahovic TC. The role of naftifine HCl 2% gel and cream in treating moccasin tinea pedis. J Drugs Dermatol. 2016;15(2 Suppl):s56–s9.
  • Singal A. Butenafine and superficial mycoses: current status. Expert Opin Drug Metab Toxicol. 2008;4(7):999–1005.
  • Thaker SJ, Mehta DS, Shah HA, et al. A comparative randomized open label study to evaluate efficacy, safety and cost effectiveness between topical 2% sertaconazole and topical 1% butenafine in tinea infections of skin. Indian J Dermatol. 2013;58(6):451–456.
  • Thaker SJ, Mehta DS, Shah HA, et al. A comparative study to evaluate efficacy, safety and cost-effectiveness between Whitfield’s ointment + oral fluconazole versus topical 1% butenafine in tinea infections of skin. Indian J Pharmacol. 2013;45(6):622–624.
  • Saunders J, Maki K, Koski R, et al. Tavaborole, efinaconazole, and luliconazole: three new antimycotic agents for the treatment of dermatophytic fungi. J Pharm Pract. 2017;30(6):621–630.
  • Gupta AK, Foley KA, Versteeg SG. New antifungal agents and new formulations against dermatophytes. Mycopathologia. 2017;182(1–2):127–141.
  • Banerjee M, Ghosh AK, Basak S, et al. Comparative evaluation of effectivity and safety of topical amorolfine and clotrimazole in the treatment of tinea corporis. Indian J Dermatol. 2011;56(6):657.
  • Polak AM. Preclinical data and mode of action of amorolfine. Dermatol. 1992;17(s1):8–12.
  • Reinel D. Topical treatment of onychomycosis with amorolfine 5% nail lacquer: comparative efficacy and tolerability of once and twice weekly use. Dermatol. 1992;184(Suppl. 1):21–24.
  • Del Palacio A, López-Gómez S, García-Bravo M, et al. Experience with amorolfine in the treatment of dermatomycoses. Dermatol. 1992;18(Suppl. 1):25–29.
  • Sahoo AK, Mahajan R. Management of tinea corporis, tinea cruris, and tinea pedis: a comprehensive review. Indian Dermatol Online J. 2016;7(2):77.
  • Epstein WL, Shah VP, Riegelman S. Griseofulvin levels in stratum corneum: study after oral administration in man. Arch Dermatol. 1972;106(3):344–348.
  • Reynolds JEF. Martindale: the extra pharmacopoeia. 28th ed. London (UK): The Pharmaceutical Press; 1982.
  • Faergemann J, Mörk N, Haglund A, et al. A multicentre (double‐blind) comparative study to assess the safety and efficacy of fluconazole and griseofulvin in the treatment of tinea corporis and tinea cruris. Br J Dermatol. 1997;136(4):575–577.
  • Cole G, Stricklin G. A comparison of a new oral antifungal, terbinafine, with griseofulvin as therapy for tinea corporis. Arch Dermatol. 1989;125(11):1537–1539.
  • Kaul S, Yadav S, Dogra S. Treatment of dermatophytosis in elderly, children, and pregnant women. Indian Dermatol Online J. 2017;8(5):310.
  • Bourlond A, Lachapelle J-M, Aussems J, et al. Double‐blind comparison of itraconazole with griseofulvin in the treatment of tinea corporis and tinea cruris. Int J Dermatol. 1989;28(6):410–412.
  • Artis W. Final pathway for delivery of oral antifungals to keratinized cornified skin, in oral therapy in dermatomycoses: a step forward. Med Educ Serv Oxford. 1985;61–70.
  • Harris R, Jones H, Artis W. Orally administered ketoconazole: route of delivery to the human stratum corneum. Antimicrob Agents Chemother. 1983;24(6):876–882.
  • Cauwenbergh G. Skin mycoses: effects of ketoconazole and itraconazole in relation to drug distribution in the skin[Thesis]. Belgium: Catholic University Leuven; 1988.
  • Borelli D. Treatment of pityriasis versicolor with ketoconazole. Rev Infect Dis. 1980;2(4):592–595.
  • Rausch L, Jacobs PJC. Tinea versicolor: treatment and prophylaxis with monthly administration of ketoconazole. Cutis. 1984;34(5):470–471.
  • Segal R, Trattner A, Alteras I, et al. Once-weekly treatment with oral ketoconazole for superficial fungal infections. J Am Acad Dermatol. 1993;28(1):26–27.
  • Jones H. Ketoconazole today: a review of clinical experience. Germany: ADIS Press; 1987. p. 99.
  • Birnbaum JE. Pharmacology of the allylamines. J Am Acad Dermatol. 1990;23(4):782–785.
  • Saul A, Bonifaz A. Itraconazole in common dermatophyte infections of the skin: fixed treatment schedules. J Am Acad Dermatol. 1990;23(3):554–558.
  • Nuijten S, Schuller J. Itraconazole in the treatment of tinea corporis: a pilot study. Rev Infect Dis. 1987;9(Supplement_1):S119–S120.
  • Cauwenbergh G, De Doncker P. The clinical use of itraconazole in superficial and deep mycoses, in recent trends in the discovery, development and evaluation of antifungal agents. Barcelona: JR Prous Science Publishers; 1987. p. 273–284.
  • Degreef H, Mariën K, De Veylder H, et al. Itraconazole in the treatment of dermatophytoses: a comparison of two daily dosages. Rev Infect Dis. 1987;9(Supplement_1):S104–S108.
  • Brammer K, Farrow P, Faulkner J. Pharmacokinetics and tissue penetration of fluconazole in humans. Rev Infect Dis. 1990;12(Supplement_3):S318–S326.
  • Stary A, Sarnow E. Fluconazole in the treatment of tinea corporis and tinea cruris. Dermatol. 1998;196(2):237–241.
  • De Cuyper C. Noncomparative study of fluconazole in the treatment of patients with common fungal infections of the skin. Int J Dermatol. 1992;31(2):17–20.
  • Naeyaert J, de Bersaques J, de Cuyper C, et al. Fluconazole (UK-49,858): A novel oral antifungal, in the tratment of fungal skin infections. Results of an open study in 43 patients. In: Ra F, Jr P, editors. Recent trends in the discovery, development and evaluation of antifungal agents. USA: JR Prous Science Publishers, SA, USA. Science Publications; 1987. p. 157–161.
  • Andrews MD, Burns M. Common tinea infections in children. AM FAM Physician. 2008;77(10):1415–1420.
  • Ely J, Rosenfeld S, Seabury S. Diagnosis and management of tinea infections. Am Fam Physician. 2014;90(10):702–710.
  • Hainer BL. Dermatophyte infections. AM FAM Physician. 2003;67(1):101–110.
  • Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3:11.
  • Rai M, Ingle A, Pandit R, et al. The microbiology of skin, soft tissue, bone and joint infections. In: Kon K, Rai M, editors, Nanotechnology for the treatment of fungal infections on human skin. Amsterdam: Elsevier; 2017. p. 169–184.
  • Peres N, Maranhão FCA, Rossi A, et al. Dermatophytes: host-pathogen interaction and antifungal resistance. An Bras Dermatol. 2010;85(5):657–667.
  • Ghannoum M, Chaturvedi V, Espinel-Ingroff A, et al. Intra-and interlaboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J Clin Microbiol. 2004;42(7):2977–2979.
  • Singh S, Shukla P. End of the road for terbinafine? Results of a pragmatic prospective cohort study of 500 patients. Indian J Dermatol Venereol Leprol. 2018;84(5):554–557.
  • Bhattacharjee R, Dogra S. End of the road for terbinafine’ in dermatophytosis: is it a valid conclusion? Indian J Dermatol Venereol Leprol. 2018;84(6):706–707.
  • Verma SB, Vasani R. Male genital dermatophytosis - clinical features and the effects of the misuse of topical steroids and steroid combinations - an alarming problem in India. Mycoses. 2016;59(10):606–614.
  • Pathania S, Rudramurthy SM, Narang T, et al. A prospective study of the epidemiological and clinical patterns of recurrent dermatophytosis at a tertiary care hospital in India. Indian J Dermatol Venereol Leprol. 2018;84(6):678–684.
  • Yamada T, Maeda M, Alshahni MM, et al. Terbinafine resistance of Trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene. Antimicrob Agents Chemother. 2017;61(7):e00115–e00117.
  • Singh A, Masih A, Khurana A, et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses. 2018;61(7):477–484.
  • Rudramurthy SM, Shankarnarayan SA, Dogra S, et al. Mutation in the squalene epoxidase gene of Trichophyton interdigitale and Trichophyton rubrum associated with allylamine resistance. Antimicrob Agents Chemother. 2018;62(5):e02522–e17.
  • Nowosielski M, Hoffmann M, Wyrwicz LS, et al. Detailed mechanism of squalene epoxidase inhibition by terbinafine. J Chem Inf Model. 2011;51(2):455–462.
  • Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012;2012:1–26.
  • Lewis D, Rodrigues A, Ioannides C, et al. Adverse reactions of imidazole antifungal agents: computer graphic studies of cytochrome P‐450 interactions. J Biochem Mol Toxicol. 1989;4(4):231–234.
  • Rosenberger A, Tebbe B, Treudler R, et al. Acute generalized exanthematous pustulosis induced by nystatin. Dermatol. 1998;49(6):492–495.
  • Myers R. Antifungal agents, in immunizing and antimicrobial agents. Germany: Springer; 2006. p. 01–6.
  • Martinez-Rossi NM, Peres NT, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia. 2008;166(5–6):369.
  • Villars V, Jones T. Present status of the efficacy and tolerability of terbinafine (Lamisil) used systemically in the treatment of dermatomycoses of skin and nails. J Dermatolog Treat. 1990;1(sup2):33–38.
  • Haneke E. Pharmacokinetic evaluation of fluconazole in plasma, epidermis, and blister fluid. Int J Dermatol. 1992;31:3.
  • Fischbein A. Comparative evaluation of oral fluconazole and oral ketoconazole in the treatment of fungal infections of the skin. Int J Dermatol. 1992;31(2):12–16.
  • Alcantra R, Caribay JM. Itraconazole therapy in dermatomycosis and vaginal candidiasis: efficacy and adverse effects profile in a large multicenter study. Adv Ther. 1988;5:326–334.
  • Greer D. Clinical consequences of new pharmacological concepts in cutaneous fungal infections. J Eur Acad Dermatol Venereol. 1993;2:S26–S33.
  • Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–1316.
  • Soliman GM. Nanoparticles as safe and effective delivery systems of antifungal agents: achievements and challenges. Int J Pharm. 2017;523(1):15–32.
  • Tuncay Tanrıverdi S, Hilmioğlu Polat S, Yeşim Metin D, et al. Terbinafine hydrochloride loaded liposome film formulation for treatment of onychomycosis: in vitro and in vivo evaluation. J Liposome Res. 2016;26(2):163–173.
  • Erdal MS, Özhan G, Mat MC, et al. Colloidal nanocarriers for the enhanced cutaneous delivery of naftifine: characterization studies and in vitro and in vivo evaluations. Int J Nanomed. 2016;11:1027.
  • Beg S, Sharma G, Samad A. Liposomes for drug delivery across the blood–brain barrier. In: Bough A, editor, Liposomal delivery systems: advances and challenges. London: Future Science Group; 2016. p. 132–142.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.
  • Knight CG. Liposomes, from physical structure to therapeutic applications, ed. Knight CG. New York: Elsevier/North-Holland Biomedical Press; 1981. p. 497.
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975.
  • Forssen EA, Tökès Z. Use of anionic liposomes for the reduction of chronic doxorubicin-induced cardiotoxicity. Proc Natl Acad Sci. 1981;78(3):1873–1877.
  • Forssen EA, Tökes ZA. Improved therapeutic benefits of doxorubicin by entrapment in anionic liposomes. Cancer Res. 1983;43(2):546–550.
  • Eloy JO, de Souza MC, Petrilli R, et al. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces. 2014;123:345–363.
  • Fathalla D, Soliman G, Fouad E. Development and in vitro/in vivo evaluation of liposomal gels for the sustained ocular delivery of latanoprost. Clin Exp Ophthalmol. 2015;6(2):1–9.
  • McClements DJ. Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv Colloid Interface Sci. 2015;219:27–53.
  • Deniz A, Sade A, Severcan F, et al. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep. 2010;30(5):365–373.
  • Foldvari M, Gesztes A, Mezei M. Dermal drug delivery by liposome encapsulation: clinical and electron microscopic studies. J Microencapsul. 1990;7(4):479–489.
  • Elzainy AA, Gu X, Simons FER, et al. Hydroxyzine from topical phospholipid liposomal formulations: evaluation of peripheral antihistaminic activity and systemic absorption in a rabbit model. AAPS PharmSci. 2003;5(4):41–48.
  • Akhtar N. Vesicles: a recently developed novel carrier for enhanced topical drug delivery. Curr Drug Deliv. 2014;11(1):87–97.
  • Kumar L, Verma S, Bhardwaj A, et al. Eradication of superficial fungal infections by conventional and novel approaches: a comprehensive review. Artif Cells Nanomed Biotechnol. 2014;42(1):32–46.
  • Maghraby GME, Williams AC, Barry BW. Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes. J Pharm Pharmacol. 2001;53(10):1311–1322.
  • Chen Y, Wu Q, Zhang Z, et al. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules. 2012;17(5):5972–5987.
  • Sudhakar B, Ravi VJ, Ramana MK. Formulation, characterization and ex vivo studies of terbinafine HCl liposomes for cutaneous delivery. Curr Drug Deliv. 2014;11(4):521–530.
  • Agarwal R, Katare O. Miconazole nitrate–loaded topical liposomes. Pharm Technol. 2002;26:48–60.
  • Verma A, Palani S. Development and in-vitro evaluation of liposomal gel of ciclopirox olamine. Int J Pharm Biol Sci. 2010;1(2):1–6.
  • Patel RP, Patel H, Baria AH. Formulation and evaluation of liposomes of ketoconazole. Int J Drug Delivery Technol. 2009;1(1):16–23.
  • Mitkari B, Korde S, Mahadik K, et al. Formulation and evaluation of topical liposomal gel for fluconazole. Indian J Pharm Educ Res. 2010;44(4):324–333.
  • Hänel H, Braun B, Jovic N. Comparative activity of a liposomal and a conventional econazole preparation for topical use according to a guinea pig tinea model. In: Falco B, Otto, Korting, Hans C, Maibach, Howard I, editors, Liposome dermatics. Germany: Springer; 1992. p. 251–257.
  • Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomedicine. 2013;8:3171.
  • Morrow D, McCarron P, Woolfson A, et al. Innovative strategies for enhancing topical and transdermal drug delivery. Open Drug Delivery J. 2007;1:36–59.
  • Shilakari G, Singh D, Asthana A. Novel vesicular carriers for topical drug delivery and their applications. Int J Pharm Sci Rev Res. 2013;21(1):77–86.
  • Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta. 1992;1104(1):226–232.
  • Kumar A, Pathak K, Bali V. Ultra-adaptable nanovesicular systems: a carrier for systemic delivery of therapeutic agents. Drug Discov Today. 2012;17(21–22):1233–1241.
  • Elsayed MM, Abdallah OY, Naggar VF, et al. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322(1–2):60–66.
  • Cevc G. Transfersomes: innovative transdermal drug carriers. In: Rathbone M, Hadgraft J, editors. Modified-release drug delivery technology. London: Taylor & Francis Group; 2003. p. 533–546.
  • Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis—dermatophytosis. Int J Pharm. 2012;437(1–2):277–287.
  • Alomrani AH, Shazly GA, Amara AA, et al. Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: in vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf B Biointerfaces. 2014;121:74–81.
  • Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res. 2014;24(2):163–169.
  • Zhang YT, Shen LN, Zhao JH, et al. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis. Int J Nanomedicine. 2014;9(1):669.
  • Touitou E, Dayan N, Bergelson L, et al. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–418.
  • Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: an overview. J Adv Pharm Technol Res. 2010;1(3):274.
  • Ainbinder D, Paolino D, Fresta M, et al. Drug delivery applications with ethosomes. J Biomed Nanotechnol. 2010;6(5):558–568.
  • Nanda A, Nanda S, Khan GN. Current developments using emerging transdermal technologies in physical enhancement methods. Curr Drug Deliv. 2006;3(3):233–242.
  • Zhang Z, Wo Y, Zhang Y, et al. In vitro study of ethosome penetration in human skin and hypertrophic scar tissue. Nanomedicine. 2012;8(6):1026–1033.
  • Gupta U, Jain NK. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev. 2010;62(4–5):478–490.
  • Chen J-G, Liu Y-F, Gao T-W. Preparation and anti-inflammatory activity of triptolide ethosomes in an erythema model. J Liposome Res. 2010;20(4):297–303.
  • Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680–689.
  • Blume A, Jansen M, Ghyczy M, et al. Interaction of phospholipid liposomes with lipid model mixtures for stratum corneum lipids. Int J Pharm. 1993;99(2–3):219–228.
  • Campani V, Biondi M, Mayol L, et al. Nanocarriers to enhance the accumulation of vitamin K1 into the skin. Pharm Res. 2016;33(4):893–898.
  • Faisal W, Soliman GM, Hamdan AM. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res. 2018;28(1):14–21.
  • Maheshwari RG, Tekade RK, Sharma PA, et al. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment. Saudi Pharm J. 2012;20(2):161–170.
  • Bhalaria M, Naik S, Misra A. Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J Exp Biol. 2009;47(5):368–375.
  • Lachenmeier DW. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J Occup Med Toxicol. 2008;3(1):26.
  • Akhtar N, Pathak K. Cavamax w7 composite ethosomal gel of clotrimazole for improved topical delivery: development and comparison with ethosomal gel. AAPS PharmSciTech. 2012;13(1):344–355.
  • Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1–2):33–70.
  • Date A, Naik B, Nagarsenker M. Novel drug delivery systems: potential in improving topical delivery of antiacne agents. Skin Pharmacol. 2006;19(1):2–16.
  • Thakkar M. Opportunities and challenges for niosomes as drug delivery systems. Curr Drug Deliv. 2016;13(8):1275–1289.
  • Florence A. Nonionic surfactant vesicles: preparation and characterization. Int J Pharmtech Res. 1993;2:157–176.
  • Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36.
  • Azmin M, Florence A, Handjani‐Vila R, et al. The effect of non‐ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol. 1985;37(4):237–242.
  • Baillie A, Florence A, Hume L, et al. The preparation and properties of niosomes—non‐ionic surfactant vesicles. J Pharm Pharmacol. 1985;37(12):863–868.
  • Handjani‐Vila R, Ribier A, Rondot B, et al. Dispersions of lamellar phases of non‐ionic lipids in cosmetic products. Int J Cosmet Sci. 1979;1(5):303–314.
  • Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: some recent advances. J Drug Target. 2009;17(9):671–689.
  • Reddy DN, Udupa N. Formulation and evaluation of oral and transdermal preparations of flurbiprofen and piroxicam incorporated with different carriers. Drug Dev Ind Pharm. 1993;19(7):843–852.
  • Niemiec S, Hu Z, Ramachandran C, et al. The effect of dosing volume on the disposition of cyclosporin A in hairless mouse skin after topical application of a non-ionic liposomal formulation: an in vitro diffusion study. STP Pharm Sci. 1994;4(2):145–149.
  • Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release. 1994;30(1):1–15.
  • Van Hal D, Van Rensen A, De Vringer T, et al. Diffusion of estradiol from non-ionic surfactant vesicles through human stratum corneum in vitro. STP Pharm Sci. 1996;6(1):72–78.
  • Junginger H, Hofland H, Bouwstra J. Liposomes and niosomes: interactions with human skin. Cosmet Toiletries. 1991;106(8):45–50.
  • Kassem MA, Esmat S, Bendas ER, et al. Efficacy of topical griseofulvin in treatment of tinea corporis. Mycoses. 2006;49(3):232–235.
  • Shirsand S, Para M, Nagendrakumar D, et al. Formulation and evaluation of Ketoconazole niosomal gel drug delivery system. Int J Pharm Investig. 2012;2(4):201.
  • Alkilani AZ, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438–470.
  • Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(Suppl 1):S131–S155.
  • Müller R, Dingler A. The next generation after the liposomes: solid lipid nanoparticles (SLN, Lipopearls) as dermal carrier in cosmetics. Eurocosmetics. 1998;7(8):19–26.
  • Muller R, Dingler A. Feste lipid-nanopartikel als neuartige carrier fur wirkstoffe. Pharm Ztg. 1998;143(49):11–15.
  • Liu J, Hu W, Chen H, et al. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328(2):191–195.
  • Müller RH, Maèder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Wissing S, Müller R. Solid lipid nanoparticles (SLN)–a novel carrier for UV blockers. Pharmazie. 2001;56(10):783–786.
  • Lv Q, Yu A, Xi Y, et al. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm. 2009;372(1–2):191–198.
  • Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49(2):311–322.
  • Chen Y-C, Liu D-Z, Liu -J-J, et al. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int J Nanomed. 2012;7:4409.
  • Bhalekar MR, Pokharkar V, Madgulkar A, et al. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech. 2009;10(1):289–296.
  • Aggarwal N, Goindi S. Preparation and in vivo evaluation of solid lipid nanoparticles of griseofulvin for dermal use. J Biomed Nanotechnol. 2013;9(4):564–576.
  • El-Housiny S, Shams Eldeen MA, El-Attar YA, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv. 2018;25(1):78–90.
  • Gupta M, Tiwari S, Vyas SP. Influence of various lipid core on characteristics of SLNs designed for topical delivery of fluconazole against cutaneous candidiasis. Pharm Dev Technol. 2013;18(3):550–559.
  • Souto E, Müller R. SLN and NLC for topical delivery of ketoconazole. J Microencapsul. 2005;22(5):501–510.
  • Souto E, Wissing S, Barbosa C, et al. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278(1):71–77.
  • Garg NK, Singh B, Tyagi RK, et al. Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids Surf B Biointerfaces. 2016;147:17–24.
  • Garg NK, Tyagi RK, Singh B, et al. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-kappaB and FOXO1. Int J Pharm. 2016;499(1–2):301–320.
  • Garg NK, Sharma G, Singh B, et al. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder (s). Int J Pharm. 2017;517(1–2):413–431.
  • Nirbhavane P, Sharma G, Singh B, et al. Preclinical explorative assessment of celecoxib-based biocompatible lipidic nanocarriers for the management of CFA-induced rheumatoid arthritis in wistar rats. AAPS PharmSciTech. 2018;19(7):3187–3198.
  • Sharma G, Thakur K, Raza K, et al. Nanostructured lipid carriers: a new paradigm in topical delivery for dermal and transdermal applications. Crit Rev Ther Drug Carrier Syst. 2017;34(4):355–386.
  • Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm. 2014;86(1):7–22.
  • Iqbal MA, Md S, Sahni JK, et al. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target. 2012;20(10):813–830.
  • Singh S, Singh M, Tripathi CB, et al. Development and evaluation of ultra-small nanostructured lipid carriers: novel topical delivery system for athlete’s foot. Drug Deliv Transl Res. 2016;6(1):38–47.
  • Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids. 2012;165(4):454–461.
  • Iqbal B, Ali J, Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol. 2018;57(6):646–660.
  • Vimbela GV, Ngo SM, Fraze C, et al. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941–3965.
  • Rao CN, Kulkarni GU, Thomas PJ, et al. Size-dependent chemistry: properties of nanocrystals. Chemistry. 2002;8(1):28–35.
  • Ivask A, Elbadawy A, Kaweeteerawat C, et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 2014;8(1):374–386.
  • Hebbalalu D, Lalley J, Nadagouda MN, et al. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng. 2013;1(7):703–712.
  • Ronavari A, Igaz N, Gopisetty MK, et al. Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int J Nanomedicine. 2018;13:695–703.
  • Johnson EA. Phaffia rhodozyma: colorful odyssey. Int Microbiol. 2003;6(3):169–174.
  • Fatemeh N, Sassan R, Ahmad Reza S. Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton Rubrum. 2011 International Conference on Bioscience, Biochemistry and Bioinformatics IPCBEE; 2011; Singapore: IACSIT Press.
  • Kumar R, Shukla SK, Pandey A, et al. Copper oxide nanoparticles: an antidermatophytic agent for Trichophyton spp. Nanotechnol Rev. 2015;4(5):401–409.
  • Firthouse PM, Halith SM, Wahab S, et al. Formulation and evaluation of miconazole niosomes. Int J Pharmtech Res. 2011;3(2):1019–1022.
  • Ataei S, Moazeni E, Gilani K, et al. In-vitro evalauation of itraconazole loaded vesicles prepared from non ionic surfactant. J Pharm Sci. 2011;1:50–52.
  • Brillowska-Dabrowska AH. Pcr diagnostics of dermatophytes and other pathogenic fungi. Denmark: Statens Serum Institut; 2006.
  • Pier AC. Broad spectrum dermatophyte vaccine. Patent US, Editor. Unites States. 1994.
  • Gray NM, Woosley RL. Methods ad compositions of (+) ketoconazole for treating fungal yeast and dermatophyte infections. Washington, USA: Sepracor, Inc. Georgetown University; 1999.
  • Gray NM, Woosley RL, Methods ad compositions of (-) ketoconazole for treating fungal yeast and dermatophyte infections. Denmark: Statens Serum Institut; 2000.
  • Jules Remenar MM, Peterson ML, Morissette SL, et al., Novel conazole crystalline forms and related processes, pharmaceutical compositions and methods. Publication USPA, Editor. Lexington (MA): Transform Pharmaceuticals, Inc.; 2004.
  • Lynne B, Blank RLG, White WC. Method of treating Tinea pedis and related dermatophytic infections. Midland (MI): Dow Corning Corporation; 1989.
  • Baker JR, Flack MR, Ciotti SM, et al. Methods of treating fungal, yeast and mold infections. USA: Nanobio Corporation; 2009.
  • Erik Fred Godefroi CAMVE. Composition and method for combating fungus with imidazole carboxylates. NV: Janssen Pharmaceutica; 1969.
  • Maibach HI, Luo EC, Hsu T-M. Topical administration of basic antifungal compositions to treat fungal infections of the nails. USA: United state patent; 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.