502
Views
35
CrossRef citations to date
0
Altmetric
Review

An update on polymer-lipid hybrid systems for improving oral drug delivery

, &
Pages 507-524 | Received 19 Feb 2019, Accepted 05 Apr 2019, Published online: 18 Apr 2019

References

  • Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Del Rev. 2008;60(6):625–637.
  • Porter CJH, Pouton CW, Cuine JF, et al. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Del Rev. 2008;60(6):673–691.
  • Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimising the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–248.
  • Wu C, Baldursdottir S, Yang M, et al. Lipid and PLGA hybrid microparticles as carriers for protein delivery. J Drug Deliv Sci Technol. 2018;43:65–72.
  • Carsten Christophersen P, Fano M, Saaby L, et al. Characterization of particulate drug delivery systems for oral delivery of peptide and protein drugs. Curr Pharm Des. 2015;21(19):2611–2628.
  • Rao S, Prestidge CA. Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opin Drug Deliv. 2016;13(5):691–707.
  • Mir M, Ahmed N, Ur Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B. 2017;159:217–231.
  • Kapoor DN, Bhatia A, Kaur R, et al. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41–58.
  • Kondiah PP, Choonara YE, Tomar LK, et al. Development of a gastric absorptive, immediate responsive, oral protein-loaded versatile polymeric delivery system. AAPS PharmSciTech. 2017;18(7):2479–2493.
  • Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273–286.
  • Reis CP, Neufeld RJ, Veiga F. Preparation of drug-loaded polymeric nanoparticles. Pan Stanford: Nanomedicine in Cancer; 2017. p. 197–240.
  • Wakaskar RR. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Targeting. 2018;26(4):311–318.
  • Dong W, Wang X, Liu C, et al. Chitosan based polymer-lipid hybrid nanoparticles for oral delivery of enoxaparin. Int J Pharm. 2018 Aug 25;547(1):499–505.
  • Ling Tan JS, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol. 2018;24(4):1–9.
  • Velmurugan R, Selvamuthukumar S. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl Nanosci. 2016 Feb 01;6(2):159–173.
  • Li X, Guo S, Zhu C, et al. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials. 2013 Dec 01;34(37):9678–9687.
  • Nguyen TX, Huang L, Liu L, et al. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. J Mater Chem B. 2014;2(41):7149–7159.
  • Gradauer K, Barthelmes J, Vonach C, et al. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. J Control Release. 2013 Dec 28;172(3):872–878.
  • Huang A, Su Z, Li S, et al. Oral absorption enhancement of salmon calcitonin by using both N-trimethyl chitosan chloride and oligoarginines-modified liposomes as the carriers. Drug Deliv. 2014;21(5):388–396.
  • Kowapradit J, Apirakaramwong A, Ngawhirunpat T, et al. Methylated N-(4-N,N-dimethylaminobenzyl) chitosan coated liposomes for oral protein drug delivery. Eur J Pharm Sci. 2012 Sept 29;47(2):359–366.
  • Chen W-L, Yuan Z-Q, Liu Y, et al. Liposomes coated with N-trimethyl chitosan to improve the absorption of harmine in vivo and in vitro. Int J Nanomedicine. 2016;11:325.
  • Joshi N, Saha R, Shanmugam T, et al. Carboxymethyl-chitosan-tethered lipid vesicles: hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules. 2013;14(7):2272–2282.
  • Liu L, Zhou C, Xia X, et al. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation. Int J Nanomedicine. 2016;11:761.
  • Liang J, Liu Y, Liu J, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J Nanobiotechnol. 2018;16(1):64.
  • Boushra M, Tous S, Fetih G, et al. Methocel-lipid hybrid nanocarrier for efficient oral insulin delivery. J Pharm Sci. 2016 May 01;105(5):1733–1740.
  • Maboos M, Yousuf RI, Shoaib MH, et al. Effect of lipid and cellulose based matrix former on the release of highly soluble drug from extruded/spheronized, sintered and compacted pellets. Lipids Health Dis. 2018;17(1):136. PubMed PMID: 29885655.
  • Yin J, Xiang C, Wang P, et al. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability. Int J Nanomedicine. 2017;12:2923–2931. PubMed PMID: 28435268.
  • Abdel-Bar HM. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability AU - Abo Enin, Hadel A. Expert Opin Drug Deliv. 2016 Nov 01;13(11):1513–1521.
  • Zadeha BSM, Salimi A, Aminib R. novel super saturated self-emulsifying system for oral delivery of griseofulvin: design, preparation and ex-vivo intestinal permeability. J Rep Pharm Sci. 2017;6(2):180–190.
  • Betageri GV. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone AU - Potluri, Praveen. Drug Deliv. 2006 Jan 01;13(3):227–232.
  • Ge Z, Zhang X-X, Gan L, et al. Redispersible, dry emulsion of lovastatin protects against intestinal metabolism and improves bioavailability. Acta Pharmacol Sin. 2008;29(8):990.
  • Cirri M, Mennini N, Maestrelli F, et al. Development and in vivo evaluation of an innovative “hydrochlorothiazide-in cyclodextrins-in solid lipid nanoparticles” formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in pediatrics. Int J Pharm. 2017 Apr 15;521(1):73–83.
  • Hamoudi M, Fattal E, Gueutin C, et al. Beads made of cyclodextrin and oil for the oral delivery of lipophilic drugs: in vitro studies in simulated gastro-intestinal fluids. Int J Pharm. 2011 Sept 20;416(2):507–514.
  • Griesser J, Burtscher S, Köllner S, et al. Zeta potential changing self-emulsifying drug delivery systems containing phosphorylated polysaccharides. Eur J Pharm Biopharm. 2017;119:264–270.
  • Goodarzi N, Mahjub R. Preparation and characterization of self nano-emulsifying drug delivery system (SNEDDS) for oral delivery of heparin using hydrophobic complexation by cationic polymer of β-cyclodextrin AU - Soltani, Yasaman. Drug Dev Ind Pharm. 2017 Nov 02;43(11):1899–1907.
  • Zvonar A, Vrečer F, Gašperlin M. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen AU - Čerpnjak, Katja. Drug Dev Ind Pharm. 2015 Sept 02;41(9):1548–1557.
  • Petchsomrit A, Sermkaew N, Wiwattanapatapee R. Alginate-based composite sponges as gastroretentive carriers for curcumin-loaded self-microemulsifying drug delivery systems. Sci Pharm. 2017;85(1):11.
  • Mannina P, Segale L, Giovannelli L, et al. Self-emulsifying excipient platform for improving technological properties of alginate–hydroxypropylcellulose pellets. Int J Pharm. 2016;499(1–2):74–80.
  • Yadava SK, Naik JB, Patil JS, et al. Enhanced solubility and bioavailability of lovastatin using stabilized form of self-emulsifying drug delivery system. Colloids SurfPhysicochem Eng Asp. 2015;481:63–71.
  • Zhang Z, Zhang R, Zou L, et al. Encapsulation of curcumin in polysaccharide-based hydrogel beads: impact of bead type on lipid digestion and curcumin bioaccessibility. Food Hydrocoll. 2016;58:160–170.
  • Zhang Z, Zhang R, McClements DJ. Encapsulation of β-carotene in alginate-based hydrogel beads: impact on physicochemical stability and bioaccessibility. Food Hydrocoll. 2016 Dec 01;61: 1–10.
  • Beloqui A, Solinís MÁ, Des Rieux A, et al. Dextran–protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. Int J Pharm. 2014;468(1–2):105–111.
  • Wang T, Hu Q, Lee J-Y, et al. Solid lipid–polymer hybrid nanoparticles by in Situ conjugation for oral delivery of astaxanthin. J Agric Food Chem. 2018 Sept 12;66(36):9473–9480.
  • Zhang J, Xu Q, Huang Z, et al. Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate delivery AU - Gao, Xuan. Drug Dev Ind Pharm. 2017 Apr 03;43(4):661–667.
  • Su J, Li Z, Zhan Y, et al. Hyaluronic acid-coated, prodrug-based nanostructured lipid carriers for enhanced pancreatic cancer therapy AU - Lu, Zhihe. Drug Dev Ind Pharm. 2017 Jan 02;43(1):160–170.
  • Khan AA, Abdulbaqi IM, Abou Assi R, et al. Lyophilized hybrid nanostructured lipid carriers to enhance the cellular uptake of verapamil: statistical optimization and in vitro evaluation. Nanoscale Res Lett. 2018;13(1):323. PubMed PMID: 30324291.
  • Jain S, Valvi PU, Swarnakar NK, et al. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol Pharm. 2012;9(9):2542–2553.
  • Liu Y, Zhao Y, Liu J, et al. Wheat germ agglutinin modification of lipid–polymer hybrid nanoparticles: enhanced cellular uptake and bioadhesion [10.1039/C6RA04023C]. RSC Adv. 2016;6(42):36125–36135.
  • Yi J, Lam TI, Yokoyama W, et al. Cellular uptake of β-carotene from protein stabilized solid lipid nanoparticles prepared by homogenization–evaporation method. J Agric Food Chem. 2014;62(5):1096–1104.
  • Kuo Y-C, Cheng S-J. Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int J Pharm. 2016;499(1–2):10–19.
  • Pooja D, Kulhari H, Kuncha M, et al. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol Pharm. 2016;13(11):3903–3912.
  • Cheung RCF, Ng TB, Wong JH, et al. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13(8):5156–5186. PubMed PMID: 26287217.
  • Kubbinga M, Nguyen MA, Staubach P, et al. The influence of chitosan on the oral bioavailability of acyclovir—a comparative bioavailability study in humans. Pharm Res. 2015;32(7):2241–2249.
  • Fonte P, Nogueira T, Gehm C, et al. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin [journal article]. Drug Deliv Transl Res. 2011 August 01;1(4):299–308.
  • Luo Y, Teng Z, Li Y, et al. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym. 2015;122:221–229.
  • Sogias IA, Williams AC, Khutoryanskiy VV. Why is Chitosan Mucoadhesive? Biomacromolecules. 2008 July 01;9(7):1837–1842.
  • Shi C, Zhu Y, Ran X, et al. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res. 2006;133(2):185–192.
  • Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res. 2015;32(2):389–402.
  • Shi L-L, Xie H, Lu J, et al. Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats. Mol Pharm. 2016 Aug 01;13(8):2667–2676.
  • Gaber M, Medhat W, Hany M, et al. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: challenges and outcomes. J Control Release. 2017 May 28;254:75–91.
  • Dickinson E. Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf B. 2001;20(3):197–210.
  • Frenzel M, Steffen-Heins A. Whey protein coating increases bilayer rigidity and stability of liposomes in food-like matrices. Food Chem. 2015;173:1090–1099.
  • Angelova N, Hunkeler D. Rationalizing the design of polymeric biomaterials. Trends Biotechnol. 1999;17(10):409–421.
  • Uhrich KE, Cannizzaro SM, Langer RS, et al. Polymeric systems for controlled drug release. Chem Rev. 1999;99(11):3181–3198.
  • Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.
  • Vijay R, Angayarkanny S, Reddy B, et al. Adsorption and emulsification properties of amphiphilic poly (styrene-co-octadecyl maleamic acid salt) with comb-like architecture. J Colloid Interface Sci. 2010;346(1):143–152.
  • Yu F, Li Y, Liu CS, et al. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int J Pharm. 2015 Apr 30;484(1):181–191.
  • Li Q, Xia D, Tao J, et al. Self-assembled core-shell-type lipid-polymer hybrid nanoparticles: intracellular trafficking and relevance for oral absorption. J Pharm Sci. 2017 Oct 01;106(10):3120–3130.
  • Varghese SE, Fariya MK, Rajawat GS, et al. Lecithin and PLGA-based self-assembled nanocomposite, Lecithmer: preparation, characterization, and pharmacokinetic/pharmacodynamic evaluation. Drug Deliv Transl Res. 2016 Aug 01;6(4):342–353.
  • Patel RR, Khan G, Chaurasia S, et al. Rationally developed core–shell polymeric-lipid hybrid nanoparticles as a delivery vehicle for cromolyn sodium: implications of lipid envelop on in vitro and in vivo behaviour of nanoparticles upon oral administration [10.1039/C5RA12732G]. RSC Adv. 2015;5(93):76491–76506.
  • Ma T, Wang L. TingyuanYang, et al. PLGA–lipid liposphere as a promising platform for oral delivery of proteins. Colloids Surf B Biointerfaces. 2014 May 01;117: 512–519.
  • Prestidge CA, Joyce PM Drug delivery composition comprising polymer-lipid hybrid microparticles. Google Patents; 2018.
  • Pereira NRC, Loiola RA, Rodrigues SF, et al. Mechanisms of the effectiveness of poly(ε-caprolactone) lipid-core nanocapsules loaded with methotrexate on glioblastoma multiforme treatment. Int J Nanomedicine. 2018;13:4563–4573. PubMed PMID: 30154652.
  • Figueiró F, de Oliveira CP, Rockenbach L, et al. Pharmacological improvement and preclinical evaluation of methotrexate-loaded lipid-core nanocapsules in a glioblastoma model. J Biomed Nanotechnol. 2015;11(10):1808–1818.
  • Helal HM, Mortada SM, Sallam MA. Paliperidone-loaded nanolipomer system for sustained delivery and enhanced intestinal permeation: superiority to polymeric and solid lipid nanoparticles. AAPS PharmSciTech. 2017;18(6):1946–1959.
  • Ren T, Wang Q, Xu Y, et al. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. J Control Release. 2018;269:423–438.
  • Tiyaboonchai W. Mucoadhesive nanostructured lipid carriers (NLCs) as potential carriers for improving oral delivery of curcumin AU - Chanburee, Sanipon. Drug Dev Ind Pharm. 2017 Mar 04;43(3):432–440.
  • Anwer MK, Jamil S, Al-Shdefat R, et al. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats AU - Ansari, Mohammad Javed. Drug Deliv. 2016 July 23;23(6):1972–1979.
  • Elkasabgy N. Design of freeze-dried Soluplus/polyvinyl alcohol-based film for the oral delivery of an insoluble drug for the pediatric use AU - Shamma, Rehab. Drug Deliv. 2016 Feb 12;23(2):489–499.
  • Martí Coma-Cros E, Biosca A, Lantero E, et al. Antimalarial activity of orally administered curcumin incorporated in eudragit®-containing liposomes. Int J Mol Sci. 2018;19:5.
  • Sonawane SJ, Kalhapure RS, Rambharose S, et al. Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: in vitro and in silico studies. Int J Pharm. 2016 May 17;504(1):1–10.
  • Jelezova I, Drakalska E, Momekova D, et al. Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems. Eur J Pharm Sci. 2015;78:67–78.
  • Shen A-J, Xia D, Gan Y, et al. Polyelectrolyte layer-by-layer assembled lipid nanoparticles for improving oral absorption of doxorubicin. Yao xue xue bao = Acta Pharmaceutica Sinica 2016;51(7):1136–1143.
  • Tawfik MA, Tadros MI, Mohamed MI. Lipomers (lipid-polymer hybrid particles) of vardenafil hydrochloride: a promising dual platform for modifying the drug release rate and enhancing its oral bioavailability. AAPS PharmSciTech. 2018 Nov 01;19(8):3650–3660.
  • Benival DM, Devarajan PV. Lipomer of doxorubicin hydrochloride for enhanced oral bioavailability. Int J Pharm. 2012 Feb 28;423(2):554–561.
  • Seeli DS, Prabaharan M. Guar gum oleate-graft-poly (methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier. Carbohydr Polym. 2017;158:51–57.
  • Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011 Aug 26;3(3):1377–1397. PubMed PMID: PMC3347861.
  • Han FY, Thurecht KJ, Whittaker AK, et al. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol. 2016;7:185. PubMed PMID: 27445821.
  • Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf B Biointerfaces. 2011 July 01;85(2):214–220.
  • Tan S, Li X, Guo Y, et al. Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale. 2013;5(3):860–872.
  • Ling G, Zhang P, Zhang W, et al. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J Control Release. 2010 Dec 01;148(2):241–248.
  • Rao S, Richter K, Nguyen T-H, et al. Pluronic-functionalized silica lipid hybrid microparticles: improving the oral delivery of poorly water-soluble weak bases. Mol Pharm. 2015;12(12):4424–4433.
  • Mandal B, Bhattacharjee H, Mittal N, et al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed Nanotechnol Biol Med. 2013;9(4):474–491.
  • Mansuri S, Kesharwani P, Jain K, et al. Mucoadhesion: a promising approach in drug delivery system. React Funct Polym. 2016;100:151–172.
  • Netsomboon K, Bernkop-Schnürch A. Mucoadhesive vs. mucopenetrating particulate drug delivery. Eur J Pharm Biopharm. 2016;98:76–89.
  • Hunt JN, Knox MT. A relation between the chain length of fatty acids and the slowing of gastric emptying. J Physiol. 1968 Feb 01;194(2):327–336.
  • Kohli K, Chopra S, Dhar D, et al. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today. 2010 Nov 01;15(21):958–965.
  • Rose F, Wern JE, Gavins F, et al. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J Control Release. 2018;271:88–97.
  • Saesoo S, Bunthot S, Sajomsang W, et al. Phospholipid-chitosan hybrid nanoliposomes promoting cell entry for drug delivery against cervical cancer. J Colloid Interface Sci. 2016;480:240–248.
  • Yostawonkul J, Surassmo S, Iempridee T, et al. Surface modification of nanostructure lipid carrier (NLC) by oleoyl-quaternized-chitosan as a mucoadhesive nanocarrier. Colloids Surf B. 2017;149:301–311.
  • Bugnicourt L, Ladavière C. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications. J Control Release. 2017;256:121–140.
  • Dalmoro A, Bochicchio S, Nasibullin SF, et al. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems. Eur J Pharm Sci. 2018;121:16–28.
  • Ana R, Mendes M, Sousa J, et al. Rethinking carbamazepine oral delivery using polymer-lipid hybrid nanoparticles. Int J Pharm. 2019;554:352–365.
  • Nayak AK, Pal D, Santra K. Swelling and drug release behavior of metformin HCl-loaded tamarind seed polysaccharide-alginate beads. Int J Biol Macromol. 2016;82:1023–1027.
  • Mukhopadhyay P, Chakraborty S, Bhattacharya S, et al. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol. 2015;72:640–648.
  • Shtenberg Y, Goldfeder M, Prinz H, et al. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int J Biol Macromol. 2018;111:62–69.
  • Bachhav SS, Dighe VD, Kotak D, et al. Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer’s patch uptake. Int J Pharm. 2017 Oct 30;532(1):612–622.
  • Clark MA, Jepson MA, Hirst BH. Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev. 2001 Aug 23;50(1):81–106.
  • Gebert A, Rothkötter H-J, Pabst R. M cells in Peyer’s patches of the intestine. International review of cytology. 1996;167:91–159.
  • Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005 Nov 01;10(21):1451–1458.
  • Mostafa NM, Kamel AO. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery – comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution AU - Ishak, Rania A. H. Drug Deliv. 2017 Jan 01;24(1):1874–1890.
  • Vonarbourg A, Passirani C, Saulnier P, et al. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A. 2006 Sept 01;78A(3):620–628.
  • Sarmento B, Mazzaglia D, Bonferoni MC, et al. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr Polym. 2011 Mar 17;84(3):919–925.
  • Durán-Lobato M, Martín-Banderas L, Gonçalves LM, et al. Comparative study of chitosan-and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. J Nanopart Res. 2015;17(2):61.
  • Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577.
  • Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;258:1815–1821. PubMed PMID: 18373181.
  • Durán-Lobato M, Martín-Banderas L, Gonçalves LMD, et al. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. J Nanopart Res. 2015 Jan 30;17(2):61.
  • Garcia-Fuentes M, Prego C, Torres D, et al. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly (ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci. 2005;25(1):133–143.
  • Vo AQ, Feng X, Morott JT, et al. A novel floating controlled release drug delivery system prepared by hot-melt extrusion. Eur J Pharm Biopharm. 2016;98:108–121.
  • Chandra U, Dhyani A, Juyal D. Review on floating microsponges: an updated. Pharma Innovation. 2017;6(7,Part D):239.
  • Desai S, Bolton S. A floating controlled-release drug delivery system: in vitro-in vivo evaluation. Pharm Res. 1993;10(9):1321–1325.
  • Lopes CM, Bettencourt C, Rossi A, et al. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm. 2016;510(1):144–158.
  • Setthacheewakul S, Kedjinda W, Maneenuan D, et al. Controlled release of oral tetrahydrocurcumin from a novel Self-Emulsifying Floating Drug Delivery System (SEFDDS). AAPS PharmSciTech. 2011 Mar 01;12(1):152–164.
  • Sharma K, Hallan SS, Lal B, et al. Development and characterization of floating spheroids of atorvastatin calcium loaded NLC for enhancement of oral bioavailability AU - Sharma, Kritika. Artif Cells Nanomed Biotechnol. 2016 Aug 17;44(6):1448–1456.
  • Ammar HO, Ghorab MM, Mahmoud AA, et al. Formulation of risperidone in floating microparticles to alleviate its extrapyramidal side effects. Future J Pharm Sci. 2016 Dec 01;2(2):43–59.
  • Joyce P, Dening TJ, Meola T, et al. Solidification to improve the biopharmaceutical performance of sedds: opportunities and challenges. Adv Drug Del Rev. 2018 Dec 04. DOI:10.1016/j.addr.2018.11.006.
  • Yasmin R, Rao S, Bremmell K, et al. Synergistic role of solid lipid and porous silica in improving the oral delivery of weakly basic poorly water soluble drugs. Eur J Pharm Sci. 2017;96:508–514.
  • Schultz HB, Thomas N, Rao S, et al. Supersaturated silica-lipid hybrids (super-SLH): an improved solid-state lipid-based oral drug delivery system with enhanced drug loading. Eur J Pharm Biopharm. 2018;125:13–20.
  • Hong S, Nowak SA, Wah CL. Impact of physicochemical properties of cellulosic polymers on supersaturation maintenance in aqueous drug solutions. AAPS PharmSciTech. 2018 May 01;19(4):1860–1868.
  • Gou J, Liang Y, Miao L, et al. The promoting effect of enteric materials on the oral absorption of larotaxel-loaded polymer-lipid hybrid nanoparticles. Eur J Pharm Sci. 2018;124:288–294.
  • Raina Shweta A, Eerdenbrugh Bernard V, Alonzo David E, et al. Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water‐soluble drugs assessed using synchrotron radiation. J Pharm Sci. 2015 June 01;104(6):1981–1992.
  • Joyce P, Prestidge CA. Synergistic effect of PLGA nanoparticles and submicron triglyceride droplets in enhancing the intestinal solubilisation of a lipophilic weak base. Eur J Pharm Sci. 2018 June 15;118:40–48.
  • Warren DB, Benameur H, Porter CJH, et al. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: A mechanistic basis for utility. J Drug Targeting. 2010 Dec 01;18(10):704–731.
  • Suys EJA, Chalmers DK, Pouton CW, et al. Polymeric precipitation inhibitors promote fenofibrate supersaturation and enhance drug absorption from a type IV lipid-based formulation. Mol Pharm. 2018 June 04;15(6):2355–2371.
  • Joyce P, Yasmin R, Bhatt A, et al. Comparison across three hybrid lipid-based drug delivery systems for improving the oral absorption of the poorly water-soluble weak base cinnarizine. Mol Pharm. 2017 Nov 06;14(11):4008–4018.
  • Hamed R, Awadallah A, Sunoqrot S, et al. pH-dependent solubility and dissolution behavior of carvedilol—case example of a weakly basic BCS class II drug. AAPS PharmSciTech. 2016;7(2):418–426. PubMed PMID: PMC4984888.
  • Sassene PJ, Mosgaard MD, Löbmann K, et al. Elucidating the molecular interactions occurring during drug precipitation of weak bases from lipid-based formulations: a case study with cinnarizine and a long chain self-nanoemulsifying drug delivery system. Mol Pharm. 2015;12(11):4067–4076.
  • Berlin M, Przyklenk K-H, Richtberg A, et al. Prediction of oral absorption of cinnarizine – A highly supersaturating poorly soluble weak base with borderline permeability. Eur J Pharm Biopharm. 2014 Nov;88(3):795–806.
  • Khan J, Rades T, Boyd BJ. Lipid-based formulations can enable the model poorly water-soluble weakly basic drug cinnarizine to precipitate in an amorphous-salt form during in vitro digestion. Mol Pharm. 2016 Nov 07;13(11):3783–3793.
  • Lee KWY, Porter CJH, Boyd BJ. The effect of administered dose of lipid-based formulations on the in vitro and in vivo performance of cinnarizine as a model poorly water-soluble drug. J Pharm Sci. 2013 Feb;102(2):565–578.
  • Larsen AT, Ogbonna A, Abu-Rmaileh R, et al. SNEDDS containing poorly water soluble cinnarizine; development and in vitro characterization of dispersion, digestion and solubilization. Pharmaceutics. 2012;4(4):641–665.
  • Larsen AT, Ohlsson AG, Polentarutti B, et al. Oral bioavailability of cinnarizine in dogs: relation to SNEDDS droplet size, drug solubility and in vitro precipitation. Eur J Pharm Sci. 2013;48(1–2):339–350.
  • Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules. 2009 Feb 09;10(2):197–209.
  • Pandita D, Kumar S, Lather V. Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discov Today. 2015 Jan 01;20(1):95–104.
  • Abdelaal M, Abdel‐Razik E, Abdel‐Bary E, et al. Chitosan‐based interpolymeric pH‐responsive hydrogels for in vitro drug release. J Appl Polym Sci. 2007;103(5):2864–2874.
  • Gao X, Cao Y, Song X, et al. Biodegradable, pH-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery. Macromol Biosci. 2014 Apr 01;14(4):565–575.
  • Du H, Liu M, Yang X, et al. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov Today. 2015;20(8):1004–1011.
  • Zhang Y, Zhu W, Zhang H, et al. Carboxymethyl chitosan/phospholipid bilayer-capped mesoporous carbon nanoparticles with pH-responsive and prolonged release properties for oral delivery of the antitumor drug, Docetaxel. Int J Pharm. 2017 Oct 30;532(1):384–392.
  • Joyce P, Gustafsson H, Prestidge CA. Engineering intelligent particle-lipid composites that control lipase-mediated digestion. Adv Colloid Interface Sci. 2018;260:1–23.
  • Joyce P, Whitby CP, Prestidge CA. Nanostructuring biomaterials with specific activities towards digestive enzymes for controlled gastrointestinal absorption of lipophilic bioactive molecules. Adv Colloid Interface Sci. 2016;237:52–75.
  • Dening TJ, Joyce P, Webber JL, et al. Inorganic surface chemistry and nanostructure controls lipolytic product speciation and partitioning during the digestion of inorganic-lipid hybrid particles. J Colloid Interface Sci. 2018;532:666–679.
  • Dening TJ, Joyce P, Prestidge CA. Improving correlations between drug solubilization and in vitro lipolysis by monitoring the phase partitioning of lipolytic species for lipid-based formulations. J Pharm Sci. 2018;108(1):295–304.
  • Joyce P, Kempson I, Prestidge CA. Orientating lipase molecules through surface chemical control for enhanced activity: A QCM-D and ToF-SIMS investigation. Colloids Surf B. 2016;142:173–181.
  • Joyce P, Barnes T, Boyd B, et al. Porous Nanostructure Controls Kinetics, Disposition and Self-Assembly Structure of Lipid Digestion Products. RSC Adv. 2016;6:78385–78395.
  • Shah BR, Zhang C, Li Y, et al. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Res Int. 2016;89:399–407.
  • Mun S, Kim Y-R, Shin M, et al. Control of lipid digestion and nutraceutical bioaccessibility using starch-based filled hydrogels: influence of starch and surfactant type. Food Hydrocoll. 2015;44:380–389.
  • Dening TJ, Joyce P, Rao S, et al. Nanostructured montmorillonite clay for controlling the lipase-mediated digestion of medium chain triglycerides. ACS Appl Mater Interfaces. 2016 Dec 07;8(48):32732–32742.
  • Joyce P, Whitby CP, Prestidge CA. Bioactive hybrid particles from poly(d,l-lactide-co-glycolide) nanoparticle stabilized lipid droplets. ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17460–17470.
  • Joyce P, Kempson I, Prestidge CA. QCM-D and ToF-SIMS investigation to deconvolute the relationship between lipid adsorption and orientation on lipase activity. Langmuir. 2015 Sept 04;31(37):10198–10207.
  • Joyce P, Tan A, Whitby CP, et al. The role of porous nanostructure in controlling lipase-mediated digestion of lipid loaded into silica particles. Langmuir. 2014;30(10):2779–2788.
  • Joyce P, Dening TJ, Gustafsson H, et al. Modulating the lipase-mediated bioactivity of particle-lipid conjugates through changes in nanostructure and surface chemistry. Eur J Lipid Sci Technol. 2017;119(12):1700213–1700222.
  • Joyce P, Whitby CP, Prestidge CA. Interfacial processes that modulate the kinetics of lipase-mediated catalysis using porous silica host particles [10.1039/C6RA08934H]. RSC Adv. 2016;6(49):43802–43813.
  • Jensen DMK, Cun D, Maltesen MJ, et al. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J Control Release. 2010 Feb 25;142(1):138–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.