561
Views
28
CrossRef citations to date
0
Altmetric
Review

Biodegradable polymers: an update on drug delivery in bone and cartilage diseases

, , &
Pages 795-813 | Received 31 Mar 2019, Accepted 19 Jun 2019, Published online: 31 Jul 2019

References

  • Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81(9):646–656.
  • Zhang S, Xing M, Li B. Recent advances in musculoskeletal local drug delivery. Acta Biomater. 2019;19:30063–30067.
  • Briggs AM, Woolf AD, Dreinhofer K, et al. Reducing the global burden of musculoskeletal conditions. Bull World Health Organ. 2018;96(5):366–368.
  • Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014.
  • Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol. 2015;65:20–31.
  • Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev. 2017;97(4):1295–1349.
  • Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016;12(11):632–644.
  • Lagasse HA, Alexaki A, Simhadri VL, et al. Recent advances in (therapeutic protein) drug development. F1000Res. 2017;6:113.
  • Caspi RR. Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol. 2008;8(12):970–976.
  • Cui Y, Cui P, Chen B, et al. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Dev Ind Pharm. 2017;43(4):519–530.
  • Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–672.
  • Awwad S, Angkawinitwong U. Overview of antibody drug delivery. Pharmaceutics. 2018;10(3):1–24.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555.
  • Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015;11(4):234–242.
  • Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Pharmacol. 2018;40:59–66.
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–1822.
  • Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–480.
  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–MR71.
  • Whatmore RW. Nanotechnology—what is it? Should we be worried? Occup Med (Lond). 2006;56(5):295–299.
  • Filipponi L, Sutherland D. EUR 24957 NANOTECHNOLOGIES: principles, applications, implications and hands-on activities. A compendium for educators. Luxembourg: Publications Office of the European Union; 2013.
  • Bawa R, Bawa SR, Maebius SB, et al. Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine. 2005;1(2):150–158.
  • Lövestam G, Rauscher H, Roebben G, et al. Considerations on a definition of nanomaterial for regulatory purposes. Luxembourg: Publications Office of the European Union; 2010.
  • Qureshi ZP, Seoane-Vazquez E, Rodriguez-Monguio R, et al. Market withdrawal of new molecular entities approved in the United States from 1980 to 2009. Pharmacoepidemiol Drug Saf. 2011;20:772–777.
  • Kaitin KI, DiMasi JA. Pharmaceutical Innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin Pharmacol Ther. 2011;89(2):183–188.
  • Silva R, Ferreira H, Cavaco-Paulo A. Sonoproduction of liposomes and protein particles as templates for delivery purposes. Biomacromolecules. 2011;12:3353–3368.
  • Liechty WB, Kryscio DR, Slaughter BV, et al. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1(1):149–173.
  • Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev. 2012;64:327–341.
  • Martins A, Ferreira H, Reis RL, et al. Delivery systems made of natural-origin polymers for tissue engineering and regenerative medicine applications. In: Neves NM, Reis, RL, editors. Biomaterials from Nature for Advanced Devices and Therapies. New Jersey (NJ): John Wiley & Sons, Inc; 2016. p. 581-611.
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8):762–798.
  • Cartaxo AL, Costa-Pinto AR, Martins A, et al. Influence of PDLA nanoparticles size on drug release and interaction with cells. J Biomed Mater Res A. 2019;107(3):482–493.
  • Faraday M. The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond. 1847;147:159.
  • Bazylińska U, Lewińska A, Lamch Ł, et al. Polymeric nanocapsules and nanospheres for encapsulation and long sustained release of hydrophobic cyanine-type photosensitizer. Colloids Surf A Physicochem Eng Asp. 2014;442:42–49.
  • Deshmukh AS, Chauhan PN, Noolvi MN, et al. Polymeric micelles: basic research to clinical practice. Int J Pharmaceut. 2017;532(1):249–268.
  • McBain JW. Mobility of highly charged micelles. Trans. Faraday Soc. 1913;9:99.
  • Sherje AP, Jadhav M, Dravyakar BR, et al. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharmaceut. 2018;548(1):707–720.
  • Buhleier E, Wehner W, Vogtle F. Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis-Stuttgart. 1978;2:155–158.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.
  • Bangham AD, Horne RW. Negative staining of phospholipids + their structural modification by-surface active agents as observed in electron microscope. J Mol Biol. 1964;8(5):660.
  • Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur J Pharm Biopharm. 2013;85(3,Part A):427–443.
  • Torchilin VP. Drug targeting. Eur J Pharm Sci. 2000;11:S81–S91.
  • Farrell KB, Karpeisky A, Thamm DH, et al. Bisphosphonate conjugation for bone specific drug targeting. Bone Rep. 2018;9:47–60.
  • Rotman SG, Grijpma DW, Richards RG, et al. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release. 2018;269:88–99.
  • Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–1045.
  • Russell RGG. Bisphosphonates: mode of action and pharmacology. Pediatrics. 2007;119(Supplement 2):S150–S162.
  • Sangaonkar GM, Pawar KD. Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Colloids Surf B. 2018;164:210–217.
  • Xie Y, Tan X, Huang J, et al. Atorvastatin-loaded micelles with bone-targeted ligand for the treatment of osteoporosis. Drug Deliv. 2017;24(1):1067–1076.
  • Perrin DD. Binding of tetracyclines to bone. Nature. 1965;208(5012):787–788.
  • Wang H, Liu J, Tao S, et al. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int J Nanomed. 2015;10:5671–5685.
  • Cheng W, Yue Y, Fan W, et al. Effects of tetracyclines on bones: an ambiguous question needs to be clarified. Pharmazie. 2012;67(5):457–459.
  • Bhan A, Qiu S, Rao SD. Bone histomorphometry in the evaluation of osteomalacia. Bone Rep. 2018;8:125–134.
  • Payne JB, Golub LM. Using tetracyclines to treat osteoporotic/osteopenic bone loss: from the basic science laboratory to the clinic. Pharmacol Res. 2011;63(2):121–129.
  • Zhang G, Guo B, Wu H, et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med. 2012;18(2):307–314.
  • Zhang Y, Wei L, Miron RJ, et al. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J Bone Miner Res. 2015;30(2):286–296.
  • Wang X, Yang Y, Jia H, et al. Peptide decoration of nanovehicles to achieve active targeting and pathology-responsive cellular uptake for bone metastasis chemotherapy. Biomater Sci. 2014;2(7):961–971.
  • Wang Y, Yang J, Liu H, et al. Osteotropic peptide-mediated bone targeting for photothermal treatment of bone tumors. Biomaterials. 2017;114:97–105.
  • Tavafoghi M, Cerruti M. The role of amino acids in hydroxyapatite mineralization. J R Soc Interface. 2016;13(123):20160462.
  • Wang D, Miller SC, Shlyakhtenko LS, et al. Osteotropic peptide that differentiates functional domains of the skeleton. Bioconjugate Chem. 2007;18(5):1375–1378.
  • Wang D, Sima M, Mosley RL, et al. Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl)methacrylamide copolymers. Mol Pharm. 2006;3(6):717–725.
  • Yarbrough DK, Hagerman E, Eckert R, et al. Specific binding and mineralization of calcified surfaces by small peptides. Calcif Tissue Int. 2010;86(1):58–66.
  • Sun Y, Ye X, Cai M, et al. Osteoblast-targeting-peptide modified nanoparticle for siRNA/microRNA delivery. Acs Nano. 2016;10(6):5759–5768.
  • Stapleton M, Sawamoto K, Almeciga-Diaz CJ, et al. Development of bone targeting drugs. Int J Mol Sci. 2017;18(7):1345.
  • Liang C, Guo B, Wu H, et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy. Nat Med. 2015;21:288.
  • Evans CH, Kraus VB, Setton LA. Progress in intra-articular therapy. Nat Rev Rheumatol. 2014;10(1):11–22.
  • Giannoni P, Narcisi R. Nano-approaches in cartilage repair. J Appl Biomater Biomech.2009;7(1):1–12.
  • Ng L, Grodzinsky AJ, Patwari P, et al. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J Struct Biol. 2003;143(3):242–257.
  • Bajpayee AG, Wong CR, Bawendi MG, et al. Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials. 2014;35(1):538–549.
  • Elsaid KA, Ferreira L, Truong T, et al. Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion. Osteoarthr Cartilage. 2013;21(2):377–384.
  • Rothenfluh DA, Bermudez H, O’Neil CP, et al. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater. 2008;7:248.
  • Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev. 2008;60(4–5):548–558.
  • Cheung CS, Lui JC, Baron J. Identification of chondrocyte-binding peptides by phage display. J Orthop Res. 2013;31(7):1053–1058.
  • Loffredo FS, Pancoast JR, Cai L, et al. Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis Rheumatol. 2014;66(5):1247–1255.
  • Chen M, Daddy JCK, Xiao Y, et al. Advanced nanomedicine for rheumatoid arthritis treatment: focus on active targeting. Expert Opin Drug Deliv. 2017;14(10):1141–1144.
  • Yuan FL, Li X, Lu WG, et al. Epidermal growth factor receptor (EGFR) as a therapeutic target in rheumatoid arthritis. Clin Rheumatol. 2013;32(3):289–292.
  • Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev. 2017;16(6):594–601.
  • Varghese B, Vlashi E, Xia W, et al. Folate receptor-beta in activated macrophages: ligand binding and receptor recycling kinetics. Mol Pharm. 2014;11(10):3609–3616.
  • Graversen JH, Svendsen P, Dagnaes-Hansen F, et al. Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther. 2012;20(8):1550–1558.
  • Kamperidis P, Kamalati T, Ferrari M, et al. Development of a novel recombinant biotherapeutic with applications in targeted therapy of human arthritis. Arthritis Rheum. 2011;63(12):3758–3767.
  • Sullivan T, Benjamin CG, Kempf PW, et al. Cetuximab in the treatment of rheumatoid arthritis. J Clin Rheumatol. 2010;16(1):32–33.
  • Martins IM, Reis RL, Azevedo HS. Phage display technology in biomaterials engineering: progress and opportunities for applications in regenerative medicine. ACS Chem Biol. 2016;11(11):2962–2980.
  • Delgado M, Abad C, Martinez C, et al. Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J Mol Med (Berl). 2002;80(1):16–24.
  • Bar-Shavit Z, Stabinsky Y, Fridkin M, et al. Tuftsin-macrophage interaction: specific binding and augmentation of phagocytosis. J Cell Physiol. 1979;100(1):55–62.
  • Mi Z, Lu X, Mai JC, et al. Identification of a synovial fibroblast-specific protein transduction domain for delivery of apoptotic agents to hyperplastic synovium. Mol Ther. 2003;8(2):295–305.
  • Li Z, Zhao R, Wu X, et al. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. Faseb J. 2005;19(14):1978–1985.
  • Tu KN, Lie JD, Wan CKV, et al. Osteoporosis: a review of treatment options. P T. 2018;43(2):92–104.
  • Rosen CJ. The epidemiology and pathogenesis of osteoporosis. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000.
  • Boche M, Pokharkar V. Positive effect of alendronate on bone turnover in ovariectomised rats’ osteoporosis: comparison of transdermal lipid-based delivery with conventional oral administration. Drug Deliv Transl Res. 2018;8(5):1078–1089.
  • Rawat P, Manglani K, Gupta S, et al. Design and development of bioceramic based functionalized PLGA nanoparticles of risedronate for bone targeting: in-vitro characterization and pharmacodynamic evaluation. Pharm Res-Dordr. 2015;32(10):3149–3158.
  • Rawat P, Ahmad I, Thomas SC, et al. Revisiting bone targeting potential of novel hydroxyapatite based surface modified PLGA nanoparticles of risedronate: pharmacokinetic and biochemical assessment. Int J Pharmaceut. 2016;506(1–2):253–261.
  • Dave JR, Dewle AM, Mhaske ST, et al. Hydroxyapatite nanorods loaded with parathyroid hormone (PTH) synergistically enhance the net formative effect of PTH anabolic therapy. Nanomedicine. 2019;15(1):218–230.
  • Yang Y, Aghazadeh-Habashi A, Panahifar A, et al. Bone-targeting parathyroid hormone conjugates outperform unmodified PTH in the anabolic treatment of osteoporosis in rats. Drug Deliv Transl Res. 2017;7(4):482–496.
  • Dang M, Koh AJ, Jin X, et al. Local pulsatile PTH delivery regenerates bone defects via enhanced bone remodeling in a cell-free scaffold. Biomaterials. 2017;114:1–9.
  • Quinlan E, Thompson EM, Matsiko A, et al. Functionalization of a collagen-hydroxyapatite scaffold with osteostatin to facilitate enhanced bone regeneration. Adv Healthc Mater. 2015;4(17):2649–2656.
  • Lv BH, Tan W, Zhu CC, et al. Properties of a stable and sustained-release formulation of Recombinant Human Parathyroid Hormone (rhPTH) with chitosan and silk fibroin microparticles. Med Sci Monit. 2018;24:7532–7540.
  • Baskaran R, Lee CJ, Kang SM, et al. Poly(lactic-co-glycolic acid) microspheres containing a Recombinant Parathyroid Hormone (1-34) for sustained release in a rat model. Indian J Pharm Sci. 2018;80(5):837–843.
  • Naito C, Katsumi H, Suzuki T, et al. Self-dissolving microneedle arrays for transdermal absorption enhancement of human parathyroid hormone (1-34). Pharmaceutics. 2018;10(4):215.
  • Ji X, Chen X, Yu XJ. MicroRNAs in osteoclastogenesis and function: potential therapeutic targets for osteoporosis. Int J Mol Sci. 2016;17(3):349.
  • Cai M, Yang L, Zhang S, et al. A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy. Int J Nanomed. 2017;12:7469–7482.
  • Zhang YF, Wei LF, Miron RJ, et al. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J Bone Miner Res. 2015;30(2):286–296.
  • Yang K, Miron RJ, Bian Z, et al. A bone-targeting drug-delivery system based on Semaphorin 3A gene therapy ameliorates bone loss in osteoporotic ovariectomized mice. Bone. 2018;114:40–49.
  • Zhu HM, Qin L, Garnero P, et al. The first multicenter and randomized clinical trial of herbal Fufang for treatment of postmenopausal osteoporosis. Osteoporos Int. 2012;23(4):1317–1327.
  • Zhang G, Qin L, Shi Y. Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial. J Bone Miner Res. 2007;22(7):1072–1079.
  • Sun X, Wei J, Lyu J, et al. Bone-targeting drug delivery system of biomineral-binding liposomes loaded with icariin enhances the treatment for osteoporosis. J Nanobiotechnology. 2019;17(1):10.
  • Huang L, Wang X, Cao H, et al. A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice. Biomaterials. 2018;182:58–71.
  • Brennan-Olsen SL, Cook S, Leech MT, et al. Prevalence of arthritis according to age, sex and socioeconomic status in six low and middle income countries: analysis of data from the World Health Organization study on global AGEing and adult health (SAGE) Wave 1. Bmc Musculoskel Dis. 2017;18(1):271–283.
  • Theis KA, Roblin DW, Helmick CG, et al. Prevalence and causes of work disability among working-age US adults, 2011-2013, NHIS. Disabil Health J. 2018;11(1):108–115.
  • Eichaker LR, Cho HS, Duvall CL, et al. Future nanomedicine for the diagnosis and treatment of osteoarthritis. Nanomedicine-Uk. 2014;9(14):2203–2215.
  • Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–2038.
  • Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis-two unequal siblings. Nat Rev Rheumatol. 2015;11(10):606–615.
  • Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol. 2018;71–72:51–69.
  • Jones IA, Togashi R, Wilson ML, et al. Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol. 2019;15(2):77–90.
  • Maudens P, Jordan O, Allemann E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov Today. 2018;23(10):1761–1775.
  • Wang Q, Li Y, Chen XY, et al. Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection. Nano Res. 2019;12(2):421–428.
  • Zhang N, Xu CY, Li N, et al. Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation. Drug Deliv. 2018;25(1):1182–1191.
  • Assali M, Shawahna R, Dayyeh S, et al. Dexamethasone-diclofenac loaded polylactide nanoparticles: preparation, release and anti-inflammatory activity. Eur J Pharm Sci. 2018;122:179–184.
  • Chiesa E, Pisani S, Colzani B, et al. Intra-articular formulation of GE11-PLGA conjugate-based NPs for dexamethasone selective targeting-in vitro evaluation. Int J Mol Sci. 2018;19(8):2304.
  • Colzani B, Speranza G, Dorati R, et al. Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization. Int J Pharmaceut. 2016;511(2):1112–1123.
  • Vanniasinghe AS, Manolios N, Schibeci S, et al. Targeting fibroblast-like synovial cells at sites of inflammation with peptide targeted liposomes results in inhibition of experimental arthritis. Clin Immunol. 2014;151(1):43–54.
  • Kumar A, Bendele AM, Blanks RC, et al. Sustained efficacy of a single intra-articular dose of FX006 in a rat model of repeated localized knee arthritis. Osteoarthr Cartilage. 2015;23(1):151–160.
  • Bodick N, Lufkin J, Willwerth C, et al. Prolonged joint residency of triamcinolone acetonide after an intra-articular injection of FX006, a sustained release formulation for the treatment of osteoarthritis. Osteoarthr Cartilage. 2015;23:A360–A361.
  • Bodick N, Lufkin J, Willwerth C, et al. An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee: a randomized clinical trial. J Bone Joint Surg Am. 2015;97(11):877–888.
  • Conaghan P, Strand V, Hunter D, et al. an intra-articular, extended release formulation of triamcinolone (FX006) affords clinically relevant improvements in pain and function of knee osteoarthritis: post-hoc pooled analyses of 3 randomized controlled trials. Osteoarthr Cartilage. 2017;25:S432–S433.
  • Joshi N, Yan J, Levy S, et al. Towards an arthritis flare-responsive drug delivery system. Nat Commun. 2018;9(1):1275.
  • Yang MD, Ding JX, Feng XR, et al. Scavenger receptor-mediated targeted treatment of collagen-induced arthritis by dextran sulfate-methotrexate prodrug. Theranostics. 2017;7(1):97–105.
  • Yang MD, Ding JX, Zhang Y, et al. Activated macrophage-targeted dextran-methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. J Mater Chem B. 2016;4(12):2102–2113.
  • Xu XL, Li WS, Wang XJ, et al. Endogenous sialic acid-engineered micelles: a multifunctional platform for on-demand methotrexate delivery and bone repair of rheumatoid arthritis. Nanoscale. 2018;10(6):2923–2935.
  • Zhou Q, Zhou Y, Chen H, et al. The efficacy and safety of certolizumab pegol (CZP) in the treatment of active rheumatoid arthritis (RA): a meta-analysis from nine randomized controlled trials. Int J Clin Exp Med. 2014;7(11):3870–3880.
  • Horton S, Walsh C, Emery P. Certolizumab pegol for the treatment of rheumatoid arthritis. Expert Opin Biol Ther. 2012;12(2):235–249.
  • Lee H, Lee MY, Bhang SH, et al. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. Acs Nano. 2014;8(5):4790–4798.
  • Lima AC, Cunha C, Carvalho A, et al. Interleukin-6 Neutralization by Antibodies Immobilized at the Surface of Polymeric Nanoparticles as a Therapeutic Strategy for Arthritic Diseases. Acs Appl Mater Inter. 2018;10(16):13839–13850.
  • Giulbudagian M, Yealland G, Honzke S, et al. Breaking the barrier - potent anti-inflammatory activity following efficient topical delivery of etanercept using thermoresponsive nanogels. Theranostics. 2018;8(2):450–463.
  • Aldayel AM, O’Mary HL, Valdes SA, et al. Lipid nanoparticles with minimum burst release of TNF-alpha siRNA show strong activity against rheumatoid arthritis unresponsive to methotrexate. J Control Release. 2018;283:280–289.
  • Jain S, Tran TH, Amiji M. Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials. 2015;61:162–177.
  • Fan Z, Li J, Liu J, et al. Anti-inflammation and joint lubrication dual effects of a novel hyaluronic acid/curcumin nanomicelle improve the efficacy of rheumatoid arthritis therapy. ACS Appl Mater Interfaces. 2018;10(28):23595–23604.
  • American Cancer Society. Facts & figures. Atlanta, Ga: American Cancer Society; 2019.
  • Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer. 2016;16:373.
  • Abarrategi A, Tornin J, Martinez-Cruzado L, et al. Osteosarcoma: cells-of-origin, cancer stem cells, and targeted therapies. Stem Cells Int. 2016;2016:3631764.
  • Gui K, Zhang X, Chen F, et al. Lipid-polymer nanoparticles with CD133 aptamers for targeted delivery of all-trans retinoic acid to osteosarcoma initiating cells. Biomed Pharmacother. 2019;111:751–764.
  • Feng S, Wu Z-X, Zhao Z, et al. Engineering of bone- and CD44-dual-targeting redox-sensitive liposomes for the treatment of orthotopic osteosarcoma. Acs Appl Mater Inter. 2019;11(7):7357–7368.
  • Magalhães M, Almeida M, Tavares-da-Silva E, et al. miR-145-loaded micelleplexes as a novel therapeutic strategy to inhibit proliferation and migration of osteosarcoma cells. Eur J Pharm Sci. 2018;123:28–42.
  • Grünewald TGP, Cidre-Aranaz F, Surdez D, et al. Ewing sarcoma. Nat Rev Dis Primers. 2018;4(1):5.
  • Rao DD, Jay C, Wang Z, et al. Preclinical justification of pbi-shRNA EWS/FLI1 Lipoplex (LPX) Treatment for Ewing’s Sarcoma. Mol Ther. 2016;24(8):1412–1422.
  • Kang MH, Wang J, Makena MR, et al. Activity of MM-398, nanoliposomal irinotecan (nal-IRI), in Ewing’s family tumor xenografts is associated with high exposure of tumor to drug and high SLFN11 expression. Clin Cancer Res. 2015;21(5):1139–1150.
  • Chu W, Huang Y, Yang C, et al. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharmaceut. 2017;516(1):352–363.
  • Wang M, Cai X, Yang J, et al. A targeted and pH-responsive bortezomib nanomedicine in the treatment of metastatic bone tumors. Acs Appl Mater Inter. 2018;10(48):41003–41011.
  • Petriceks AH, Salmi D. Educational case: primary osteosarcoma. Acad Pathol. 2019;6:2374289518820337.
  • Jamil N, Howie S, Salter DM. Therapeutic molecular targets in human chondrosarcoma. Int J Exp Pathol. 2010;91(5):387–393.
  • Boehme KA, Schleicher SB, Traub F, et al. Chondrosarcoma: a rare misfortune in aging human cartilage? the role of stem and progenitor cells in proliferation, malignant degeneration and therapeutic resistance. Int J Mol Sci. 2018;19(1):311.
  • Peyrode C, Weber V, Voissière A, et al. Proteoglycans as target for an innovative therapeutic approach in chondrosarcoma: preclinical proof of concept. Mol Cancer Ther. 2016;15(11):2575–2585.
  • Mithoefer K, McAdams T, Williams RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: anevidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–2063.
  • Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2002;15(3):170–176.
  • Ahmad J, Jones K. Comparison of osteochondral autografts and allografts for treatment of recurrent or large talar osteochondral lesions. Foot Ankle Int. 2016;37(1):40–50.
  • Hangody L, Dobos J, Balo E, et al. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med. 2010;38(6):1125–1133.
  • Levy YD, Gortz S, Pulido PA, et al. Do fresh osteochondral allografts successfully treat femoral condyle lesions? Clin Orthop Relat Res. 2013;471(1):231–237.
  • Klement M, Luzzi AJ, Siddiqi A, et al. Intra-articular corticosteroid injection following total knee arthroplasty: is it effective? J Arthroplasty. 2018;34(2):303–308.
  • Rönn K, Reischl N, Gautier E, et al. Current surgical treatment of knee osteoarthritis. Arthritis. 2011;2011:454873.
  • Wylde V, Dieppe P, Hewlett S, et al. Total knee replacement: is it really an effective procedure for all? Knee. 2007;14(6):417–423.
  • Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury. 2008;39(Suppl 1):S26–31.
  • Filardo G, Kon E, Perdisa F, et al. Autologous osteochondral transplantation for the treatment of knee lesions: results and limitations at two years’ follow-up. Int Orthop. 2014;38(9):1905–1912.
  • Mistry H, Connock M, Pink J, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. 2017.
  • Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–895.
  • Gille J, Behrens P, Schulz AP, et al. Matrix-associated autologous chondrocyte implantation: a clinical follow-up at 15 years. Cartilage. 2016;7(4):309–315.
  • Marlovits S, Striessnig G, Kutscha-Lissberg F, et al. Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle. Knee Surg Sports Traumatol Arthrosc. 2005;13(6):451–457.
  • Brix MO, Stelzeneder D, Chiari C, et al. Treatment of full-thickness chondral defects with hyalograft c in the knee: long-term results. Am J Sports Med. 2014;42(6):1426–1432.
  • Filardo G, Andriolo L, Balboni F, et al. Cartilage failures. Systematic literature review, critical survey analysis, and definition. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):3660–3669.
  • Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42(3):648–657.
  • Kon E, Filardo G. A multilayer biomaterial for osteochondral regeneration shows superiority vs microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years. Knee Surg Sports Traumatol Arthrosc. 2018;26(9):2704–2715.
  • Kon E, Filardo G, Perdisa F, et al. A one-step treatment for chondral and osteochondral knee defects: clinical results of a biomimetic scaffold implantation at 2 years of follow-up. J Mater Sci Mater Med. 2014;25(10):2437–2444.
  • Costa-Pinto AR, Correlo VM, Sol PC, et al. Chitosan–poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. J Tissue Eng Regen M. 2012;6(1):21–28.
  • Shive MS, Stanish WD, McCormack R, et al. BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage. 2015;6(2):62–72.
  • Pina S, Canadas RF, Jimenez G, et al. Biofunctional ionic-doped calcium phosphates: silk fibroin composites for bone tissue engineering scaffolding. Cells Tissues Organs. 2017;204(3–4):150–163.
  • Ribeiro JFM, Oliveira SM, Alves JL, et al. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(epsilon-caprolactone) scaffolds. Biofabrication. 2017;9(2):025015.
  • Canadas RF, Ren T, Marques AP, et al. Biochemical gradients to generate 3D heterotypic-like tissues with isotropic and anisotropic architectures. Adv Funct Mater. 2018;28(48):1804148.
  • Malafaya PB, Reis RL. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater. 2009;5(2):644–660.
  • Faia-Torres AB, Charnley M, Goren T, et al. Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study. Acta Biomater. 2015;28:64–75.
  • Faia-Torres AB, Guimond-Lischer S, Rottmar M, et al. Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials. 2014;35(33):9023–9032.
  • Robotti F, Bottan S, Fraschetti F, et al. A micron-scale surface topography design reducing cell adhesion to implanted materials. Sci Rep-Uk. 2018;8(1):10887.
  • Rostam HM, Singh S, Salazar F, et al. The impact of surface chemistry modification on macrophage polarisation. Immunobiology. 2016;221(11):1237–1246.
  • McNally AK, Anderson JM. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103(4):1380–1390.
  • Bao X, Zhu L, Huang X, et al. 3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair. Sci Rep-Uk. 2017;7(1):7814.
  • Zhang X, Li Y, Chen YE, et al. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat Commun. 2016;7:10376.
  • Birt MC, Anderson DW, Toby EB, et al. Osteomyelitis: recent advances in pathophysiology and therapeutic strategies. J Orthop. 2017;14(1):45–52.
  • Nandi SK, Bandyopadhyay S, Das P, et al. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv. 2016;34(8):1305–1317.
  • Dorati R, DeTrizio A, Modena T, et al. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals. 2017;10(4):96.
  • Hassani Besheli N, Mottaghitalab F, Eslami M, et al. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. Acs Appl Mater Inter. 2017;9(6):5128–5138.
  • Dorati R, De Trizio A, Genta I, et al. Formulation and in vitro characterization of a composite biodegradable scaffold as antibiotic delivery system and regenerative device for bone. J Drug Deliv Sci Technol. 2016;35:124–133.
  • Dorati R, De Trizio A, Genta I, et al. Gentamicin-loaded thermosetting hydrogel and moldable composite scaffold: formulation study and biologic evaluation. J Pharm Sci-Us. 2017;106(6):1596–1607.
  • Ter Boo GA, Arens D, Metsemakers WJ, et al. Injectable gentamicin-loaded thermo-responsive hyaluronic acid derivative prevents infection in a rabbit model. Acta Biomater. 2016;43:185–194.
  • Wang C, Hou W, Guo X, et al. Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Mater Sci Eng C Mater Biol Appl. 2017;79:507–515.
  • Man Z, Yin L, Shao Z, et al. The effects of co-delivery of BMSC-affinity peptide and rhTGF-β1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials. 2014;35(19):5250–5260.
  • Huang H, Zhang X, Hu X, et al. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration. Biomaterials. 2014;35(36):9608–9619.
  • Sridhar BV, Brock JL, Silver JS, et al. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition. Adv Healthc Mater. 2015;4(5):702–713.
  • Gugjoo MB, Amarpal, Abdelbaset-Ismail A, et al. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. Biomed Pharmacother. 2017;93:1165–1174.
  • Hung K-C, Tseng C-S, Dai L-G, et al. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials. 2016;83:156–168.
  • Chen P, Tao J, Zhu S, et al. Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials. 2015;39:114–123.
  • Algul D, Gokce A, Onal A, et al. In vitro release and In vivo biocompatibility studies of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue. J Biomater Sci Polym Ed. 2016;27(5):431–440.
  • Lu S, Lam J, Trachtenberg JE, et al. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials. 2014;35(31):8829–8839.
  • Lee Y-H, Wu H-C, Yeh C-W, et al. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater. 2017;63:210–226.
  • Needham CJ, Shah SR, Dahlin RL, et al. Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomater. 2014;10(10):4103–4112.
  • Wang W, Sun L, Zhang P, et al. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater. 2014;10(12):4983–4995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.