313
Views
39
CrossRef citations to date
0
Altmetric
Review

Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases

, , &
Pages 1063-1079 | Received 16 May 2019, Accepted 20 Aug 2019, Published online: 30 Aug 2019

References

  • Alvar J, Vélez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7:e35671.
  • [cited 2019 Aug 15]. Available from: https://www.who.int/neglected_diseases/diseases/en/
  • Gigloo AL, Sarkari B, Rezaei Z, et al. Asymptomatic Leishmania infected children: a seroprevalence and molecular survey in a rural area of fars Province, Southern Iran. J Trop Med. 2018;2018:8167247.
  • Echchakery M, Nieto J, Boussaa S, et al. Asymptomatic carriers of Leishmania infantum in patients infected with human immunodeficiency virus (HIV) in Morocco. Parasitol Res. 2018;117:1237–1244.
  • Singh OP, Hasker E, Sacks D, et al. Asymptomatic leishmania infection: A new challenge for leishmania control. Clin Infect Dis. 2014;58:1424–1429.
  • Zijlstra EE, Musa AM, Khalil EAG, et al. Post-kala-azar dermal leishmaniasis. Lancet Infect Dis. 2003;3:87–98.
  • Reithinger R, Dujardin J-C, Louzir H, et al. Cutaneous leishmaniasis. Lancet Infect Dis. 2007;7:581–596.
  • Alvar J, Aparicio P, Aseffa A, et al. The relationship between leishmaniasis and AIDS: The second 10 years. Clin Microbiol Rev. 2008;21:334–359.
  • Purse BV, Masante D, Golding N, et al. How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America. PLoS One. 2017;12:e0183583.
  • Salomón OD, Quintana MG, Mastrángelo AV, et al. Leishmaniasis and climate change-case study: Argentina. J Trop Med. 2012;2012:601242.
  • Mendes CS, Coelho AB, Féres JG, et al. The impact of climate change on leishmaniasis in Brazil. Cien Saude Colet. 2016;21:263–272.
  • Du R, Hotez PJ, Al-Salem WS, et al. Old world cutaneous Leishmaniasis and refugee crises in the Middle East and North Africa. PLoS Negl Trop Dis. 2016;10:e0004545.
  • Al-Salem W, Herricks JR, Hotez PJ. A review of visceral leishmaniasis during the conflict in South Sudan and the consequences for East African countries. Parasit Vectors. 2016;9:460.
  • Al-Salem WS, Pigott DM, Subramaniam K, et al. Cutaneous leishmaniasis and conflict in Syria. Emerg Infect Dis. 2016;22:931–933.
  • Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2016;19:111–126.
  • Sundar S, Chakravarty J. An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother. 2015;16:237–252.
  • Ponte-Sucre A, Gamarro F, Dujardin J-C, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis. 2017;11:e0006052.
  • Aronson N, Herwaldt BL, Libman M, et al. Diagnosis and treatment of leishmaniasis: clinical practice guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin Infect Dis. 2016;63:1539–1557.
  • Alves F, Bilbe G, Blesson S, et al. Recent development of visceral leishmaniasis treatments: successes, pitfalls, and perspectives. Clin Microbiol Rev. 2018;31:1–30.
  • Diro E, Blesson S, Edwards T, et al. A randomized trial of AmBisome monotherapy and AmBisome and miltefosine combination to treat visceral leishmaniasis in HIV co-infected patients in Ethiopia. PLoS Negl Trop Dis. 2019;13(1):e0006988.
  • Sundar S, Singh A. Recent developments and future prospects in the treatment of visceral leishmaniasis. Ther Adv Infect Dis. 2016;3:98–109.
  • Alvar J, Croft S, Olliaro P. Chemotherapy in the treatment and control of leishmaniasis. Adv Parasitol. 2006;61:223–274.
  • Roatt BM, Aguiar-Soares RDDO, Coura-Vital W, et al. Immunotherapy and immunochemotherapy in visceral leishmaniasis: Promising treatments for this neglected disease. Front Immunol. 2014;5:272.
  • Frézard F, Demicheli C. New delivery strategies for the old pentavalent antimonial drugs. Expert Opin Drug Deliv. 2010;7:1343–1358.
  • Carneiro G, Aguiar MG, Fernandes AP, et al. Drug delivery systems for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv. 2012;9:1083–1097.
  • Pham TTH, Loiseau PM, Barratt G. Strategies for the design of orally bioavailable antileishmanial treatments. Int J Pharm. 2013;454:539–552.
  • Garcia-Salcedo JA, Unciti-Broceta JD, Valverde-Pozo J, et al. New approaches to overcome transport related drug resistance in trypanosomatid parasites. Front Pharmacol. 2016;7:351.
  • Moghimi SM, Patel HM. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system - The concept of tissue specificity. Adv Drug Deliv Rev. 1998;32:45–60.
  • Bern C, Adler-Moore J, Berenguer J, et al. Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis. 2006;43:917–924.
  • Grudzinski W, Sagan J, Welc R, et al. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer. Sci Rep. 2016;6:32780.
  • Yang TS, Ou KL, Peng PW, et al. Quantifying membrane permeability of amphotericin B ion channels in single living cells. Biochim Biophys Acta. 2013;1828(8):1794–1801.
  • Pucadyil TJ, Chattopadhyay A. Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol. 2007;23:49–53.
  • Chattopadhyay A, Jafurulla M. A novel mechanism for an old drug: Amphotericin B in the treatment of visceral leishmaniasis. Biochem Biophys Res Commun. 2011;416:7–12.
  • Inselmann G, Kutzschbach A, Heidemann HT. Amphotericin B and sodium deoxycholate induced impairment of renal p-aminohippurate accumulation (PAH) and effect on lipid peroxidation in the rat kidney. Ren Fail. 1992;14:17–21.
  • Vertut-Doi A, Ohnishi SI, Bolard J. The endocytic process in CHO cells, a toxic pathway of the polyene antibiotic amphotericin B. Antimicrob Agents Chemother. 1994;38:2373–2379.
  • Lee N, Bertholet S, Debrabant A, et al. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ. 2002;9:53–64.
  • Purkait B, Kumar A, Nandi N, et al. Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother. 2012;56:1031–1041.
  • Brajtburg J, Bolard J. Carrier effects on biological activity of amphotericin B. Clin Microbiol Rev. 1996;9:512–531.
  • Thakur CP, Singh RK, Hassan SM, et al. Amphotericin B deoxycholate treatment of visceral leishmaniasis with newer modes of administration and precautions: A study of 938 cases. Trans R Soc Trop Med Hyg. 1999;93:319–323.
  • Adler-Moore J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother. 2002;49:21–30.
  • Janoff AS, Boni LT, Popescu MC, et al. Unusual lipid structures selectively reduce the toxicity of amphotericin B. Proc Natl Acad Sci USA. 1988;85:6122–6126.
  • Stevens DA. Overview of amphotericin B colloidal dispersion (Amphocil). J Infect. 1994;28:45–49.
  • Guo LSS. Amphotericin B colloidal dispersion: An improved antifungal therapy. Adv Drug Deliv Rev. 2001;47:149–163.
  • Sundar S, Pandey K, Thakur CP, et al. Efficacy and safety of amphotericin B emulsion versus liposomal formulation in Indian patients with visceral leishmaniasis: a randomized, open-label study. PLoS Negl Trop Dis. 2014;8:e3169.
  • Stone NRH, Bicanic T, Salim R, et al. Liposomal amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76:1–16.
  • Berman JD, Badaro R, Thakur CP, et al. Efficacy and safety of liposomal amphotericin B (AmBisome) for visceral leishmaniasis in endemic developing countries. Bull World Health Organ. 1998;76:25–32.
  • Moon S, Jambert E, Childs M, et al. A win-win solution? A critical analysis of tiered pricing to improve access to medicines in developing countries. Global Health. 2011;7:39.
  • Sundar S, Chakravarty J, Agarwal D, et al. Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med. 2010;362:504–512.
  • Sundar S, Sinha PK, Rai M, et al. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet. 2011;377:477–486.
  • Mondal D, Alvar J, Hasnain MG, et al. Efficacy and safety of single-dose liposomal amphotericin B for visceral leishmaniasis in a rural public hospital in Bangladesh: A feasibility study. Lancet Glob Health. 2014;2:e51–7.
  • Khalil EAG, Weldegebreal T, Younis BM, et al. Safety and efficacy of single dose versus multiple doses of AmBisome® for treatment of visceral leishmaniasis in Eastern Africa: a randomised trial. PLoS Negl Trop Dis. 2014;8:e2613.
  • Wasunna M, Njenga S, Balasegaram M, et al. Efficacy and safety of AmBisome in combination with sodium stibogluconate or miltefosine and miltefosine monotherapy for african visceral leishmaniasis: phase II randomized trial. PLoS Negl Trop Dis. 2016;10:e0004880.
  • Guery R, Henry B, Martin-Blondel G, et al. Liposomal amphotericin B in travelers with cutaneous and muco-cutaneous leishmaniasis: not a panacea. PLoS Negl Trop Dis. 2017;11:e0006094.
  • WHO technical report series. 2010. Control of the leishmaniasis: report of a meeting of the WHO expert committee on the control of Leishmaniases, Geneva, 22-26 March 2010. World Health Organ Tech Rep Ser. No. 949.
  • Burza S, Mahajan R, Sinha PK, et al. Visceral Leishmaniasis and HIV co-infection in Bihar, India: long-term effectiveness and treatment outcomes with liposomal amphotericin B (AmBisome). PLoS Negl Trop Dis. 2014;8:e3053.
  • Monge-Maillo B, López-Vélez R. Treatment options for visceral leishmaniasis and HIV coinfection. AIDS Rev. 2016;18:32–43.
  • Maintz E-M, Hassan M, Huda MM, et al. Introducing single dose liposomal amphotericin B for the treatment of visceral leishmaniasis in rural bangladesh: feasibility and acceptance to patients and health staff. J Trop Med. 2014;2014:676817.
  • Gupta S, Pal A, Vyas SP. Drug delivery strategies for therapy of visceral leishmaniasis. Expert Opin Drug Deliv. 2010;7:371–402.
  • Bhattacharya P, Ali N. Treatment of visceral leishmaniasis: anomalous pricing and distribution of AmBisome and emergence of an indigenous liposomal amphotericin B, FUNGISOME. J Parasit Dis. 2016;40:1094–1095.
  • Olson JA, Adler-Moore JP, Jensen GM, et al. Comparison of the physicochemical, antifungal, and toxic properties of two liposomal amphotericin B products. Antimicrob Agents Chemother. 2008;52:259–268.
  • Adler-Moore JP, Gangneux JP, Pappas PG. Comparison between liposomal formulations of amphotericin B. Med Mycol. 2016;54:223–231.
  • Zaioncz S, Khalil N, Mainardes R. Exploring the role of nanoparticles in Amphotericin B delivery. Curr Pharm Des. 2016;23:509–521.
  • Iman M, Huang Z, Szoka FC, et al. Characterization of the colloidal properties, in vitro antifungal activity, antileishmanial activity and toxicity in mice of a distigmasterylhemisuccinoyl-glycero-phosphocholine liposome-intercalated amphotericin B. Int J Pharm. 2011;408:163–172.
  • Iman M, Huang Z, Alavizadeh SH, et al. Biodistribution and in vivo antileishmanial activity of 1,2-distigmasterylhemisuccinoyl-sn-glycero-3-phosphocholine liposome-intercalated amphotericin B. Antimicrob Agents Chemother. 2017;61:e02525–16.
  • Bahia APCO, Azevedo EG, Ferreira LAM, et al. New insights into the mode of action of ultradeformable vesicles using calcein as hydrophilic fluorescent marker. Eur J Pharm Sci. 2010;39:90–96.
  • Perez AP, Altube MJ, Schilrreff P, et al. Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf B Biointerfaces. 2016;139:190–198.
  • Gupta PK, Jaiswal AK, Kumar V, et al. Covalent functionalized self-assembled lipo-polymerosome bearing amphotericin B for better management of leishmaniasis and its toxicity evaluation. Mol Pharm. 2014;11:951–963.
  • Gupta PK, Jaiswal AK, Asthana S, et al. Self assembled ionically sodium alginate cross-linked amphotericin B encapsulated glycol chitosan stearate nanoparticles: applicability in better chemotherapy and non-toxic delivery in visceral leishmaniasis. Pharm Res. 2015;32:1727–1740.
  • Gupta PK, Jaiswal AK, Asthana S, et al. Antigen presenting cells targeting and stimulation potential of lipoteichoic acid functionalized lipo-polymerosome: a chemo-immunotherapeutic approach against intracellular infectious disease. Biomacromolecules. 2015;16:1073–1087.
  • Gupta PK, Asthana S, Jaiswal AK, et al. Exploitation of lectinized lipo-polymerosome encapsulated amphotericin b to target macrophages for effective chemotherapy of visceral leishmaniasis. Bioconjug Chem. 2014;25:1091–1102.
  • Ribeiro TG, Franca JR, Fuscaldi LL, et al. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int J Nanomedicine. 2014;9:5341–5353.
  • Ribeiro TG, Chávez-Fumagall MA, Valadares DG, et al. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine. 2014;9:877–890.
  • Bose PP, Kumar P, Dwivedi MK. Hemoglobin guided nanocarrier for specific delivery of amphotericin B to Leishmania infected macrophage. Acta Trop. 2016;158:148–159.
  • Van De Ven H, Paulussen C, Feijens PB, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release. 2012;161:795–803.
  • Abu Ammar A, Nasereddin A, Ereqat S, et al. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv Transl Res. 2019;9(1):76–84.
  • Kumar R, Sahoo GC, Pandey K, et al. Study the effects of PLGA-PEG encapsulated Amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv. 2015;22:383–388.
  • Singh PK, Jaiswal AK, Pawar VK, et al. Fabrication of 3-O-sn-phosphatidyl-L-serine anchored PLGA nanoparticle bearing amphotericin B for macrophage targeting. Pharm Res. 2018;35:60.
  • Asthana S, Gupta PK, Jaiswal AK, et al. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: in vitro and in vivo studies. Nanomedicine. 2015;10:1093–1109.
  • Tripathi P, Dwivedi P, Khatik R, et al. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis. Colloids Surf B Biointerfaces. 2015;136:150–159.
  • Khatik R, Dwivedi P, Khare P, et al. Development of targeted 1,2-diacyl-sn-glycero-3-phospho-L-serine-coated gelatin nanoparticles loaded with amphotericin B for improved in vitro and in vivo effect in leishmaniasis. Expert Opin Drug Deliv. 2014;11:633–646.
  • Shahnaz G, Edagwa BJ, McMillan J, et al. Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Nanomedicine. 2017;12:99–115.
  • Sarwar HS, Sohail MF, Saljoughian N, et al. Design of mannosylated oral amphotericin B nanoformulation: efficacy and safety in visceral leishmaniasis. Artif Cells Nanomed Biotechnol. 2018;31:1–11.
  • Jain V, Gupta A, Pawar VK, et al. Chitosan-assisted immunotherapy for intervention of experimental Leishmaniasis via Amphotericin B-loaded solid lipid nanoparticles. Appl Biochem Biotechnol. 2014;174:1309–1330.
  • Caldeira LR, Fernandes FR, Costa DF, et al. Nanoemulsions loaded with amphotericin B: A new approach for the treatment of leishmaniasis. Eur J Pharm Sci. 2015;70:125–131.
  • Santos DCM, Souza MLS, Teixeira EM, et al. A new nanoemulsion formulation improves antileishmanial activity and reduces toxicity of amphotericin B. J Drug Target. 2018;26:357–364.
  • Rochelle Do Vale Morais A, Silva AL, Cojean S, et al. In-vitro and in-vivo antileishmanial activity of inexpensive Amphotericin B formulations: heated Amphotericin B and Amphotericin B-loaded microemulsion. Exp Parasitol. 2018;192:85–92.
  • Gupta PK, Jaiswal AK, Asthana S, et al. Synergistic enhancement of parasiticidal activity of amphotericin B using copaiba oil in nanoemulsified carrier for oral delivery: an approach for non-toxic chemotherapy. Br J Pharmacol. 2015;172:3596–3610.
  • Jain K, Verma AK, Mishra PR, et al. Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: formulation development and in vitro and in vivo evaluation. Antimicrob Agents Chemother. 2015;59:2479–2487.
  • Wang Y, Ke X, Voo ZX, et al. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomater. 2016;46:211–220.
  • Chen YC, Su CY, Jhan HJ, et al. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles. Int J Nanomedicine. 2015;10:7265–7274.
  • Serafim C, Ferreira I, Rijo P, et al. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B. Int J Pharm. 2016;497:23–35.
  • Delmas G, Park S, Chen ZW, et al. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother. 2002;46:2704–2707.
  • Sesana AM, Monti-Rocha R, Vinhas SA, et al. In vitro activity of amphotericin B cochleates against Leishmania chagasi. Mem Inst Oswaldo Cruz. 2011;106:251–253.
  • Pham TTH, Barratt G, Michel JP, et al. Interactions of antileishmanial drugs with monolayers of lipids used in the development of amphotericin B-miltefosine-loaded nanocochleates. Colloids Surf B Biointerfaces. 2013;106:224–233.
  • Pham TTH, Gueutin C, Cheron M, et al. Development of antileishmanial lipid nanocomplexes. Biochimie. 2014;107:143–153.
  • Mendonça DVC, Lage LMR, Lage DP, et al. Poloxamer 407 (Pluronic®F127)-based polymeric micelles for amphotericin B: in vitro biological activity, toxicity and in vivo therapeutic efficacy against murine tegumentary leishmaniasis. Exp Parasitol. 2016;169:34–42.
  • Mendonça DVC, Martins VT, Lage DP, et al. Comparing the therapeutic efficacy of different amphotericin B-carrying delivery systems against visceral leishmaniasis. Exp Parasitol. 2018;186:24–35.
  • Singh PK, Pawar VK, Jaiswal AK, et al. Chitosan coated Pluronicf127 micelles for effective delivery of amphotericin B in experimental visceral leishmaniasis. Int J Biol Macromol. 2017;105:1220–1231.
  • Asthana S, Gupta PK, Jaiswal AK, et al. Overexpressed macrophage mannose receptor targeted nanocapsules- mediated cargo delivery approach for eradication of resident parasite: in vitro and in vivo studies. Pharm Res. 2015;32:2663–2677.
  • Ruiz HK, Serrano DR, Dea-Ayuela MA, et al. New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. Int J Pharm. 2014;473:148–157.
  • Mallia S, Pomel S, Dennemont I, et al. Combination of amphotericin B and chitosan platelets for the treatment of experimental cutaneous leishmaniasis: histological and immunohistochemical examinations. J Drug Deliv Sci Tec. 2019;50:34–41.
  • Ravichandran V, Kothandaraman GP, Bories C, et al. Synthetic polysaccharides as drug carriers: synthesis of polyglucose-amphotericin B conjugates and in vitro evaluation of their anti-fungal and anti-leishmanial activities. J Nanosci Nanotechnol. 2018;18:2405–2414.
  • Francis AP, Gurudevan S, Jayakrishnan A. Synthetic polymannose as a drug carrier: synthesis, toxicity and anti-fungal activity of polymannose-amphotericin B conjugates. J Biomater Sci Polym Ed. 2018;29:1529–1548.
  • Kothandaraman GP, Ravichandran V, Bories C, et al. Anti-fungal and anti-leishmanial activities of pectin-amphotericin B conjugates. J Drug Deliv Sci Technol. 2017;39:1–7.
  • Ravichandran V, Kesavan V, Cojean S, et al. Polysorbate surfactants as drug carriers: Tween 20-Amphotericin B conjugates as anti-fungal and anti-leishmanial agents. Curr Drug Deliv. 2018;15:1028–1037.
  • Thanki K, Prajapati R, Sangamwar AT, et al. Long chain fatty acid conjugation remarkably decreases the aggregation induced toxicity of Amphotericin B. Int J Pharm. 2018;544(1):1–13.
  • Novoselov KS, Fal’ko VI, Colombo L, et al. A roadmap for graphene. Nature. 2012;490(7419):192–200.
  • Singh SK, Singh MK, Kulkarni PP, et al. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano. 2012;6(3):2731–2740.
  • Mudavath SL, Talat M, Rai M, et al. Characterization and evaluation of amine-modified graphene amphotericin B for the treatment of visceral leishmaniasis: in vivo and in vitro studies. Drug Des Devel Ther. 2014;8:1235–1247.
  • Henry S, McAllister DV, Allen MG, et al. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1988;87:922–925.
  • Gittard A, Ovsianikov A, Monteiro-Riviere NA, et al. Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. J Diabetes Sci Technol. 2009;3:304.
  • Nguyen AK, Yang KH, Bryant K, et al. Microneedle-based delivery of Amphotericin B for treatment of cutaneous Leishmaniasis. Biomed Microdevices. 2019;21(1):8.
  • Wijnant GJ, Van Bocxlaer K, Yardley V, et al. Relation between skin pharmacokinetics and efficacy in AmBisome treatment of murine cutaneous leishmaniasis. Antimicrob Agents Chemother. 2018;62(3):e02009–17.
  • Wijnant GJ, Van Bocxlaer K, Yardley V, et al. Comparative efficacy, toxicity and biodistribution of the liposomal amphotericin B formulations Fungisome® and AmBisome® in murine cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist. 2018;8(2):223–228.
  • Berg M, García-Hernández R, Cuypers B, et al. Experimental resistance to drug combinations in Leishmania donovani: metabolic and phenotypic adaptations. Antimicrob Agents Chemother. 2015;59:2242–2255.
  • Franco MS, Oliveira MC. Liposomes co-encapsulating anticancer drugs in synergistic ratios as an approach to promote increased efficacy and greater safety. Anticancer Agents Med Chem. 2019;19(1):17–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.