3,873
Views
95
CrossRef citations to date
0
Altmetric
Review

Lipid-based nanoparticle formulations for small molecules and RNA drugs

&
Pages 1205-1226 | Received 05 Jun 2019, Accepted 16 Sep 2019, Published online: 25 Oct 2019

References

  • Ramasamy T, Ruttala HB, Gupta B, et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J Control Release. 2017;258:226–253.
  • Cullis PR, Hope MJ. Physical properties and structural roles of lipids in membranes. In: Vance DE, Vance JE, editors. Biochemistry of lipids and membranes. Menlo Park (CA): The Benjamin Cummings Publishing Company, Inc.; 1985. p. 25–72.
  • Lasic DD. Liposomes: from physics to applications. Amsterdam (NL): Elsevier Science B.V.; 1993.
  • Garidel P, Johann C, Blume A. Thermodynamics of lipid organization and domain formation in phospholipid bilayers. J Liposome Res. 2000;20(2–3):131–158.
  • Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv. 2008;5(1):25–44.
  • Houslay MD, Stanley KK. Dynamics of biological membranes: influence on synthesis, structure, and function. New York (NY): John Wiley & Sons; 1982.
  • Lee AG. Lipid phase transitions and phase diagrams I Lipid phase transitions. Biochim Biophys Acta. 1977;472:237–281.
  • Lee AG. Functional properties of biological membranes: a physical-chemical approach. Prog Biophys Mol Biol. 1975;29(1):3–56.
  • Webb M, Tardi P, Mayer LD, et al., inventors; Celator Technologies Inc., assignee. Lipid carrier compositions with enhanced blood stability. United States patent US 8,518,437 B2; International publication No: WO2003041681. 2002 Nov 13.
  • Garidel P, Johann C, Mennicke L, et al. The mixing behavior of pseudobinary phosphatidylcholine- phosphatidylglycerol mixtures as a function of pH and chain length. Eur Biophys J. 1997;26(6):447–459.
  • Garidel P, Blume A. Miscibility of phosphatidylethanolamine-phosphatidylglycerol mixtures as a function of pH and acyl chain length. Eur Biophys J. 2000;28(8):629–638.
  • Banerjee K, Banerjee S, Mandal M. Liposomes as a drug delivery system. In: Prokopovich P, editor. Biological and pharmaceutical applications of nanomaterials. Boca Raton (FL): CRC Press; 2015. p. 53–100.
  • Szoka F Jr., Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA. 1978;75:4194–4198.
  • Szoka F Jr., Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508.
  • Gregoriadis G, editor. Liposome Technology: preparation of liposomes. Vol. 1. Boca Raton (FL): CRC press; 1984.
  • Gregoriadis G, editor. Liposome Technology. liposome preparation and related techniques. 3rd edition ed. Vol. 1, New York (NY): Informa Healthcare USA Inc.; 1993.
  • Hope MJ, Bally MB, Webb G, et al. Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume, and ability to maintain a membrane potential. Biochim Biophys Acta. 1985;812:55–65.
  • Madden TD. Current concepts in membrane protein reconstitution. Chem Phys Lipids. 1986;40:207–222.
  • Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986;858:161–168.
  • Wagner A, Vorauer-Uhl K, Kreismayr G, et al. The crossflow injection technique: an improvement of the ethanol injection method. J Liposome Res. 2002;12(3):259–270.
  • Shah VM, Nguyen DX, Patel P, et al. Liposomes produced by microfluidics and extrusion: a comparison for scale-up purposes. Nanomed-Nanotechnol. 2019;18:146–156.
  • Mayer LD, Hope MJ, Cullis PR, et al. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta. 1985;817:193–196.
  • Woodle MC, Papahadjopoulos D. Liposome preparation and size characterization. Methods Enzymol. 1989;171:193–217.
  • Madden TD. Model membrane systems. In: Bittar EE, Bittar N, editors. Principles of medical biology. Vol. 7A. Greenwich (CT): JAI Press Inc.; 1997. p. 1–17.
  • Abraham SA, Edwards K, Karlsson G, et al. Formation of transition metal–doxorubicin complexes inside liposomes. Biochim Biophys Acta Biomembr. 2002;1565(1):41–54.
  • Chiu GNC, Abraham SA, Ickenstein LM, et al. Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. J Control Release. 2005;104(2):271–288.
  • Leung AWY, Anantha M, Dragowska WH, et al. Copper-CX-5461: a novel liposomal formulation for a small molecule rRNA synthesis inhibitor. J Control Release. 2018;286:1–9.
  • Prosser KE, Leung AWY, Harrypersad S, et al. Transition metal ions promote the bioavailability of hydrophobic therapeutics: Cu and Zn interactions with RNA polymerase I inhibitor CX5461. Chemistry. 2018;24(24):6334–6338.
  • Cuprous Pharmaceuticals Inc. [cited 2019 Aug 20]. Available from: https://cuprous.ca/.
  • Ickenstein LM. Triggered drug release from thermosensitive liposomes. [dissertation]. Vancouver (BC): University of British Columbia; 2003; 2019. open.library.ubc.ca. doi: 10.14288/1.0091768. [cited Aug 20]. Available from: https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0091768.
  • Fondell A, Edwards K, Ickenstein LM, et al. Nuclisome: a novel concept for radionuclide therapy using targeting liposomes. Eur J Nucl Med Mol Imaging. 2010;37(1):114–123.
  • Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54:987–992.
  • Immordino M, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.
  • Dos Santos N, Allen C, Doppen AM, et al. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta. 2007;1768(6):1367–1377.
  • Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42:463–478.
  • Yan X, Scherphof GL, Kamps JAAM. Liposome opsonization. J Liposome Res. 2005;15:109–139.
  • Li WM, Mayer LD, Bally MB. Prevention of antibody-mediated elimination of ligand-targeted liposomes by using poly(ethylene glycol)-modified lipids. J Pharmacol Exp Ther. 2002;300(3):976–983.
  • Lichtenberg D, Barenholz Y. Liposomes: preparation, characterization, and preservation. Methods Biochem Anal. 1988;33:337–462.
  • Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990;1029:91–97.
  • Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–1416.
  • Kohn JA, Nagy HF, Dvorak AM, et al. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest. 1992;67:596–607.
  • Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47:3039–3051.
  • Jain RK. Determinants of tumor blood flow: a review. Cancer Res. 1988;48:2641–2658.
  • Gaumet M, Vargas A, Gurny R, et al. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1).
  • Yang Q, Jacobs TM, McCallen JD, et al. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal Chem. 2016;88(23):11804–11812.
  • Tadakuma T, Yasuda T, Kinsky SC, et al. The effect of epitope density on the in vitro immunogenicity of hapten-sensitized liposomal model membranes. J Immunol. 1980;124:2175–2179.
  • Jiskoot W, van Schie RM, Carstens MG, et al. Immunological risk of injectable drug delivery systems. Pharm Res. 2009;26(6):1303–1314.
  • Daemen T, Hofstede G, Kate MTT, et al. Liposomal doxorubicin-induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer. 1995;61:716–721.
  • Daemen T, Regts J, Meesters M, et al. Toxicity of doxorubicin entrapped within long-circulating liposomes. J Control Release. 1997;44:1–9.
  • Oja C, Tardi P, Schutze-Redelmeier M-P, et al. Doxorubicin entrapped within liposome-associated antigens results in a selective inhibition of the antibody response to the linked antigen. Biomembranes. 2000;1468(1–2):31–40.
  • Pan X, Lee RJ. Tumor-selective drug delivery via folate receptor-targeted liposomes. Expert Opin Drug Deliv. 2004;1(1):7–17.
  • Noble CO, Kirpotin DB, Hayes ME, et al. Development of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Targets. 2004;8(4):335–353.
  • Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv. 2005;2(4):369–381.
  • Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv. 2008;5(3):309–319.
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 2013;8(9):1509–1528.
  • Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv. 2013.
  • Kullberg M, Martinson H, Mann K, et al. Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells. Nanomed-Nanotechnol. 2015;11:1355–1363.
  • Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci. 2018;19:195.
  • Olusanya TOB, Haj Ahmad RR, Ibegbu DM, et al. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907.
  • Ohradanova-Repic A, Nogueira E, Hartl I, et al. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomed. 2018;14:123–130.
  • Patil Y, Shmeeda H, Amitay Y, et al. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomed-Nanotechnol. 2018;14:1407–1416.
  • Biffi S, Voltan R, Bortot B, et al. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin Drug Deliv. 2019;16(5):481–496.
  • Kusumoto K, Akita H, Ishitsuka T, et al. A lipid envelope-type nano particle incorporating a multifunctional peptide for the systemic siRNA delivery to the pulmonary endothelium. ACS Nano. 2013;7:7534–7541.
  • Sato Y, Sakurai Y, Kajimoto K, et al. Innovative technologies in nanomedicines: from passive targeting to active targeting/from controlled pharmacokinetics to controlled intracellular pharmacokinetics. Macromol Biosci. 2017;17(1).
  • Bally MB, Ansell SM, Tardi PG, et al. Liposome targeting following intravenous administration: defining expectations and a need for improved methodology. J Liposome Res. 1997;7(4):331–361.
  • Ansell SM, Harasym TO, Tardi PG, et al. Antibody conjugation methods for active targeting of liposomes. Methods Mol Med. 2000;25:51–68.
  • Goren D, Horowitz AT, Zalipsky S, et al. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer. 1996;74(11):1749–1756.
  • Tarr L, Oppenheimer BS, Sager RV. The circulation time in various clinical conditions determined by the use of sodium dehydrocholate. Am Heart J. 1933;8(6):766–786.
  • Allen TM, Martin FJ. Advantages of liposomal delivery systems for anthracyclines. S9emin Oncol. 2004;6(Suppl13):5–15.
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–1822.
  • Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49–60.
  • Chang HI, Cheng MY, Yeh MK. Clinically-proven liposome-based drug delivery: formulation, characterization, and therapeutic efficacy. Open Access Sci Rep. 2012;1:3.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:2.
  • Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 2017;9:60.
  • Gilabert-Oriol R, Ryan GM, Leung AWY, et al. Liposomal formulations to modulate the tumour microenvironment and antitumour immune response. Int J Mol Sci. 2018;19:2922–2956.
  • Leung AWY, Amador C, Wang LC, et al. What drives innovation: the Canadian touch on liposomal therapeutics. Pharmaceutics. 2019;11(3):124.
  • Kitzman DW, Goldman ME, Gillam LD, et al. Efficacy and safety of the novel ultrasound contrast agent perflutren (definity) in patients with suboptimal baseline left ventricular echocardiographic images. Am J Cardiol. 2000;86(6):669–674.
  • Ouyang C, Choice E, Holland J, et al. Liposomal cyclosporine: characterizationof drug incorporation and interbilayer exchange. Transplantation. 1995;60(9):999–1006.
  • Choice E, Masin D, Bally MB, et al. Liposomal cyclosporine: comparison of drug and lipid carrier pharmacokinetics and biodistribution. Transplantation. 1995;60(9):1006–1011.
  • Drugbank [cited 2019 Aug 20]. Available from: https://www.drugbank.ca/.
  • PubChem [cited 2019 Aug 20]. Available from: https://pubchem.ncbi.nlm.nih.gov/.
  • Torrado JJ, Espada R, Ballesteros MP, et al. Amphotericin B formulations and drug targeting. J Pharm Sci. 2007;97(7):2405–2425.
  • Bovier PA. Epaxal: a virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines. 2008;7(8):1141–1150.
  • Bovier PA, Bock J, Loutan L, et al. Long-term immunogenicity of an inactivated virosome hepatitis A vaccine. J Med Virol. 2002;68(4):489–493.
  • Mischler R, Metcalfe IC. Inflexal®V a trivalent virosome subunit influenza vaccine: production. Vaccine. 2002;20:B17–23.
  • Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68:701–787.
  • Abraham SA, Waterhouse DN, Mayer LD, et al. The liposomal formulation of doxorubicin. Methods Enzymol. 2005;391:71–97.
  • Batist G. Cardiac safety of liposomal anthracyclines. Cardiovasc Toxicol. 2007;7:72–74.
  • Safra T. Cardiac safety of liposomal anthracyclines. Oncologist. 2003;8(Suppl 2):17–24.
  • Barenholz Y. Doxil® - The first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117–134.
  • Crommelin DJA Comparative in-vitro characterization of liquid liposomal formulations. [cited 2019 Aug 20]. Available from: https://www.agah.eu/uploads/tx_news/Cromemelin_Comparative_in-vitro_characterization_of_liquid_liposomal_formulations.pdf.
  • Swenson CE, Perkins WR, Roberts P, et al. Liposome technology and the development of MyocetTM (liposomal doxorubicin citrate. Breast. 2001;10(Suppl 2):1–7.
  • Gill PS, Espina BM, Muggia F, et al. Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J Clin Oncol. 1995;13:996–1003.
  • Fumagalli L, Zucchetti M, Parisi I, et al. The pharmacokinetics of liposomal encapsulated daunorubicin are not modified by HAART in patients with HIV-associated Kaposi’s sarcoma. Cancer Chemother Pharmacol. 2000;45:495–501.
  • Gilead [cited 2019 Aug 20]. Available from: http://investors.gilead.com.
  • Tardi P, Johnstone S, Harasym N, et al. In vivo maintenance of synergistic cytarabine: daunorubicinratios greatly enhances therapeutic efficacy. Leukemia Res. 2009;33:129–139.
  • Nikanjam M, Capparelli E, Lancet JE, et al. Enhanced cytarabine and daunorubicin population pharmacokinetics when administered as CPX-351: a novel liposomal formulation not requiring dose reduction for mild renal or hepatic dysfunction. Blood. 2016;128(22):3955.
  • Lancet JE, Uy GL, Cortes JE, et al. Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML. J Clin Oncol. 2016;34(15):7000.
  • Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–2692.
  • Kansal A, Du M, Restrepo OH, et al. Cost-effectiveness of CPX-351 versus 7+3 regimen in the treatment of treatment-related acute myeloid leukemia (tAML) or AML with myelodysplasia-related changes (MRC). Blood. 2017;130(Suppl 1):4674.
  • Blair HA. Daunorubicin/Cytarabine liposome: a review in acute myeloid leukaemia. Drugs. 2018;78(18):1903–1910.
  • Hiemenz JW, Walsh TJ. Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis. 1996;22(Suppl 2):S133–44.
  • Boswell GW, Buell D, Bekersky I. AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol. 1998;38:583–592.
  • Gilead [cited 2019 Aug 20]. Available from: https://www.gilead.com/news-and-press/press-room/press-releases/2001/1/gilead-sciences-announces-fourth-quarter-and-year-end-2000-financial-results.
  • Mantripragada S. A lipid based depot (DepoFoam® technology) for sustained release drug delivery. Prog Lipid Res. 2002;41:392–406.
  • Gambling D, Hughes T, Martin G, et al. A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth Analg. 2005;100(4):1065–1074.
  • Moeremans K, Annemans L, Morris J. Liposomal cytarabine (DepoCyte™ injection) is cost-effective compared with standard cytarabine for the intrathecal treatment of patients with lymphomatous meningitis. Blood. 2004;104:267.
  • Balocco AL, van Zundert PGE, Gan SS, et al. Extended release bupivacaine formulations for postoperative analgesia: an update. Curr Opin Anaesthesio. 2018;31(5):636–642.
  • Chernov L, Deyell RJ, Anantha M, et al. Optimization of liposomal topotecan for use in treating neuroblastoma. Cancer Med. 2017;6(6):1240–1254.
  • Shah NN, Merchant MS, Cole DE, et al. Vincristine sulfate liposomes injection (VSLI, Marqibo®): results from a phase I study in children, adolescents, and young adults with refractory solid tumors or leukemias. Pediatr Blood Cancer. 2016;63:99–1005.
  • Zhang J, Chen Y, Li X, et al. The influence of different long-circulating materials on the pharmacokinetics of liposomal vincristine sulfate. Int J Nanomed. 2016;11:4187–4197.
  • Bernards N, Ventura M, Fricke IB, et al. Liposomal irinotecan achieves significant survival and tumor burden control in a triple negative breast cancer model of spontaneous metastasis. Mol Pharm. 2018;15:4132–4138.
  • Tran S, DeGiovanni P‑J, Piel B, et al. Cancer nanomedicine: a review of recent success in drug delivery. Clin Trans Med. 2017;6:44.
  • Lamb YN, Scott LJ. Liposomal irinotecan: a review in metastatic pancreatic adenocarcinoma. Drugs. 2017;77(7):785–792.
  • Verreault M, Strutt D, Masin D, et al. Irinophore C™, a lipid-based nanoparticulate formulation of irinotecan, is more effective than free irinotecan when used to treat an orthotopic glioblastoma model. J Control Release. 2012;158(1):34–43.
  • Hare JI, Neijzen RW, Anantha M, et al. Treatment of colorectal cancer using a combination of liposomal irinotecan (Irinophore C™) and 5-fluorouracil. PLoS One. 2013;8(4):e62349.
  • Waterhouse DN, Sutherland BW, Santos ND, et al. Irinophore C™, a lipid nanoparticle formulation of irinotecan, abrogates the gastrointestinal effects of irinotecan in a rat model of clinical toxicities. Invest New Drugs. 2014;32(6):1071–1082.
  • Verreault M, Wehbe M, Strutt D, et al. Determination of an optimal dosing schedule for combining Irinophore C™ and temozolomide in an orthotopic model of glioblastoma. J Control Release. 2015;220(Pt A):348–357.
  • Neijzen R, Wong MQ, Gill N, et al. Irinophore C™, a lipid nanoparticulate formulation of irinotecan, improves vascular function, increases the delivery of sequentially administered 5-FU in HT-29 tumors, and controls tumor growth in patient derived xenografts of colon cancer. J Control Release. 2015;199:72–83.
  • Patankar NA, Waterhouse D, Strutt D, et al. Topophore C: a liposomal nanoparticle formulation of topotecan for treatment of ovarian cancer. Invest New Drugs. 2013;31(1):46–58.
  • Gilabert-Oriol R, Chernov L, Anantha M, et al. In vitro assay for measuring real time topotecan release from liposomes: release kinetics and cellular internalization. Drug Deliv Transl Res. 2017;7(4):544–557.
  • Frampton JE. Mifamurtide: a review of its use in the treatment of osteosarcoma. Paediatr Drugs. 2010;12(3):141–153.
  • Tacyildiz N, Ozdemir IS, Unal E, et al. The efficiency and toxicity of mifamurtide in childhood osteosarcoma. J Pediatr Hematol Oncol. 2018;40(6):e373–6.
  • Keam SJ, Scott LJ, Curran MP. Verteporfin, a review of its use in the management of subfoveal choroidal neovascularization. Drugs. 2003;63(22):2521–2554.
  • Richter AM, Waterfield E, Jain AK, et al. Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD) to tumor tissue in a mouse tumor model. Photochem Photobiol. 1993;57(6):1000–1006.
  • Sun J, Dai W, Liang Z, et al. Advances in the formulation and delivery technology of paclitaxel for injection. J Chin Pharm Sci. 2015;24(8):487–500.
  • Koudelka Š, Turánek J. Liposomal paclitaxel formulations. J Control Release. 2012;163:322–334.
  • Bernabeu E, Cagel M, Lagomarsino E, et al. Paclitaxel: what has been done and the challenges remain ahead. Int J Pharmaceut. 2017;526:474–495.
  • Ye L, He J, Hub Z, et al. Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food Chem Toxicol. 2013;52:200–206.
  • Cipolla D, Gonda I, Chan H-K. Liposomal formulations for inhalation. Ther Deliv. 2013;4(8):1047–1072.
  • Kłodzińska SN, Priemel PA, Rades T, et al. Inhalable antimicrobials for treatment of bacterial biofilm-associated sinusitis in cystic fibrosis patients: challenges and drug delivery approaches. Int J Mol Sci. 2016;17(10):E1688.
  • Garraffo R, Drugeon HB, Dellamonica P, et al. Determination of optimal dosage regimen for amikacin in healthy volunteers by study of pharmacokinetics and bactericidal activity. Antimicrob Agents Chemother. 1990;34(4):614–621.
  • Boulikas T. Clinical overview on Lipoplatin™: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs. 2009;18(8):1197–1218.
  • Tak WY, Lin SM, Wang Y, et al. Phase III HEAT study adding lyso-thermosensitive liposomal doxorubicin to radiofrequency ablation in patients with unresectable hepatocellular carcinoma lesions. Clin Cancer Res. 2018;24(1):73–83.
  • Ang MJ, Silkiss RZ. The use of long-acting liposomal bupivacaine (Exparel) for postoperative pain control following enucleation or evisceration. Ophthalmic Plast Reconstr Surg. 2018;34(6):599.
  • Santamaria CM, Woodruff A, Yang R, et al. Drug delivery systems for prolonged duration local anesthesia. Mater Today. 2017;20(1):22–31.
  • Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457(7228):426–433.
  • Zhu L, Mahato R. Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv. 2010;7(10):1209–1226.
  • Movahedi F, Hu RG, Becker DL, et al. Stimuli-responsive liposomes for the delivery of nucleic acid therapeutics. Nanomed-Nanotechnol. 2015;11:1575–1584.
  • Bobbin ML, Rossi JJ. RNA interference (RNAi)-based therapeutics: delivering on the promise?. Annu Rev Pharmacol Toxicol. 2016;56:103–122.
  • Juliano RL. The delivery of therapeutic ologonuclotides. Nucleic Acids Res. 2016;44(14):6518–6548.
  • Stein CA, Castanotto D. FDA-approved oligonucleotide therapies. Mol Ther. 2017;25(5):1069–1075.
  • Smith CIE, Zain R. Therapeutic oligonucleotides: state of the art. Annu Rev Pharmacol Toxicol. 2019;59:605–630.
  • Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA. 1978;75(1):280–284.
  • Eckstein F. Nucleoside phosphorothioates. J Am Chem Soc. 1966;88(18):4292–4294.
  • Miller CM, Harris EN. Antisense oligonucleotides: treatment strategies and cellular internalization. RNA Dis. 2016;3(4):e1393.
  • Geary RS, Norris D, Yu R, et al. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;87:46–51.
  • Wong E, Mipomersen GT. (Kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. P&T. 2014;39(2):119–122.
  • Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811.
  • Kreutzer R, Limmer S, Ribopharma AG., assignee. Method and medicament for inhibiting the expression of a defined gene. European patent EP 1 144 623 B9. 2000 Jan 29.
  • Kreutzer R, Limmer S, inventors; Alnylam Europe Ag, assignee. Method and medicament for inhibiting the expression of a defined gene. Eur Patt EP. 2000 Jan 29;1(214): 945 B2.
  • Portnoy V, Huang V, Place RF, et al. Small RNA and transcriptional upregulation. Wiley Interdiscip Rev RNA. 2011;2(5):748–760.
  • Portnoy V, Lin SHS, Li KH, et al. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res. 2016;26:320–335.
  • Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16(9):543–552.
  • Gomes-da-Silva LC, Fonseca NA, Moura V, et al. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res. 2012;45(7):1163–1171.
  • Hope MJ. Enhancing siRNA delivery by employing lipid nanoparticles. Ther Deliv. 2014;5(6):663–673.
  • Leung AKK, Tam YYC, Cullis PR. Lipid nanoparticles for short interfering RNA delivery. Adv Genet. 2014;88:71–110.
  • Wang J, Lu Z, Wientjes MG, et al. Delivery of siRNA therapeutics: barriers and carriers. Aaps J. 2010;12(4):492–503.
  • Wang Z, Rao DD, Senzer N, et al. RNA interference and cancer therapy. Pharm Res. 2011;28:2983–2995.
  • Rozema DB, Lewis DL, Wakefield DH, et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci USA. 2007;104(32):12982–13017.
  • Schäfer J, Höbel S, Bakowsky U, et al. Liposome-polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials. 2010;31:6892–6900.
  • Yuan X, Naguib S, Wu Z. Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv. 2011;8(4):521–536.
  • Resnier P, Montier T, Mathieu V, et al. A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials. 2013;34:6429–6443.
  • Ramaswamy S, Tonnu N, Tachikawa K, et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc Natl Acad Sci USA. 2017;114(10):E1941–50.
  • Zuckerman JE, Gritli I, Tolcher A, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA. 2014;111(31):11449–11454.
  • Schluep T, Lickliter J, Hamilton J, et al. Safety, tolerability, and pharmacokinetics of ARC-520 injection, an RNA interference-based therapeutic for the treatment of chronic hepatitis B virus infection in healthy volunteers. Clin Pharmacol Drug Dev. 2017;6(4):350–362.
  • Ozcan G, Ozpolat B, Coleman RL, et al. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87:108–119.
  • Zatsepin TS, Kotelevtsev YV, Koteliansky V. Lipid nanoparticles for targeted siRNA delivery - going from bench to bedside. Int J Nanomed. 2016;11:3077–3086.
  • Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation, and application. Adv Pharm Bull. 2015;5(3):305–313.
  • Viger-Gravel J, Schantz A, Pinon AC, et al. Structure of lipid nanoparticles containing siRNA or mRNA by dynamic nuclear polarization-enhanced NMR spectroscopy. J Phys Chem B. 2018;122(7):2073–2081.
  • Precision NanoSystems’ Technology [cited 2019 Aug 20]. Available from: https://www.youtube.com/watch?v=nikeuyYkFVs.
  • Wan C, Allen TM, Cullis PR. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv Transl Res. 2013;4(1):74–83.
  • Xue HY, Guo P, Wen W-C, et al. Lipid-based nanocarriers for RNA delivery. Current Pharm Des. 2015;21:3140–3147.
  • Tam YYC, Chen S, Cullis P. Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics. 2013;5(3):498–507.
  • Yan X, Kuipers F, Havekes LM, et al. The role of apolipoprotein E in the elimination of liposomes from blood by hepatocytes in the mouse. Biochem Biophys Res Commun. 2005;328:57–62.
  • Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441:111–114.
  • Xue HY, Liu S, Wong HL. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (Lond). 2014;9(2):295–312.
  • Lin PJC, Tam YYC, Hafez I, et al. Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA. Nanomed-Nanotechnol. 2013;9:233–246.
  • Lin PJC, Tam YK, Cullis PR. Development and clinical applications of siRNA-encapsulated lipid nanoparticles in cancer. Clin Lipidol. 2014;9(3):317–331.
  • Wu SY, McMillan NAJ. Lipidic systems for in vivo siRNA delivery. Aaps J. 2009;11(4):639–652.
  • Kang MR, Yang G, Place RF, et al. Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Cancer Res. 2012;72(19):5069–5079.
  • Kang MR, Yang G, Charisse K, et al. An orthotopic bladder tumor model and the evaluation of intravesical saRNA treatment. J Vis Exp. 2012;65:pii: 4207.
  • Precision Nanosystems. [ cited 2019 Aug 20]. Available from: https://www.precisionnanosystems.com/.
  • Garg S, Heuck G, Ip S, et al. Microfluidics: a transformational tool for nanomedicine development and production. J Drug Target. 2016;24(9):821–835.
  • Zhigaltsev IV, Belliveau N, Hafez I, et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir. 2012;28:3633–3640.
  • Zhigaltsev IV, Tam YK, Leung AKK, et al. Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents. J Liposome Res. 2016;26(2):96–102.
  • Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21.
  • Solomon SD, Adams D, Kristen A, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation. 2019;139(4):431–443.
  • Onpattro prescribing information [cited 2019 Aug 20]. Available from: http://www.alnylam.com/wp-content/uploads/2018/08/ONPATTRO-Prescribing-Information.pdf.
  • Xu C-F WJ. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci. 2015;10(1):1–12.
  • Broering R, Real CI, John MJ, et al. Chemical modifications on siRNAs avoid Toll-like-receptor-mediated activation of the hepatic immune system in vivo and in vitro. Int Immunol. 2014;26(1):35–46.
  • Sato Y, Hashiba K, Sasaki K, et al. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J Control Release. 2019;295:140–152. :
  • Akinc A, Zumbuehl A, Goldberg M, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561–569.
  • Akinc A, Goldberg M, Qin J, et al. Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther. 2009;17(5):872–879.
  • Kauffman KJ, Dorkin JR, Yang JH, et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015;15(11):7300–7306.
  • Fenton OS, Kauffman KJ, McClellan RL, et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv Mater. 2016;28(15):2939–2943.
  • Love KT, Mahon KP, Levins CG, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA. 2010;107(5):1864–1869. .
  • Dong Y, Love KT, Dorkin JR, et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci USA. 2014;111(11):3955–3960.
  • Whitehead K, Dorkin JR, Vegas AJ, et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun. 2014;5:4277.
  • Voutila J, Reebye V, Roberts TC, et al. Development and mechanism of small activating RNA targeting CEBPA, a novel therapeutic in clinical trials for liver cancer. Mol Ther. 2017;25(12):2705–2714.
  • Tolcher AW, Rodrigueza WV, Rasco DW, et al. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;73(2):363–371.
  • Cardia J, Samarsky D, Woolf T. RNAi delivery - self-delivering RNAi compounds. Drug Deliv Tech. 2010;10(7). [cited 2019 Aug 20]. Available from: https://static1.squarespace.com/static/571e115c60b5e99d45aa719d/t/5772a28fb8a79be529e4196a/1467130512659/RNAi+Delivery+DDT.pdf.
  • Chakraborty C, Sharma AR, Sharma G, et al. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–143.
  • Payne JE, Chivukula P, inventors; Arcturus Therapeutics, Inc., assignee. Ionizable cationic lipid for RNA delivery. United States patent US 9,670,152 B2. 2015 May 08.
  • Giraud M Lipid nanoparticles (LNP) in clinical use - have you considered all options? [ cited 2019 Aug 20]. Available from: https://www.cordenpharma.com/wp-content/uploads/2019/05/Lipid-Nanoparticles-LNP-in-Clinical-Use_Dr.-Matthieu-Giraud_Corden-Connect-Edition-2_Dec-2018.pdf.
  • Baenziger JU, Galactose FD. N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell. 1980;22(2):611–620.
  • Springer AD, Dowdy SF. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 2018;28(3):109–118.
  • Boehringer Ingelheim and Dicerna collaboration. [cited 2019 Aug 20]. Available from: https://www.boehringer-ingelheim.us/press-release/boehringer-ingelheim-and-dicerna-announce-collaboration-develop-novel-treatments.
  • Eli L and Dicerna Pharmaceuticals collaboration. [cited 2019 Aug 20]. Available from: https://www.genengnews.com/news/lilly-dicerna-launch-3-7b-rnai-collaboration/.
  • Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 2011;1812:1111–1120. . PMID 21753793.
  • Stenvang J, Petri A, Lindow M, et al. Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012;31:1. PMC 3306207. PMID 22230293.
  • Drury RE, O’Connor D, Pollard AJ. The clinical application of microRNAs in infectious disease. Front Immunol. 2017;8:1182. . PMCID: PMC5622146 PMID: 28993774.
  • DeRosa F, Guild B, Karve S, et al. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther. 2016;23(10):699–707.
  • Pardia N, Tuyishimea S, Muramatsua H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015;217:345–351.
  • Reichmuth AM, Oberli MA, Jaklenec A, et al. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7(5):319–334.
  • Tam YK, Madden TD, Hope MJ. Pieter Cullis’ quest for a lipid-based, fusogenic delivery system for nucleic acid, therapeutics: success with siRNA so what about mRNA? J Drug Target. 2016;24(9):774–779.
  • Tapper K Arcturus therapeutics + Alcobra merger: much gained, nothing lost. [cited 2019 Aug 20]. Available from: https://static.seekingalpha.com/uploads/2017/10/12/6383501-1507782756686703_origin.png.
  • Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11(1):59–67.
  • Servick K This mysterious $2 billion biotech is revealing the secrets behind its new drugs and vaccines. doi: 10.1126/science.aal0686. [cited 2019 Aug 20]. Available from: https://www.sciencemag.org/news/2017/02/mysterious-2-billion-biotech-revealing-secrets-behind-its-new-drugs-and-vaccines.
  • Pei Y, Hancock PJ, Zhang H, et al. Quantitative evaluation of siRNA delivery in vivo. RNA. 2010;16(12):2553–2563.
  • Peer D, Park EJ, Morishita Y, et al. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 2008;319(5863):627–630.
  • Gilleron J, Querbes W, Zeigerer A, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31:638–646.
  • Wittrup A, Ai A, Liu X, et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol. 2015;33:870–876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.