970
Views
67
CrossRef citations to date
0
Altmetric
Review

Micro-nanorobots: important considerations when developing novel drug delivery platforms

, , &
Pages 1259-1275 | Received 20 Jun 2019, Accepted 01 Oct 2019, Published online: 14 Oct 2019

References

  • Mahon E, Salvati A, Bombelli FB, et al. Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J Control Release. 2012;161(2):164–174.
  • Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23(36):H217–H247.
  • Sriraman SK, Aryasomayajula B, Torchilin VP. Barriers to drug delivery in solid tumors. Tissue Barriers. 2014;2(3):e29528.
  • Sitti M. Voyage of the microrobots. Nature. 2009 April 29;458:1121. online.
  • Li J, Esteban-Fernández de Ávila B, Gao W, et al. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Rob. 2017;2(4):eaam6431.
  • Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol. 2016;11(11):941.
  • Wu Z, Troll J, Jeong -H-H, et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv. 2018;4(11):eaat4388.
  • Qiu F, Nelson BJ. Magnetic Helical Micro- and Nanorobots: toward Their Biomedical Applications. Engineering. 2015 March 01;1(1):021–026.
  • Li S, Jiang Q, Liu S, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol. 2018;36(3):258.
  • Kim B, Lee MG, Lee YP, et al. An earthworm-like micro robot using shape memory alloy actuator. Sens Actuators A. 2006 Jan 10;125(2):429–437.
  • Kummer MP, Abbott JJ, Kratochvil BE, et al. OctoMag: an Electromagnetic System for 5-DOF Wireless Micromanipulation. IEEE Trans Rob. 2010;26(6):1006–1017.
  • Zhang L, Abbott JJ, Dong L, et al. Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett. 2009;94(6):064107.
  • Sridhar V, Park B-W, Sitti M. Light-Driven Janus Hollow Mesoporous TiO2–au Microswimmers. Adv Funct Mater. 2018;28(25):1704902.
  • Palagi S, Mark AG, Reigh SY, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots [Article]. Nat Mater. 2016 Feb 15;15:647. online.
  • Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008 Apr;20(2):86–100.
  • Singh AV, Dad Ansari MH, Dayan CB, et al. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials. 2019 Oct 01;219:119394.
  • Kobayashi K, Hirano A, Ohta A, et al. Reduced immunogenicity of β-lactoglobulin by conjugation with carboxymethyl dextran differing in molecular weight. J Agric Food Chem. 2001;49(2):823–831.
  • Ajay Vikram Sing PL, Luch A, Balkrishnan S, et al. Bottom-UP assembly of nanorobots: extending synthetic biology to complex material design. Front Nanosci Nanotechnol. 2019;5:1–2.
  • Alapan Y, Yasa O, Schauer O, et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci Rob. 2018;3(17):eaar4423.
  • Buus S, Sette A, Colon SM, et al. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science. 1987;235(4794):1353–1358.
  • Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26(5):1025–1058.
  • Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469.
  • Scheufele DA, Lewenstein BV. The public and nanotechnology: how citizens make sense of emerging technologies. J Nanopart Res. 2005 December 01;7(6):659–667.
  • Weber M, Steinle H, Golombek S, et al. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotechnol. 2018;6:99.
  • Liu Y, Sun D. Biologically inspired robotics. Boca Raton (FL): CRC Press; 2017.
  • Gao W, Dong R, Thamphiwatana S, et al. Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors. ACS Nano. 2015;9(1):117–123.
  • Singh AV, Laux P, Luch A, et al. Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicol Mech Methods. 2019 June 13;29(5):378–387.
  • Góra A, Pliszka D, Mukherjee S, et al. Tubular tissues and organs of human body—challenges in regenerative medicine. J Nanosci Nanotechnol. 2016;16(1):19–39.
  • Milo R, Phillips R. Cell biology by the numbers. New York (NY): Garland Science; 2015.
  • Iacovacci V, Ricotti L, Sinibaldi E, et al. An intravascular magnetic catheter enables the retrieval of nanoagents from the bloodstream. Adv Sci. 2018;5(9):1800807.
  • Yim S, Gultepe E, Gracias DH, et al. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng. 2014;61(2):513–521.
  • Zuckerman JE, Davis ME. Targeting therapeutics to the glomerulus with nanoparticles. Adv Chronic Kidney Dis. 2013;20(6):500–507.
  • Soto F, Chrostowski R. Frontiers of medical micro/nanorobotics: in vivo applications and commercialization perspectives toward clinical uses [Review]. Front Bioeng Biotechnol. 2018 November 14;6:170.
  • Martel S, Mathieu J-B, Felfoul O, et al. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots. Comput Aided Surg. 2008;13(6):340–352.
  • Nelson BJ, Kaliakatsos IK, Abbott JJ. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng. 2010;12(1):55–85.
  • Wang X, Qin XH, Hu C, et al. 3d printed enzymatically biodegradable soft helical microswimmers. Adv Funct Mater. 2018;28(45):1804107.
  • Chen C, Karshalev E, Li J, et al. Transient micromotors that disappear when no longer needed. ACS Nano. 2016 Nov 22;10(11):10389–10396.
  • Bozuyuk U, Yasa O, Yasa IC, et al. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano. 2018 Sep 25;12(9):9617–9625.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991.
  • Wei M, Gao Y, Li X, et al. Stimuli-responsive polymers and their applications. Polym Chem. 2017;8(1):127–143.
  • de Ávila BE-F, Angsantikul P, Li J, et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat Commun. 2017 Aug 16;8(1):272.
  • Singh AV, Hosseinidoust Z, Park B-W, et al. Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano. 2017;11(10):9759–9769.
  • Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release. 2014;194:1–19.
  • Ajay Vikram Singh MS. Patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers. Adv Healthc Mater. 2016;5:2325–2331.
  • Singh AV, Sitti M. Bacteria-driven particles:patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers (Adv. Healthcare Mater. 18/2016). Adv Healthc Mater. 2016;5(18):2306.
  • Faria M, Bjornmalm M, Thurecht KJ, et al. Minimum information reporting in bio-nano experimental literature. Nat Nanotechnol. 2018 Sep;13(9):777–785.
  • Ornes S. Inner workings: medical microrobots have potential in surgery, therapy, imaging, and diagnostics. Proc Nat Acad Sci. 2017;114(47):12356–12358.
  • Fusco S, Ullrich F, Pokki J, et al. Microrobots: a new era in ocular drug delivery. Expert Opin Drug Deliv. 2014;11(11):1815–1826.
  • Alapan Y, Yasa O, Yigit B, et al. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Ann Rev Control Rob Auton Syst. 2019;2(1):205–230.
  • Kumar N, Verma V, Behera L. Magnetic navigation and tracking of multiple ferromagnetic microrobots inside an arterial phantom setup for MRI guided drug therapy. Biocybernetics Biomed Eng. 2017 Jan 01;37(3):347–356.
  • Zhang S, Scott EY, Singh J, et al. The optoelectronic microrobot: A versatile toolbox for micromanipulation. Proc Nat Acad Sci. 2019;116(30):14823–14828.
  • Yang G-Z, Bellingham J, Dupont PE, et al. The grand challenges of science robotics. Sci Rob. 2018;3(14):eaar7650.
  • Paxton W, Sen A, Mallouk TE, et al. Autonomous moving microstructures. Google Patents; 2009.
  • Sitti M. Mobile microrobotics. Cambridge (MA): MIT Press; 2017.
  • Collins FS, McKusick VA. Implications of the human genome project for medical science. Jama. 2001;285(5):540–544.
  • Vikram Singh A. Editorial (Thematic issue: recent trends in nano-biotechnology reinforcing contemporary pharmaceutical design). Curr Pharm Des. 2016;22(11):1415–1417.
  • Wetherington JD, Pfister M, Banfield C, et al. Model‐based drug development: strengths, weaknesses, opportunities, and threats for broad application of pharmacometrics in drug development. J Clin Pharmacol. 2010;50(S9):31S–46S.
  • Weibel DB, Garstecki P, Ryan D, et al. Microoxen: microorganisms to move microscale loads. Proc Nat Acad Sci. 2005;102(34):11963–11967.
  • Yasa O, Erkoc P, Alapan Y, et al. Microalga-powered microswimmers toward active cargo delivery. Adv Mater. 2018;30(45):1804130.
  • Santomauro G, Singh AV, Park B-W, et al. Incorporation of terbium into a microalga leads to magnetotactic swimmers. Adv Biosyst. 2018;2(12):1800039.
  • Hosseinidoust Z, Mostaghaci B, Yasa O, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016;106:27–44.
  • McCoy WC. Steerable and aimable catheter. Google Patents; 1985.
  • Morimoto TK, Hsieh MH, Okamura AM, editors. Robot guided sheaths (RoGS) for percutaneous access to the pediatric kidney: patient-specific design and preliminary results. ASME 2013 Dynamic Systems and Control Conference, California, USA. October 21-23, 2013; American Society of Mechanical Engineers.
  • Sanhai WR, Sakamoto JH, Canady R, et al. Seven challenges for nanomedicine. Nat Nanotechnol. 2008;3(5):242.
  • Celli JP, Turner BS, Afdhal NH, et al. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc Nat Acad Sci. 2009;106(34):14321–14326.
  • Walker D, Käsdorf BT, Jeong -H-H, et al. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv. 2015;1(11):e1500501.
  • Kong L, Guan J, Pumera M. Micro and nanorobots based sensing and biosensing. Curr Opin Electrochem. 2018;10:174–182.
  • Odell L, Weinberg IN Scalable, massively parallel process for making micro-scale particles. Google Patents; 2018.
  • Natan MJ, Mallouk TE Colloidal rod particles as nanobar codes. Google Patents; 2007.
  • Stonas W, Dietz LJ, Walton ID, et al. Method of manufacture of colloidal rod particles as nanobarcodes. Google Patents; 2005.
  • Schmidt OG, Deneke C Method for producing a microcoil. Google Patents; 2010.
  • Jeong H-H, Lee TC, Fischer P Method for encapsulating a nanostructure, coated nanostructure and use of a coated nanostructure. Google Patents; 2018.
  • Guignot J, Caron E, Beuzón C, et al. Microtubule motors control membrane dynamics of Salmonella-containing vacuoles. J Cell Sci. 2004;117(7):1033–1045.
  • Yao K, Manjare M, Barrett CA, et al. Functional nanostructured “jelly rolls” with nanosheet components. Google Patents; 2015.
  • Percec V, Wilson DA, Leowanawat P, et al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science. 2010;328(5981):1009–1014.
  • Yigit B, Alapan Y, Sitti M. Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms. Adv Sci. 2019;6(6):1801837.
  • Duan H, Zhou J, Lam YC, et al. Method for preparing a magnetic chain structure. Google Patents; 2017.
  • Park B-W, Zhuang J, Yasa O, et al. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano. 2017;11(9):8910–8923.
  • Felfoul O, Mathieu JB, Beaudoin G, et al. In vivo MR-tracking based on magnetic signature selective excitation. IEEE Trans Med Imaging. 2008 Jan;27(1):28–35.
  • Liu T-Y, Hu S-H, Liu T-Y, et al. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir. 2006;22(14):5974–5978.
  • Palima D, Glückstad J. Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photonics Rev. 2013;7(4):478–494.
  • Benaron DA, Parachikov IH Systems and methods for the detection and analysis of in vivo circulating cells, entities, and nanobots. Google Patents; 2008.
  • Olson ES, Orozco J, Wu Z, et al. Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging. Biomaterials. 2013;34(35):8918–8924.
  • Cavalcanti A, Shirinzadeh B, Murphy D, et al. editors. Nanorobots for laparoscopic cancer surgery. 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007), Melbourne, Qld.; 2007; IEEE.
  • Arai K, Honda T. Micromagnetic actuators. Robotica. 1996;14(5):477–481.
  • Solomon N System, methods and apparatuses for integrated circuits for nanorobotics. Google Patents; 2011.
  • Wang J, Zhang L Cellular micromotors and uses thereof. Google Patents; 2017.
  • Wang J, Esener SC, Kagan D, et al. Acoustically triggered nano/micro-scale propulsion devices. Google Patents; 2017.
  • Sanchez S, Pumera M. Nanorobots:the ultimate wireless self‐propelled sensing and actuating devices. Chem–Asian J. 2009;4(9):1402–1410.
  • Gibbs JG, Zhao Y-P. Autonomously motile catalytic nanomotors by bubble propulsion. Appl Phys Lett. 2009;94(16):163104.
  • Medina-Sanchez M, Schmidt OG. Medical microbots need better imaging and control. Nat News. 2017;545(7655):406.
  • Cai D, Carnahan DL Nanospearing for molecular transportation into cells. Google Patents; 2011.
  • Srivastava SK, Medina‐Sánchez M, Koch B, et al. Medibots: dual‐action biogenic microdaggers for single‐cell surgery and drug release. Adv Mater. 2016;28(5):832–837.
  • Song B, Yang R, Xi N, et al. Cellular-level surgery using nano robots. J Lab Autom. 2012;17(6):425–434.
  • Mushtaq F, Guerrero M, Sakar MS, et al. Magnetically driven Bi 2 O 3/BiOCl-based hybrid microrobots for photocatalytic water remediation. J Mater Chem A. 2015;3(47):23670–23676.
  • Kamal RA, Sanni ML, Kanj MY System, method, and nanorobot to explore subterranean geophysical formations. Google Patents; 2015.
  • Wang W, Giltinan J, Zakharchenko S, et al. Dynamic and programmable self-assembly of micro-rafts at the air-water interface. Sci Adv. 2017;3(5):e1602522.
  • Hess H. Self-assembly driven by molecular motors. Soft Matter. 2006;2(8):669–677.
  • Trüper T, Kortschack A, Jähnisch M, et al.,. Transporting cells with mobile microrobots. IEE Proceedings-Nanobiotechnology. 2004;151(4):145–150.
  • Chien C-L, Fan D, Cammarata RC System and method for precision transport, positioning, and assembling of longitudinal nano-structures. Google Patents; 2015.
  • Servantx F, Qiu F, Mazza M, et al. Controlled in vivo swimming of a swarm of bacteria‐like microrobotic flagella. Adv Mater. 2015;27(19):2981–2988.
  • Vikram Singh A, Sitti M. Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr Pharm Des. 2016;22(11):1418–1428.
  • Ma X, Sánchez S. Self-propelling micro-nanorobots: challenges and future perspectives in nanomedicine. Future Med. 2017;12(12):1363–1367.
  • Li T, Chang X, Wu Z, et al. Autonomous collision-free navigation of microvehicles in complex and dynamically changing environments. ACS Nano. 2017;11(9):9268–9275.
  • Troccaz J, Dagnino G, Yang G-Z. Frontiers of medical robotics: from concept to systems to clinical translation. Annu Rev Biomed Eng. 2019;21(1):193–218.
  • Altmann J. Military uses of nanotechnology: perspectives and concerns. Secur Dialogue. 2004;35(1):61–79.
  • Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunnelling microscope. Nature. 1990 April 01;344(6266):524–526.
  • V. Singh A, K. Mehta K. Top-down versus bottom-up nanoengineering routes to design advanced oropharmacological products. Curr Pharm Des. 2016;22(11):1534–1545.
  • Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads. Science. 2012;335(6070):831–834.
  • Ricotti L, Trimmer B, Feinberg AW, et al. Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci Rob. 2017;2(12):eaaq0495.
  • Schuerle S, Vizcarra IA, Moeller J, et al. Robotically controlled microprey to resolve initial attack modes preceding phagocytosis. Sci Rob. 2017;2(2):eaah6094.
  • Jafari S, Mair LO, Weinberg IN, et al. Magnetic drilling enhances intra-nasal transport of particles into rodent brain. J Magn Magn Mater. 2019;469:302–305.
  • Mair LO, Nacev A, Hilaman R, et al. Biofilm disruption with rotating microrods enhances antimicrobial efficacy. J Magn Magn Mater. 2017;427:81–84.
  • Vikram Singh A, Gharat T, Batuwangala M, et al. Three-dimensional patterning in biomedicine: importance and applications in neuropharmacology. J Biomed Mater Res Part B. 2018;106(3):1369–1382.
  • Alcântara CCJ, Kim S, Lee S, et al. 3D Fabrication of fully iron magnetic microrobots. Small. 2019;15(16):1805006.
  • Jeong -H-H, Mark AG, Alarcón-Correa M, et al. Dispersion and shape engineered plasmonic nanosensors [Article]. Nat Commun. 2016 April 19;7:11331. online.
  • Singh AV, Sitti M. Patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers. Adv Healthc Mater. 2016;5(18):2325–2331.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.