246
Views
22
CrossRef citations to date
0
Altmetric
Review

A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections

, &
Pages 1313-1331 | Received 26 Jun 2019, Accepted 13 Nov 2019, Published online: 09 Dec 2019

References

  • Cohen ML. Changing patterns of infectious disease. Nature. 2000;406(6797):762–767.
  • Durkin MJ, Keller M, Butler AM, et al. An assessment of inappropriate antibiotic use and guideline adherence for uncomplicated urinary tract infections. Open Forum Infect Dis. 2018;5(9):1–8.
  • Thakur K, Sharma G, Singh B, et al. Topical drug delivery of anti-infectives employing lipid-based nanocarriers: dermatokinetics as an important tool. Curr Pharm Des. 2018;24(43)::5108–5128.
  • Thakur K, Sharma G, Singh B, et al. Nano-engineered lipid-polymer hybrid nanoparticles of fusidic acid: an investigative study on dermatokinetics profile and MRSA-infected burn wound model. Drug Deliv Transl Res. 2019;9(4):748–763.
  • Russo A, Concia E, Cristini F, et al. Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections. Clin Microbiol Infect. 2016;22:S27–S36.
  • Heal CF, Banks JL, Lepper PD, et al. Topical antibiotics for preventing surgical site infection in wounds healing by primary intention. Cochrane Database Syst Rev. 2016;11:CD011426
  • Taylor PW, Stapleton PD, Luzio JP. New ways to treat bacterial infections. Drug Discov Today. 2002;7(21):1086–1091.
  • Sharma G, Thakur K, Raza K, et al. Nanostructured lipid carriers: a new paradigm in topical delivery for dermal and transdermal applications. Crit Rev Ther Drug Carrier Syst. 2017;34(4):355–386.
  • Popov A, Lademann J, Priezzhev A, et al. Interaction of sunscreen TiO2 nanoparticles with skin and UV light: penetration, protection, phototoxicity. European Conference on Biomedical Optics; 2009: Optical Society of America.
  • Alami-Milani M, Zakeri-Milani P, Valizadeh H, et al. Evaluation of anti-inflammatory impact of dexamethasone-loaded PCL-PEG-PCL micelles on endotoxin-induced uveitis in rabbits. Pharm Dev Technol. 2019;24(6):680–688.
  • Salatin S, Jelvehgari M. Natural Polysaccharide based Nanoparticles for Drug/Gene Delivery. Pharm Sci. 2017;23(2):84–94.
  • Thakur K, Sharma G, Singh B, et al. Nanomedicines in the Treatment of Topical Infectious Disorders. Recent Pat Antiinfect Drug Discov. 2018;13(2):127–150.
  • Thomson RB. Commentary: one small step for the gram stain, one giant leap for clinical microbiology. J Clin Microbiol. 2016;54(6):1416–1417.
  • Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999;63(1):174–229.
  • Kohler T, Weidenmaier C, Peschel A. Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol. 2009;191(13):4482–4484.
  • Chapot-Chartier M-P. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages. Front Microbiol. 2014;5:236–246.
  • Ivask A, Elbadawy A, Kaweeteerawat C, et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 2014;8(1):374–386.
  • Thakur K, Sharma G, Singh B, et al. Cationic-bilayered nanoemulsion of fusidic acid: an investigation on eradication of methicillin-resistant Staphylococcus aureus 33591 infection in burn wound. Nanomedicine. 2018;13(8):825–847.
  • Kidd TJ, Mills G, Sá‐Pessoa J, et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med. 2017;9(4):430–447.
  • Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15–21.
  • Ring J, Eberlein-König B, Schäfer T, et al. Skin surface pH, stratum corneum hydration, trans-epidermal water loss and skin roughness related to atopic eczema and skin dryness in a population of primary school children: clinical report. Acta Derm Venereol. 2000;80:188–191.
  • Esposito S, Bassetti M, Concia E, et al. Diagnosis and management of skin and soft-tissue infections (SSTI). A literature review and consensus statement: an update. J Chem. 2017;29(4):197–214.
  • Azhdarzadeh M, Lotfipour F, Zakeri-Milani P, et al. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria. Adv Pharm Bull. 2012;2(1):17–24.
  • Miesel L, Greene J, Black TA. Microbial genetics: genetic strategies for antibacterial drug discovery. Nat Rev Genet. 2003;4(6):442–456.
  • Li C, Zhang X, Huang X, et al. Preparation and characterization of flexible nanoliposomes loaded with daptomycin, a novel antibiotic, for topical skin therapy. Int J Nanomedicine. 2013;8:1285–1292.
  • Dever LA, Dermody TS. Mechanisms of bacterial resistance to antibiotics. Arch Intern Med. 1991;151(5):886–895.
  • Berkers T, Boiten WA, Absalah S, et al. Compromising human skin in vivo and ex vivo to study skin barrier repair. Biochimica Et Biophysica Acta Mol Cell Biol Lipids. 2019;1864(8):1103–1108.
  • Tang J, He J, Wu P, et al. [Repair of skin and soft tissue defects in extremities with the superior lateral genicular artery perforator flap]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2019;33(4):467–470.
  • Urban E, Stone GG. Impact of EUCAST ceftaroline breakpoint change on the susceptibility of methicillin-resistant Staphylococcus aureus isolates collected from patients with complicated skin and soft tissue infections. Clin Microbiol Infect. 2019;25(11):1429.e1-1429.e4.
  • Breunig M, Burkhamer KJ, Kashiwagi D. Using point-of-care ultrasound: skin and soft tissue infections. JAAPA. 2019;32(4):46–50.
  • Yamakawa S, Hayashida K. Advances in surgical applications of growth factors for wound healing. Burns Trauma. 2019;7:1–10.
  • Mohanty C, Sahoo SK. Curcumin and its topical formulations for wound healing applications. Drug Discov Today. 2017;22(10):1582–1592.
  • Gupta A, Singh S, Kotla NG, et al. Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity. Int J Nanomedicine. 2015;10:171–182.
  • Kodoth AK, Ghate VM, Lewis SA, et al. Pectin-based silver nanocomposite film for transdermal delivery of Donepezil. Int J Biol Macromol. 2019;134:269–279.
  • Maghsoodi M, Rahmani M, Ghavimi H, et al. Fast dissolving sublingual films containing Sumatriptan alone and combined with Methoclopramide: evaluation in vitro drug release and mucosal permeation. Pharm Sci. 2019;22(3):153–163.
  • Lee J, Kwon K, Kim M, et al. Transdermal iontophoresis patch with reverse electrodialysis. Drug Deliv. 2017;24(1):701–706.
  • Caserta F, Brown MB, McAuley WJ. The use of heat and chemical penetration enhancers to increase the follicular delivery of erythromycin to the skin. Eur J Pharm Sci. 2019;132:55–62.
  • Leichtnam ML, Rolland H, Wuthrich P, et al. Impact of antinucleants on transdermal delivery of testosterone from a spray. J Pharm Sci. 2007;96(1):84–92.
  • Calatayud-Pascual MA, Sebastian-Morello M, Balaguer-Fernandez C, et al. Influence of chemical enhancers and iontophoresis on the in vitro transdermal permeation of propranolol: evaluation by dermatopharmacokinetics. Pharmaceutics. 2018;10(4):E265.
  • Dinescu S, Ignat SR, Lazar AD, et al. Efficiency of multiparticulate delivery systems loaded with flufenamic acid designed for burn wound healing applications. J Immunol Res. 2019;11:1–13.
  • Godin B, Touitou E, Rubinstein E, et al. A new approach for treatment of deep skin infections by an ethosomal antibiotic preparation: an in vivo study. J Antimicrob Chemother. 2005;55(6):989–994.
  • Yang SC, Aljuffali IA, Sung CT, et al. Antimicrobial activity of topically-applied soyaethyl morpholinium ethosulfate micelles against Staphylococcus species. Nanomedicine (Lond). 2016;11(6):657–671.
  • Yah CS, Simate GS, Hlangothi P, et al. Nanotechnology and the future of condoms in the prevention of sexually transmitted infections. Ann Afr Med. 2018;17(2):49–57.
  • Heisig M, Lieckfeldt R, Wittum G, et al. Non steady-state descriptions of drug permeation through stratum corneum. I. The biphasic brick-and-mortar model. Pharm Res. 1996;13(3):421–426.
  • Labouta HI, el-Khordagui LK, Kraus T, et al. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale. 2011;3(12):4989–4999.
  • Yokota J, Kyotani S. Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs. J Chin Med Assoc. 2018;81(6):511–519.
  • Cui L, Chen P, Chen S, et al. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal Chem. 2013;85(11):5436–5443.
  • El Badawy AM, Silva RG, Morris B, et al. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45(1):283–287.
  • Sohm B, Immel F, Bauda P, et al. Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics. 2015;15(1):98–113.
  • Wu X, Landfester K, Musyanovych A, et al. Disposition of charged nanoparticles after their topical application to the skin. Skin Pharmacol Physiol. 2010;23(3):117–123.
  • Xia XR, Monteiro-Riviere NA, Riviere JE. Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol. 2010;242(1):29–37.
  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 2006;91(1):159–165.
  • Sheihet L, Chandra P, Batheja P, et al. Tyrosine-derived nanospheres for enhanced topical skin penetration. Int J Pharm. 2008;350(1–2):312–319.
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249.
  • Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128–145.
  • Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem (Int Ed in English). 2013;52(6):1636–1653.
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–182.
  • Song H, Ko K, Oh I, et al. Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cells Mater. 2006;11(1):58.
  • Prema P, Raju R. Fabrication and characterization of silver nanoparticle and its potential antibacterial activity. Biotechnol Bioprocess Eng. 2009;14(6):842–847.
  • Lamana JJ, Slaveykova VI. Silver nanoparticle behaviour in lake water depends on theirsurface coating. Sci Total Environ. 2016;573(2016):946–953.
  • Carter MJ, Tingley-Kelley K, Warriner RA. Silver treatments and silver-impregnated dressings for the healing of leg wounds and ulcers: a systematic review and meta-analysis. Am Acad Dermatol. 2010;63(4):668–679.
  • Fox CL Jr., Modak SM. Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother. 1974;5(6):582–588.
  • Im A-R, Kim JY, Kim H-S, et al. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles. Nanotechnology. 2013;24(39):395102.
  • Nour El Din S, El-Tayeb TA, Abou-Aisha K, et al. In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa. Int J Nanomedicine. 2016;11:1749–1758.
  • Sharifi-Rad J, Hoseini Alfatemi S, Sharifi Rad M, et al. Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant staphylococcus aureus spp. Ann Med Health Sci Res. 2014;4(6):863–868.
  • Ershov BG, Abkhalimov EV, Solovov RD, et al. Gold nanoparticles in aqueous solutions: influence of size and pH on hydrogen dissociative adsorption and Au(iii) ion reduction. Phys Chem Chem Phys. 2016;18(19):13459–13466.
  • Li X, Robinson SM, Gupta A, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 2014;8(10):10682–10686.
  • Sonavane G, Tomoda K, Sano A, et al. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces. 2008;65(1):1–10.
  • Gupta R, Rai B. Effect of size and surface charge of gold nanoparticles on their skin permeability: a molecular dynamics study. Sci Rep. 2017;7:45292.
  • Kalita S, Kandimalla R, Bhowal AC, et al. Functionalization of beta-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci Rep. 2018;8(1):5778.
  • Niska K, Zielinska E, Radomski MW, et al. Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem Biol Interact. 2018;295:38–51.
  • Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, et al. In vitro antimicrobial and in vivo wound healing effect of actinobacterially synthesised nanoparticles of silver, gold and their alloy. RSC Adv. 2017;7(81):51729–51743.
  • Naraginti S, Kumari PL, Das RK, et al. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater Sci Eng C Mater Biol Appl. 2016;62:293–300.
  • Soorbaghi FP, Isanejad M, Salatin S, et al. Bioaerogels: synthesis approaches, cellular uptake, and the biomedical applications. Biomed Pharmacother. 2019;111:964–975.
  • Li Y, Tian Y, Zheng W, et al. Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small. 2017;13:27.
  • Jowkar Z, Farpour N, Koohpeima F, et al. Effect of silver nanoparticles, zinc oxide nanoparticles and titanium dioxide nanoparticles on microshear bond strength to enamel and dentin. J Contemp Dent Pract. 2018;19(11):1404–1411.
  • Seil JT, Webster TJ. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomater. 2011;7(6):2579–2584.
  • Lee JH, Kim YG, Cho MH, et al. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res. 2014;169(12):888–896.
  • Xie Y, He Y, Irwin PL, et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325–2331.
  • Lipovsky A, Tzitrinovich Z, Friedmann H, et al. EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C. 2009;113(36):15997–16001.
  • Surti A, Radha S, Garje S. Study of the antibacterial activity of ZnO nanoparticles. AIP Conf Proc. 2013;1512:1.
  • Pati R, Mehta RK, Mohanty S, et al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine. 2014;10(6):1195–1208.
  • Golbui Daghdari S, Ahmadi M, Dastmalchi Saei H, et al. The effect of ZnO nanoparticles on bacterial load of experimental infectious wounds contaminated with Staphylococcus aureus in mice. Nanomed J. 2017;4(4):232–236.
  • Kumar S, Lakshmanan V-K, Raj M, et al. Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res. 2013;30(2):523–537.
  • Aysa NH, Salman HD. Antibacterial activity of modified zinc oxide nanoparticles against Pseudomonas aeruginosa isolates of burn infections. World Sci News. 2016;33:1–14.
  • Aditya A, Chattopadhyay S, Jha D, et al. Zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin-specific bacteria. ACS Appl Mater Interfaces. 2018;10(18):15401–15411.
  • Azam A, Ahmed AS, Oves M, et al. Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomedicine. 2012;7:6002–6009.
  • Mahmoudian M, Salatin S, Khosroushahi AY. Natural low- and high-density lipoproteins as mighty bio-nanocarriers for anticancer drug delivery. Cancer Chemother Pharmacol. 2018;82(3):371–382.
  • Lboutounne H, Faivre V, Falson F, et al. Characterization of transport of chlorhexidine-loaded nanocapsules through hairless and wistar rat skin. Skin Pharmacol Physiol. 2004;17(4):176–182.
  • Kuchler S, Radowski MR, Blaschke T, et al. Nanoparticles for skin penetration enhancement–a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm. 2009;71(2):243–250.
  • Salatin S. Nanoparticles as potential tools for improved antioxidant enzyme delivery. JACPM. 2018;1(3):65–66.
  • Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed. 2006;45(8):1198–1215.
  • Salatin S, Barar J, Barzegar-Jalali M, et al. An alternative approach for improved entrapment efficiency of hydrophilic drug substance in PLGA nanoparticles by interfacial polymer deposition following solvent displacement. J Undishapur J Nat Pharm Prod. 2018;13:4.
  • Posadowska U, Brzychczy-Wloch M, Pamula E. Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng Biomech. 2015;17(3):41–48.
  • Dave V, Kushwaha K, Yadav RB, et al. Hybrid nanoparticles for the topical delivery of norfloxacin for the effective treatment of bacterial infection produced after burn. J Microencapsul. 2017;34(4):351–365.
  • Kalita S, Devi B, Kandimalla R, et al. Chloramphenicol encapsulated in poly-epsilon-caprolactone-pluronic composite: nanoparticles for treatment of MRSA-infected burn wounds. Int J Nanomedicine. 2015;10:2971–2984.
  • Chong EJ, Phan TT, Lim IJ, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3(3):321–330.
  • Liu M, Luo G, Wang Y, et al. Optimization and integration of nanosilver on polycaprolactone nanofibrous mesh for bacterial inhibition and wound healing in vitro and in vivo. Int J Nanomedicine. 2017;12:6827–6840.
  • Jilsha G, Viswanad V. Nanosponge loaded hydrogel of cephalexin for topical delivery. In-vitro. 2015;4(13100):7.13–95.836.
  • Huang M, Ma Z, Khor E, et al. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res. 2002;19(10):1488–1494.
  • Tan Q, Liu W, Guo C, et al. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomedicine. 2011;6:1621–1630.
  • Qi L, Xu Z, Jiang X, et al. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693–2700.
  • Saha P, Goyal AK, Rath G. Formulation and evaluation of chitosan-based ampicillin trihydrate nanoparticles. Trop J Pharm Res. 2010;9(5):483–488.
  • Costa EM, Silva S, Veiga M, et al. Exploring chitosan nanoparticles as effective inhibitors of antibiotic resistant skin microorganisms - From in vitro to ex vitro testing. Carbohydr Polym. 2018;201:340–346.
  • Mirnejad R, Jahromi M, Ali M, et al. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of staphylococcus aureus and pseudomonas aeruginosa in vivo. Iran J Biotechnol. 2014;12(3):1–8.
  • Bhawana, Basniwal RK, Buttar HS, et al. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem. 2011;59(5):2056–2061.
  • Friedman AJ, Phan J, Schairer DO, et al. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Investig Dermatol. 2013;133(5):1231–1239.
  • Alami-Milani M, Zakeri-Milani P, Valizadeh H, et al. Evaluation of anti-inflammatory impact of dexamethasone-loaded PCL-PEG-PCL micelles on endotoxin-induced uveitis in rabbits. Pharm Dev Technol. 2019;20:1–9.
  • Roebrock K, Wolf M, Bovens S, et al. Inhibition of benzalkonium chloride-induced skin inflammation in mice by an indol-1-ylpropan-2-one inhibitor of cytosolic phospholipase A2 alpha. Br J Dermatol. 2012;166(2):306–316.
  • Ganeshnarayan K, Shah SM, Libera MR, et al. Poly-N-acetylglucosamine matrix polysaccharide impedes fluid convection and transport of the cationic surfactant cetylpyridinium chloride through bacterial biofilms. Appl Environ Microbiol. 2009;75(5):1308–1314.
  • Wen CJ, Yen TC, Al-Suwayeh SA, et al. In vivo real-time fluorescence visualization and brain-targeting mechanisms of lipid nanocarriers with different fatty ester: oilratios. Nanomedicine (Lond). 2011;6(9):1545–1559.
  • Chiappetta DA, Degrossi J, Teves S, et al. Triclosan-loaded poloxamine micelles for enhanced topical antibacterial activity against biofilm. Eur J Pharm Biopharm. 2008;69(2):535–545.
  • Yu H-Y, Liao H-M. Triamcinolone permeation from different liposome formulations through rat skin in vitro. Int J Pharm. 1996;127(1):1–7.
  • El Maghraby GM, Williams AC. Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin Drug Deliv. 2009;6(2):149–163.
  • Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release. 1994;30(1):1–15.
  • Heydari S, Ghanbarzadeh S, Anoush B, et al. Nanoethosomal formulation of gammaoryzanol for skin-aging protection and wrinkle improvement: a histopathological study. Drug Dev Ind Pharm. 2017;43(7):1154–1162.
  • Hasanpouri A, Lotfipour F, Ghanbarzadeh S, et al. Improvement of dermal delivery of tetracycline using vesicular nanostructures. Res Pharm Sci. 2018;13(5):385–393.
  • Elron-Gross I, Glucksam Y, Margalit R. Liposomal dexamethasone-diclofenac combinations for local osteoarthritis treatment. Int J Pharm. 2009;376(1–2):84–91.
  • Drulis-Kawa Z, Gubernator J, Dorotkiewicz-Jach A, et al. A comparison of the in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cell Mol Biol Lett. 2006;11(3):360–375.
  • Marwah M, Perrie Y, Badhan RKS, et al. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J Liposome Res. 2019;22:1–42.
  • Shanmugam S, Song CK, Nagayya-Sriraman S, et al. Physicochemical characterization and skin permeation of liposome formulations containing clindamycin phosphate. Arch Pharm Res. 2009;32(7):1067–1075.
  • Gharib A, Faezizadeh Z, Godarzee M. In vitro and in vivo activities of ticarcillin-loaded nanoliposomes with different surface charges against Pseudomonas aeruginosa (ATCC 29248). Daru. 2012;20(1):41.
  • Chiang B, Essick E, Ehringer W, et al. Enhancing skin wound healing by direct delivery of intracellular adenosine triphosphate. Am J Surg. 2007;193(2):213–218.
  • Carneiro G, Santos DC, Oliveira MC, et al. Topical delivery and in vivo antileishmanial activity of paromomycin-loaded liposomes for treatment of cutaneous leishmaniasis. J Liposome Res. 2010 Mar;20(1):16–23.
  • Marrink SJ, Mark AE. The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc. 2003;125(37):11144–11145.
  • Haluska CK, Riske KA, Marchi-Artzner V, et al. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc Natl Acad Sci U S A. 2006;103(43):15841–15846.
  • Sekine Y, Moritani Y, Ikeda-Fukazawa T, et al. A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system. Adv Healthc Mater. 2012;1(6):722–728.
  • Michel R, Plostica T, Abezgauz L, et al. Control of the stability and structure of liposomes by means of nanoparticles. Soft Matter. 2013;9(16):4167–4177.
  • Lee JH, Oh H, Baxa U, et al. Biopolymer-connected liposome networks as injectable biomaterials capable of sustained local drug delivery. Biomacromolecules. 2012;13(10):3388–3894.
  • Gao W, Vecchio D, Li J, et al. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano. 2014;8(3):2900–2907.
  • Church D, Elsayed S, Reid O, et al. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403–434.
  • Al Shuwaili AH, Rasool BK, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm. 2016;102:101–114.
  • Hassanpour Aghdam M, Ghanbarzadeh S, Javadzadeh Y, et al. Aggregated Nanotransfersomal Dry Powder Inhalation of Itraconazole for Pulmonary Drug Delivery. Adv Pharm Bull. 2016;6(1):57–64.
  • Cevc G, Blume G, Schätzlein A. Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo. J Control Release. 1997;45(3):211–226.
  • Ahmed TA. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: plackett-Burman design and characterization. J Liposome Res. 2015;25(1):1–10.
  • Duangjit S, Obata Y, Sano H, et al. Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol Pharm Bull. 2014;37(2):239–247.
  • Abdellatif AA, Tawfeek HM. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS PharmSciTech. 2016;17(5):1067–1074.
  • El Maghraby GM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196(1):63–74.
  • Zheng WS, Fang XQ, Wang LL, et al. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm. 2012;436(1–2):291–298.
  • Alvi IA, Madan J, Kaushik D, et al. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anticancer Drugs. 2011;22(8):774–782.
  • Malakar J, Sen SO, Nayak AK, et al. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J. 2012;20(4):355–363.
  • Jones MN. Use of liposomes to deliver bactericides to bacterial biofilms. Methods Enzymol. 2005;391:211–228.
  • Kirjavainen M, Monkkonen J, Saukkosaari M, et al. Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J Control Release. 1999;58(2):207–214.
  • Darwhekar G, Jain DK, Choudhary A. Elastic liposomes for delivery of neomycin sulphate in deep skin infection. Asian J Pharm Sci. 2012;7:230–240.
  • Rukavina Z, Segvic Klaric M, Filipovic-Grcic J, et al. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections. Int J Pharm. 2018;553(1–2):109–119.
  • Gupta A, Aggarwal G, Singla S, et al. Transfersomes: a novel vesicular carrier for enhanced transdermal delivery of sertraline: development, characterization, and performance evaluation. Sci Pharm. 2012;80(4):1061–1080.
  • Godin B, Touitou E. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J Control Release. 2004;94(2–3):365–379.
  • Abdellatif AA, Tawfeek HM. Erratum to: transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS PharmSciTech. 2016;17(6):1507.
  • Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: an overview. J Adv Pharm Technol Res. 2010;1(3):274–282.
  • Barupal AK, Gupta V, Ramteke S. Preparation and characterization of ethosomes for topical delivery of aceclofenac. Indian J Pharm Sci. 2010;72(5):582–586.
  • Zhai Y, Xu R, Wang Y, et al. Ethosomes for skin delivery of ropivacaine: preparation, characterization and ex vivo penetration properties. J Liposome Res. 2015;25(4):316–324.
  • Rakesh R, Anoop KR. Formulation and optimization of nano-sized ethosomes for enhanced transdermal delivery of cromolyn sodium. J Pharm Bioallied Sci. 2012;4(4):333–340.
  • Godin B, Touitou E. Erythromycin ethosomal systems: physicochemical characterization and enhanced antibacterial activity. Curr Drug Deliv. 2005;2(3):269–275.
  • Lei W, Yu C, Lin H, et al. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharm. 2013;8(6):336–345.
  • Fang JY, Yu SY, Wu PC, et al. In vitro skin permeation of estradiol from various proniosome formulations. Int J Pharm. 2001;215(1–2):91–99.
  • Vyas SP, Venkatesan N. Poly(phthaloyl-L-lysine)-coated multilamellar vesicles for controlled drug delivery: in vitro and in vivo performance evaluation. Pharm Acta Helv. 1999;74(1):51–58.
  • Arafa MG, Ghalwash D, El-Kersh DM, et al. Propolis-based niosomes as oromuco-adhesive films: A randomized clinical trial of a therapeutic drug delivery platform for the treatment of oral recurrent aphthous ulcers. Sci Rep. 2018;8(1):18056.
  • Sohrabi S, Haeri A, Mahboubi A, et al. Chitosan gel-embedded moxifloxacin niosomes: an efficient antimicrobial hybrid system for burn infection. Int J Biol Macromol. 2016;85:625–633.
  • Budhiraja A, Dhingra G. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. Drug Deliv. 2015;22(6):723–730.
  • Patel J, Ketkar S, Patil S, et al. Potentiating antimicrobial efficacy of propolis through niosomal-based system for administration. Integr Med Res. 2015;4(2):94–101.
  • Cacciatore I, Ciulla M, Fornasari E, et al. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv. 2016;13(8):1121–1131.
  • Soltani S, Rafiei A, Ramezani Z, et al. Evaluation of the hydatid cyst membrane permeability of albendazole and albendazole sulfoxide-loaded solid lipid nanoparticles. Jundishapur J Nat Pharm Prod. 2017;12(2):e34723.
  • Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289–300.
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Schafer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59(6):427–443.
  • Badia JM, Casey AL, Petrosillo N, et al. Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. J Hosp Infect. 2017;96(1):1–15.
  • Kakadia PG, Conway BR. Solid lipid nanoparticles for targeted delivery of triclosan into skin for infection prevention. J Microencapsul. 2018;35(7–8):695–704.
  • Adibhesami M, Ahmadi M, Farshid AA, et al. Effects of silver nanoparticles on Staphylococcus aureus contaminated open wounds healing in mice: an experimental study. Vet Res Forum. 2017;8(1):23–28.
  • Escarcega-Gonzalez CE, Garza-Cervantes JA, Vazquez-Rodriguez A, et al. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int J Nanomedicine. 2018;13:2349–2363.
  • Lu B, Ye H, Shang S, et al. Novel wound dressing with chitosan gold nanoparticles capped with a small molecule for effective treatment of multiantibiotic-resistant bacterial infections. Nanotechnology. 2018;29(42):425603.
  • Chhibber S, Kaur J, Kaur S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front Microbiol. 2018;9:561.
  • Park H, Lee J, Jeong S, et al. Lipase‐sensitive transfersomes based on photosensitizer/polymerizable lipid conjugate for selective antimicrobial photodynamic therapy of acne. Adv Healthc Mater. 2016;5(24):3139–3147.
  • Chhibber S, Shukla A, Kaur S. Transfersomal phage cocktail is an effective treatment against methicillin-resistant Staphylococcus aureus-mediated skin and soft tissue infections. Antimicrob Agents Chemother. 2017;61(10):e02146–16.
  • Abdelaziz AA, Elbanna TE, Sonbol FI, et al. Optimization of niosomes for enhanced antibacterial activity and reduced bacterial resistance: in vitro and in vivo evaluation. Expert Opin Drug Deliv. 2015;12(2):163–180.
  • Kalhapure RS, Sikwal DR, Rambharose S, et al. Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. Nanomed Nanotechnol Biol Med. 2017;13(6):2067–2077.
  • Haghighi P, Ghaffari S, Arbabi Bidgoli S, et al. Preparation, characterization and evaluation of Ginkgo biloba solid lipid nanoparticles. Nanomed Res J. 2018;3(2):71–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.