631
Views
56
CrossRef citations to date
0
Altmetric
Review

Recent advances in follicular drug delivery of nanoparticles

&
Pages 49-60 | Received 22 Aug 2019, Accepted 29 Nov 2019, Published online: 12 Dec 2019

References

  • Rancan F, Vogt A. Getting under the skin: what is the potential of the transfollicular route in drug delivery? Ther Deliv. 2014;5:875–877.
  • Borgheti-Cardoso LN, Angelo T, Gelfuso GM, et al. Topical and transdermal delivery of drug-loaded nano/microsystems with application of physical enhancement techniques. Curr Drug Targets. 2016;17:1545–1559.
  • Hadgraft J, Lane ME. Advanced topical formulations (ATF). Int J Pharm. 2016;514:52–57.
  • Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9:165–169.
  • Patzelt A, Richter H, Knorr F, et al. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150:45–48.
  • Sznitowska M, Janicki S, Williams AC. Intracellular or intercellular localization of the polar pathway of penetration across stratum corneum. J Pharm Sci. 1998;87:1109–1114.
  • Barbero AM, Frasch HF. Transcellular route of diffusion through stratum corneum: results from finite element models. J Pharm Sci. 2006;95:2186–2194.
  • Kasting GB, Barai ND, Wang TF, et al. Mobility of water in human stratum corneum. J Pharm Sci. 2003;92:2326–2340.
  • Zhang Z, Tsai PC, Ramezanli T, et al. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:205–218.
  • Alvarez-Roman R, Naik A, Kalia YN, et al. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res. 2004;21:1818–1825.
  • Akomeah FK, Martin GP, Muddle AG, et al. Effect of abrasion induced by a rotating brush on the skin permeation of solutes with varying physicochemical properties. Eur J Pharm Biopharm. 2008;68:724–734.
  • Cormier M, Johnson B, Ameri M, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004;97:503–511.
  • Goyal R, Macri LK, Kaplan HM, et al. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 2016;240:77–92.
  • Zhang W, Gao J, Zhu Q, et al. Penetration and distribution of PLGA nanoparticles in the human skin treated with microneedles. Int J Pharm. 2010;402:205–212.
  • Lai F, Pireddu R, Corrias F, et al. Nanosuspension improves tretinoin photostability and delivery to the skin. Int J Pharmaceut. 2013;458:104–109.
  • Vogt A, Wischke C, Neffe AT, et al. Nanocarriers for drug delivery into and through the skin - do existing technologies match clinical challenges? J Control Release. 2016;242:3–15.
  • Limcharoen B, Toprangkobsin P, Banlunara W, et al. Increasing the percutaneous absorption and follicular penetration of retinal by topical application of proretinal nanoparticles. Eur J Pharm Biopharm. 2019;139:93–100.
  • Fang CL, Aljuffali IA, Li YC, et al. Delivery and targeting of nanoparticles into hair follicles. Ther Deliv. 2014;5:991–1006.
  • Lademann J, Richter H, Teichmann A, et al. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66:159–164.
  • Lademann J, Richter H, Schaefer UF, et al. Hair follicles - a long-term reservoir for drug delivery. Skin Pharmacol Physiol. 2006;19:232–236.
  • Wu X, Griffin P, Price GJ, et al. Preparation and in vitro evaluation of topical formulations based on polystyrene-poly-2-hydroxyl methacrylate nanoparticles. Mol Pharm. 2009;6:1449–1456.
  • Wu X, Price GJ, Guy RH. Disposition of nanoparticles and an associated lipophilic permeant following topical application to the skin. Mol Pharm. 2009;6:1441–1448.
  • Kimura E, Kawano Y, Todo H, et al. Measurement of skin permeation/penetration of nanoparticles for their safety evaluation. Biol Pharm Bull. 2012;35:1476–1486.
  • Rancan F, Papakostas D, Hadam S, et al. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res. 2009;26:2027–2036.
  • Lauterbach A, Muller-Goymann CC. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm. 2015;97:152–163.
  • Wissing SA, Muller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity–in vivo study. Eur J Pharm Biopharm. 2003;56:67–72.
  • Andrade LM, de Fatima Reis C, Maione-Silva L, et al. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2014;88:40–47.
  • Lombardi Borgia S, Regehly M, Sivaramakrishnan R, et al. Lipid nanoparticles for skin penetration enhancement-correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J Control Release. 2005;110:151–163.
  • Camera E, Ludovici M, Galante M, et al. Comprehensive analysis of the major lipid classes in sebum by rapid resolution high-performance liquid chromatography and electrospray mass spectrometry. J Lipid Res. 2010;51:3377–3388.
  • Lauterbach A, Mueller-Goymann CC. Development, formulation, and characterization of an adapalene-loaded solid lipid microparticle dispersion for follicular penetration. Int J Pharm. 2014;466:122–132.
  • Lin YK, Al-Suwayeh SA, Leu YL, et al. Squalene-containing nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of diphencyprone for treating alopecia areata. Pharm Res. 2013;30:435–446.
  • Jung S, Otberg N, Thiede G, et al. Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J Invest Dermatol. 2006;126:1728–1732.
  • Zhang LW, Yu WW, Colvin VL, et al. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol. 2008;228:200–211.
  • Tang L, Zhang C, Song G, et al. In vivo skin penetration and metabolic path of quantum dots. Sci China Life Sci. 2013;56:181–188.
  • Filipe P, Silva JN, Silva R, et al. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol. 2009;22:266–275.
  • Lekki J, Stachura Z, Dabros W, et al. On the follicular pathway of percutaneous uptake of nanoparticles: ion microscopy and autoradiography studies. Nucl Instrum Meth B. 2007;260:174–177.
  • Darvin ME, Konig K, Kellner-Hoefer M, et al. Safety assessment by multiphoton fluorescence/second harmonic generation/hyper-Rayleigh scattering tomography of ZnO nanoparticles used in cosmetic products. Skin Pharmacol Physiol. 2012;25:219–226.
  • Baroli B, Ennas MG, Loffredo F, et al. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127:1701–1712.
  • Rogers GE. Hair follicle differentiation and regulation. Int J Dev Biol. 2004;48:163–170.
  • Wosicka H, Cal K. Targeting to the hair follicles: current status and potential. J Dermatol Sci. 2010;57:83–89.
  • Krause K, Foitzik K. Biology of the hair follicle: the basics. Semin Cutan Med Surg. 2006;25:2–10.
  • Vogt A, Blume-Peytavi U. Biology of the human hair follicle. New knowledge and the clinical significance. Hautarzt. 2003;54:692–698.
  • Meidan VM, Bonner MC, Michniak BB. Transfollicular drug delivery–is it a reality? Int J Pharm. 2005;306:1–14.
  • Christoph T, Muller-Rover S, Audring H, et al. The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol. 2000;142:862–873.
  • Paus R, Nickoloff BJ, Ito T. A ‘hairy’ privilege. Trends Immunol. 2005;26:32–40.
  • Otberg N, Richter H, Knuttel A, et al. Laser spectroscopic methods for the characterization of open and closed follicles. Laser Phys Lett. 2004;1:46–49.
  • Patzelt A, Lademann J. Drug delivery to hair follicles. Expert Opin Drug Deliv. 2013;10:787–797.
  • Blume-Peytavi U, Vogt A. Human hair follicle: reservoir function and selective targeting. Br J Dermatol. 2011;165(Suppl 2):13–17.
  • Mathes C, Brandner JM, Laue M, et al. Tight junctions form a barrier in porcine hair follicles. Eur J Cell Biol. 2016;95:89–99.
  • Zorn-Kruppa M, Vidal YSS, Houdek P, et al. Tight Junction barriers in human hair follicles - role of claudin-1. Sci Rep. 2018;8:12800.
  • Lademann J, Patzelt A, Richter H, et al. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt. 2009;14:021014.
  • Radtke M, Patzelt A, Knorr F, et al. Ratchet effect for nanoparticle transport in hair follicles. Eur J Pharm Biopharm. 2017;116:125–130.
  • Meidan VM. Methods for quantifying intrafollicular drug delivery: a critical appraisal. Expert Opin Drug Deliv. 2010;7:1095–1108.
  • Hueber F, Besnard M, Schaefer H, et al. Percutaneous absorption of estradiol and progesterone in normal and appendage-free skin of the hairless rat: lack of importance of nutritional blood flow. Skin Pharmacol. 1994;7:245–256.
  • Tenjarla SN, Kasina R, Puranajoti P, et al. Synthesis and evaluation of N-acetylprolinate esters - novel skin penetration enhancers. Int J Pharm. 1999;192:147–158.
  • Essa EA, Bonner MC, Barry BW. Human skin sandwich for assessing shunt route penetration during passive and iontophoretic drug and liposome delivery. J Pharm Pharmacol. 2002;54:1481–1490.
  • Horita D, Todo H, Sugibayashi K. Analysis of the pretreatment effect of ethanol on the stratum corneum- and hair follicular-penetration of drugs using the hair follicle-plugging method. Chem Pharm Bull (Tokyo). 2014;62:578–585.
  • Trauer S, Patzelt A, Otberg N, et al. Permeation of topically applied caffeine through human skin–a comparison of in vivo and in vitro data. Br J Clin Pharmacol. 2009;68:181–186.
  • Teichmann A, Otberg N, Jacobi U, et al. Follicular penetration: development of a method to block the follicles selectively against the penetration of topically applied substances. Skin Pharmacol Physiol. 2006;19:216–223.
  • Horita D, Yoshimoto M, Todo H, et al. Analysis of hair follicle penetration of lidocaine and fluorescein isothiocyanate-dextran 4 kDa using hair follicle-plugging method. Drug Dev Ind Pharm. 2014;40:345–351.
  • Trauer S, Lademann J, Knorr F, et al. Development of an in vitro modified skin absorption test for the investigation of the follicular penetration pathway of caffeine. Skin Pharmacol Physiol. 2010;23:320–327.
  • Abdulmajed K, Heard CM. Topical delivery of retinyl ascorbate. 3. Influence of follicle sealing and skin stretching. Skin Pharmacol Physiol. 2008;21:46–49.
  • Blume-Peytavi U, Massoudy L, Patzelt A, et al. Follicular and percutaneous penetration pathways of topically applied minoxidil foam. Eur J Pharm Biopharm. 2010;76:450–453.
  • Otberg N, Patzelt A, Rasulev U, et al. The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol. 2008;65:488–492.
  • Otberg N, Teichmann A, Rasuljev U, et al. Follicular penetration of topically applied caffeine via a shampoo formulation. Skin Pharmacol Physiol. 2007;20:195–198.
  • Teichmann A, Jacobi U, Ossadnik M, et al. Differential stripping: determination of the amount of topically applied substances penetrated into the hair follicles. J Invest Dermatol. 2005;125:264–269.
  • Otberg N, Richter H, Schaefer H, et al. Visualization of topically applied fluorescent dyes in hair follicles by laser scanning microscopy. Laser Phys. 2003;13:761–764.
  • Fabin B, Touitou E. Localization of lipophilic molecules penetrating rat skin invivo by quantitative autoradiography. Int J Pharmaceut. 1991;74:59–65.
  • Schleusener J, Carrer V, Patzelt A, et al. Confocal Raman imaging of skin sections containing hair follicles using classical least squares regression and multivariate curve resolution-alternating least squares. Quantum Electron. 2019;49:6–12.
  • Grant CA, Twigg PC, Baker R, et al. Tattoo ink nanoparticles in skin tissue and fibroblasts. Beilstein J Nanotechnol. 2015;6:1183–1191.
  • Graf C, Meinke M, Gao Q, et al. Qualitative detection of single submicron and nanoparticles in human skin by scanning transmission x-ray microscopy. J Biomed Opt. 2009;14:021015.
  • Patzelt A, Richter H, Buettemeyer R, et al. Differential stripping demonstrates a significant reduction of the hair follicle reservoir in vitro compared to in vivo. Eur J Pharm Biopharm. 2008;70:234–238.
  • Bronaugh RL, Stewart RF, Congdon ER. Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol Appl Pharmacol. 1982;62:481–488.
  • Scott RC, Corrigan MA, Smith F, et al. The influence of skin structure on permeability: an intersite and interspecies comparison with hydrophilic penetrants. J Invest Dermatol. 1991;96:921–925.
  • Mangelsdorf S, Vergou T, Sterry W, et al. Comparative study of hair follicle morphology in eight mammalian species and humans. Skin Res Technol. 2014;20:147–154.
  • Jung EC, Maibach HI. Animal models for percutaneous absorption. J Appl Toxicol. 2015;35:1–10.
  • Simon GA, Maibach HI. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations - An overview. Skin Pharmacol Appl. 2000;13:229–234.
  • Patzelt A, Mak WC, Jung S, et al. Do nanoparticles have a future in dermal drug delivery? J Control Release. 2017;246:174–182.
  • Pereira MN, Ushirobira CY, Cunha-Filho MS, et al. Nanotechnology advances for hair loss. Ther Deliv. 2018;9:593–603.
  • Takeuchi I, Hida Y, Makino K. Minoxidil-encapsulated poly(L-lactide-co-glycolide) nanoparticles with hair follicle delivery properties prepared using W/O/W solvent evaporation and sonication. Bio-Med Mater Eng. 2018;29:217–228.
  • Kandekar SG, Del Rio-Sancho S, Lapteva M, et al. Selective delivery of adapalene to the human hair follicle under finite dose conditions using polymeric micelle nanocarriers. Nanoscale. 2018;10:1099–1110.
  • Matos BN, Reis TA, Gratieri T, et al. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. Int J Biol Macromol. 2015;75:225–229.
  • Vogt A, Hadam S, Deckert I, et al. Hair follicle targeting, penetration enhancement and Langerhans cell activation make cyanoacrylate skin surface stripping a promising delivery technique for transcutaneous immunization with large molecules and particle-based vaccines. Exp Dermatol. 2015;24:73–75.
  • Lademann J, Richter H, Knorr F, et al. Triggered release of model drug from AuNP-doped BSA nanocarriers in hair follicles using IRA radiation. Acta Biomater. 2016;30:388–396.
  • Mak WC, Patzelt A, Richter H, et al. Triggering of drug release of particles in hair follicles. J Control Release. 2012;160:509–514.
  • Brazel CS. Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res. 2009;26:644–656.
  • Huang SL. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2008;60:1167–1176.
  • Jung S, Nagel G, Giulbudagian M, et al. Temperature-enhanced follicular penetration of thermoresponsive nanogels. Z Phys Chem. 2018;232:805–817.
  • Dimde M, Sahle FF, Wycisk V, et al. Synthesis and validation of functional nanogels as pH-sensors in the hair follicle. Macromol Biosci. 2017;17:1600505.
  • Dong P, Sahle FF, Lohan SB, et al. pH-sensitive Eudragit(R) L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release. 2019;295:214–222.
  • Zhai X, Lademann J, Keck CM, et al. Nanocrystals of medium soluble actives–novel concept for improved dermal delivery and production strategy. Int J Pharm. 2014;470:141–150.
  • Kim DG, Jeong YI, Choi C, et al. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int J Pharm. 2006;319:130–138.
  • Jain AK, Jain A, Garg NK, et al. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf B Biointerfaces. 2014;121:222–229.
  • Sallam MA, Marin Bosca MT. Mechanistic analysis of human skin distribution and follicular targeting of adapalene-loaded biodegradable nanospheres with an insight into hydrogel matrix influence, in vitro skin irritation, and in vivo tolerability. J Pharm Sci. 2017;106:3140–3149.
  • Madheswaran T, Baskaran R, Sundaramoorthy P, et al. Enhanced skin permeation of 5alpha-reductase inhibitors entrapped into surface-modified liquid crystalline nanoparticles. Arch Pharm Res. 2015;38:534–542.
  • Mathes C, Melero A, Conrad P, et al. Nanocarriers for optimizing the balance between interfollicular permeation and follicular uptake of topically applied clobetasol to minimize adverse effects. J Control Release. 2016;223:207–214.
  • Abdel-Mottaleb MM, Moulari B, Beduneau A, et al. Nanoparticles enhance therapeutic outcome in inflamed skin therapy. Eur J Pharm Biopharm. 2012;82:151–157.
  • Hansen S, Lehr CM. Transfollicular delivery takes root: the future for vaccine design? Expert Rev Vaccines. 2014;13:5–7.
  • Bellefroid C, Lechanteur A, Evrard B, et al. Lipid gene nanocarriers for the treatment of skin diseases: current state-of-the-art. Eur J Pharm Biopharm. 2019;137:95–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.