332
Views
5
CrossRef citations to date
0
Altmetric
Review

Inhalable dry powders of rifampicin highlighting potential and drawbacks in formulation development for experimental tuberculosis aerosol therapy

, &
Pages 305-322 | Received 18 Jun 2019, Accepted 21 Jan 2020, Published online: 04 Feb 2020

References

  • Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. nature. 1998;396:537–544.
  • Tattevin P, Casalino E, Fleury L, et al. The validity of medical history, classic symptoms, and chest radiographs in predicting pulmonary tuberculosis. Chest. 1999;115(5):1248–1253.
  • World Health Organization. Global tuberculosis report 2019. Geneva; 2019.
  • Nahid P, Dorman SE, Alipanah N, et al. Executive summary: official American thoracic society/centers for disease control and prevention/infectious diseases society of america clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7):853–867.
  • Guirado E, Schlesinger LS. Modeling the Mycobacterium tuberculosis Granuloma – the critical battlefield in host immunity and disease. Front Immunol. 2013;4:1–7.
  • Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol. 2014;12(3):159–167.
  • Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications: physiological factors affecting the effectiveness of inhaled drugs. Br J Clin Pharmacol. 2003;56(6):588–599.
  • Lee W-H, Loo C-Y, Traini D, et al. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci. 2015;10(6):481–489.
  • Newman SP. Principles of metered-dose inhaler design. Respir CARE. 2005;50(9):1177–1190.
  • Berkenfeld K, Lamprecht A, McConville JT. Devices for dry powder drug delivery to the lung. AAPS PharmSciTech. 2015;12:479–490.
  • Khadka P, Dummer J, Hill PC, et al. Considerations in preparing for clinical studies of inhaled rifampicin to enhance tuberculosis treatment. Int J Pharm. 2018;548(1):244–254.
  • Maggi N, Pasqualucci CR, Ballotta R, et al. Rifampicin: a new orally active rifamycin. Chemotherapy. 1966;11(5):285–292.
  • Henwood SQ, Liebenberg W, Tiedt LR, et al. Characterization of the solubility and dissolution properties of several new rifampicin polymorphs, solvates, and hydrates. Drug Dev Ind Pharm. 2001;27(10):1017–1030.
  • Son Y-J, McConville JT. A new respirable form of rifampicin. Eur J Pharm Biopharm. 2011;78(3):366–376.
  • Li J Supramolecular modification of selected antitubercular drugs. Inaugural Dissertation. Cape town. (2010).
  • Gadret M, Goursolle M, Leger JM, et al. Structure cristalline de la rifampicine C43N4O12H58.5H2O. Acta Crystallogr B. 1975;31(5):1454–1462.
  • de Villiers MM, Caira MR, Li J, et al. Crystallization of toxic glycol solvates of rifampin from glycerin and propylene glycol contaminated with ethylene glycol or diethylene glycol. Mol Pharm. 2011;8(3):877–888.
  • Wicher B, Pyta K, Przybylski P, et al. Solvates of zwitterionic rifampicin: recurring packing motifs via nonspecific interactions. Cryst Growth Des. 2018;18(2):742–754.
  • Pelizza G, Nebuloni M, Ferrari P. et al. Polymorphism of rifampicin. Il Farmaco. 1977;32(7):471–480.
  • Loos U, Musch E, Jensen JC, et al. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr. 1985;63(23):1205–1211.
  • Niemi M, Backman JT, Fromm MF, et al. Pharmacokinetic interactions with rifampicin. Clin Pharmacokinet. 2003;42(9):819–850.
  • Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191(9):1058–1065.
  • Boeree MJ, Heinrich N, Aarnoutse R, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17(1):39–49.
  • Peloquin CA, Velásquez GE, Lecca L, et al. Pharmacokinetic evidence from the HIRIF trial to support increased doses of rifampin for tuberculosis. Antimicrob Agents Chemother. 2017;61(8):e00038–17.
  • Forget EJ, Menzies D. Adverse reactions to first-line antituberculosis drugs. Expert Opin Drug Saf. 2006;5(2):231–249.
  • Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327–341.
  • Page KR, Sifakis F, de Oca RM, et al. Improved adherence and less toxicity with rifampin vs isoniazid for treatment of latent tuberculosis: a retrospective study. Arch Intern Med. 2006;166(17):1863–1870.
  • Watson RO, Manzanillo PS, Cox JS, et al. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012;150(4):803–815.
  • Hoppentocht M, Hagedoorn P, Frijlink HW, et al. Developments and strategies for inhaled antibiotic drugs in tuberculosis therapy: a critical evaluation. Eur J Pharm Biopharm. 2014;86(1):23–30.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–269.
  • Changsan N, Chan H-K, Separovic F, et al. Physicochemical characterization and stability of rifampicin liposome dry powder formulations for inhalation. J Pharm Sci. 2009;98(2):628–639.
  • Changsan N, Nilkaeo A, Pungrassami P, et al. Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages. J Drug Target. 2009;17(10):751–762.
  • Kumar GSV, Varghese M, Annapoorna A, et al. Dry powder cationic lipopolymeric nanomicelle inhalation for targeted delivery of antitubercular drug to alveolar macrophage. Int J Nanomedicine. 2013;8:2871–2885.
  • Patil J, Devi V, Devi K, et al. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India. 2015;32(4):331–338.
  • Singh C, Koduri LVSK, Dhawale V, et al. Potential of aerosolized rifampicin lipospheres for modulation of pulmonary pharmacokinetics and bio-distribution. Int J Pharm. 2015;495(2):627–632.
  • Rawal T, Parmar R, Tyagi RK, et al. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces. 2017;154:321–330.
  • Vadakkan MV, Binil Raj SS, Kartha CC, et al. Cationic, amphiphilic dextran nanomicellar clusters as an excipient for dry powder inhaler formulation. Acta Biomater. 2015;23:172–188.
  • Goyal AK, Garg T, Rath G, et al. Development and Characterization of nanoembedded microparticles for pulmonary delivery of antitubercular drugs against experimental tuberculosis. Mol Pharm. 2015;12(11):3839–3850.
  • Goyal AK, Garg T, Rath G, et al. Chemotherapeutic evaluation of guar gum coated chitosan nanoparticle against experimental tuberculosis. J Biomed Nanotechnol. 2016;12(3):450–463.
  • Garg T, Rath G, Goyal AK. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif Cells Nanomed Biotechnol. 2016;44(3):997–1001.
  • Parikh R, Patel L, Dalwadi S. Microparticles of rifampicin: comparison of pulmonary route with oral route for drug uptake by alveolar macrophages, phagocytosis activity and toxicity study in albino rats. Drug Deliv. 2014;21(6):406–411.
  • Thorpe M. Delivery characteristics and patients; handling of two single-dose dry-powder inhalers used in COPD. Int J Chron Obstruct Pulmon Dis. 2011;6:353–363.
  • Mohammed H, Arp J, Chambers F, et al. Investigation of Dry Powder Inhaler (DPI) resistance and aerosol dispersion timing on emitted aerosol aerodynamic particle sizing by multistage cascade impactor when sampled volume is reduced from compendial value of 4 L. AAPS PharmSciTech. 2014;15(5):1126–1137.
  • Magni P. Single-dose inhalers for capsules: a consolidated tradition with ample growth prospects. Open Drug Delivery. 2012;37:26–27.
  • Cipla. Cipla product brochure. [ cited 2018 May 15]. Available from: www.ciplamed.com
  • Bell JH, Hartley PS, Cox JSG. Dry powder aerosols I: a new powder inhalation device. J Pharm Sci. 1971;60(10):1559–1564.
  • Schiavone H, Palakodaty S, Clark A, et al. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers. Int J Pharm. 2004;281(1–2):55–66.
  • Parumasivam T, Chang RYK, Abdelghany S, et al. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev. 2016;102:83–101.
  • Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;17(3):247–289.
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.
  • Pathak Y, Thassu D. Drug delivery nanoparticles formulation and characterization. New York (NY): Informa Healthcare; 2009.
  • Sethuraman VV, Hickey AJ. Powder properties and their influence on dry powder inhaler delivery of an antitubercular drug. AAPS PharmSciTech. 2002;3(4):7–16.
  • Coowanitwong I, Arya V, Kulvanich P, et al. Slow release formulations of inhaled rifampin. AAPS J. 2008;10(2):342–348.
  • Sung JC, Padilla DJ, Garcia-Contreras L, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009;26(8):1847–1855.
  • Ohashi K, Kabasawa T, Ozeki T, et al. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J Control Release. 2009;135(1):19–24.
  • Son Y-J, McConville JT. Preparation of sustained release rifampicin microparticles for inhalation: sustained-release inhaled rifampicin. J Pharm Pharmacol. 2012;64(9):1291–1302.
  • Rowe RC, Sheskey PJ, Owen SC, editors. Handbook of pharmaceutical excipients. London; Greyslake, IL; Washington, DC: Pharmaceutical Press;American Pharmacists Association; 2006.
  • Kundawala A. Preparation, in vitro characterization, and in vivo pharmacokinetic evaluation of respirable porous microparticles containing rifampicin. Sci Pharm. 2014;82(3):665–681.
  • Pai RV, Jain RR, Bannalikar AS, et al. Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin. J Aerosol Med Pulm Drug Deliv. 2016;29(2):179–195.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–196.
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4:297–305.
  • Shah P, Bhalodia D, Shelat P. Nanoemulsion: A pharmaceutical review. Syst Rev Pharm. 2010;1(1):24–32.
  • Manca ML, Valenti D, Sales OD, et al. Fabrication of polyelectrolyte multilayered vesicles as inhalable dry powder for lung administration of rifampicin. Int J Pharm. 2014;472(1–2):102–109.
  • Maretti E, Rustichelli C, Romagnoli M, et al. Solid lipid nanoparticle assemblies (SLNas) for an anti-TB inhalation treatment - a design of experiments approach to investigate the influence of pre-freezing conditions on the powder respirability. Int J Pharm. 2016;511(1):669–679.
  • Maretti E, Costantino L, Rustichelli C, et al. Surface engineering of solid lipid nanoparticle assemblies by methyl α- d -mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm. 2017;528(1–2):440–451.
  • Srichana T, Ratanajamit C, Juthong S, et al. Evaluation of proinflammatory cytokines and adverse events in healthy volunteers upon inhalation of antituberculosis drugs. Biol Pharm Bull. 2016;39(11):1815–1822.
  • Mizoe T, Ozeki T, Okada H. Application of a four-fluid nozzle spray drier to prepare inhalable rifampicin-containing mannitol microparticles. AAPS PharmSciTech. 2008;9(3):755–761.
  • Mohseni M, Gilani K, Bahrami Z, et al. Preparation and in-vitro evaluation of rifampin-loaded mesoporous silica nanoaggregates by an experimental design. IJPR. 2015;14:359–371.
  • Rawal T, Kremer L, Halloum I, et al. Dry-powder inhaler formulation of rifampicin: an improved targeted delivery system for alveolar tuberculosis. J Aerosol Med Pulm Drug Deliv. 2017;30(6):388–398.
  • Chan JGY, Chan H-K, Prestidge CA, et al. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur J Pharm Biopharm. 2013;83(2):285–292.
  • Zhou Q, Gengenbach T, Denman JA, et al. Synergistic antibiotic combination powders of colistin and rifampicin provide high aerosolization efficiency and moisture protection. AAPS J. 2014;16(1):37–47.
  • Wang W, Zhou QT, Sun S-P, et al. Effects of surface composition on the aerosolisation and dissolution of inhaled antibiotic combination powders consisting of colistin and rifampicin. AAPS J. 2016;18(2):372–384.
  • Lee SH, Teo J, Heng D, et al. Tailored antibiotic combination powders for inhaled rotational antibiotic therapy. J Pharm Sci. 2016;105(4):1501–1512.
  • Momin MAM, Tucker IG, Doyle CS, et al. Co-spray drying of hygroscopic kanamycin with the hydrophobic drug rifampicin to improve the aerosolization of kanamycin powder for treating respiratory infections. Int J Pharm. 2018;541(1–2):26–36.
  • Momin MAM, Tucker IG, Doyle CS, et al. Manipulation of spray-drying conditions to develop dry powder particles with surfaces enriched in hydrophobic material to achieve high aerosolization of a hygroscopic drug. Int J Pharm. 2018;543(1–2):318–327.
  • Kadota K, Senda A, Tagishi H, et al. Evaluation of highly branched cyclic dextrin in inhalable particles of combined antibiotics for the pulmonary delivery of anti-tuberculosis drugs. Int J Pharm. 2017;517(1–2):8–18.
  • Pacheco P, White D, Sulchek T. Effects of microparticle size and Fc density on macrophage phagocytosis. PLoS ONE. 2013;8(4):e60989.
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci. 2006;103(13):4930–4934.
  • Park JH, Oh N. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014;9:51–63.
  • Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in Action. Annu Rev Immunol. 2002;20(1):825–852.
  • Maretti E, Rossi T, Bondi M, et al. Inhaled solid lipid microparticles to target alveolar macrophages for tuberculosis. Int J Pharm. 2014;462(1–2):74–82.
  • Vergne I, Chua J, Singh SB, et al. Cell biology of Mycobacterium Tuberculosis phagosome. Annu Rev Cell Dev Biol. 2004;20(1):367–394.
  • Kisich K, Gelperina S, Higgins M, et al. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm. 2007;345:154–162.
  • Kalluru R, Fenaroli F, Westmoreland D, et al. Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J Cell Sci. 2013;126(14):3043–3054.
  • Nüsse O. Biochemistry of the phagosome: the challenge to study a transient organelle. Sci World J. 2011;11:2364–2381.
  • Mor N, Simon B, Mezo N, et al. Comparison of activities of rifapentine and rifampin against Mycobacterium tuberculosis residing in human macrophages. Antimicrob Agents Chemother. 1995;39(9):2073–2077.
  • Crowle A, Elkins N, May M. Effectiveness of ofloxacin against Mycobacterium tuberculosis and Mycobacterium avium, and rifampin against M. tuberculosis in cultured human macrophages. Am Rev Respir Dis. 1988;137(5):1141–1145.
  • Darouiche RO, Hamill RJ. Antibiotic penetration of and bactericidal activity within endothelial cells. Antimicrob Agents Chemother. 1994;38(5):1059–1064.
  • Hand W, Corwin R, Steinberg T, et al. Uptake of antibiotics by human alveolar macrophages. Am Rev Respir Dis. 1984;129(6):933–937.
  • Hartkoorn RC, Chandler B, Owen A, et al. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis. 2007;87(3):248–255.
  • Van Bambeke F. Antibiotic efflux pumps in eukaryotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics. J Antimicrob Chemother. 2003;51(5):1067–1077.
  • Suarez S, O’Hara P, Kazantseva M, et al. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res. 2001;18(9):1315–1319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.