316
Views
13
CrossRef citations to date
0
Altmetric
Review

Macrophage targeted nanocarrier delivery systems in HIV therapeutics

, , ORCID Icon & ORCID Icon
Pages 903-918 | Received 04 May 2019, Accepted 27 Apr 2020, Published online: 26 May 2020

References

  • HIV/AIDS. [cited 2019 Mar 23]. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids
  • Cicala C, Arthos J, Selig SM, et al. HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proc Natl Acad Sci. 2002;99:9380–9385.
  • Ray N, Doms RW. HIV-1 coreceptors and their inhibitors. Curr Top Microbiol Immunol. 2006;303:97–120.
  • Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem. 2001;70:777–810.
  • Ciuffi A, Llano M, Poeschla E, et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med. 2005;11:1287–1289.
  • Douek DC, Picker LJ, Koup RA. T cell dynamics in HIV-1 infection. Annu Rev Immunol. 2003;21:265–304.
  • Simon V, Ho DD, Karim QA HIV/AIDS epidemiology, pathogenesis, prevention, and treatment.
  • WHO | Treatment and care. WHO. 2019; [cited 2019 Mar 23]. Available from: https://www.who.int/hiv/topics/treatment/en/
  • O’brien ME, Clark RA, Lynn Besch C, et al. Patterns and correlates of discontinuation of the initial HAART Regimen in an urban outpatient cohort. 1997.
  • Harris M, Larsen G, Montaner JS. Exacerbation of depression associated with starting raltegravir: a report of four cases. AIDS. 2008;22:1890–1892.
  • Kheloufi F, Allemand J, Mokhtari S, et al. Psychiatric disorders after starting dolutegravir. AIDS. 2015;29(13):1723–1725.
  • Savès M, Raffi F, Clevenbergh P, et al. Hepatitis B or hepatitis C virus infection is a risk factor for severe hepatic cytolysis after initiation of a protease inhibitor-containing antiretroviral regimen in human immunodeficiency virus-infected patients. The APROCO study group. Antimicrob Agents Chemother. 2000;44:3451–3455.
  • den Brinker M, Wit FW, Wertheim-van Dillen PM, et al. Hepatitis B and C virus co-infection and the risk for hepatotoxicity of highly active antiretroviral therapy in HIV-1 infection. AIDS. 2000;14:2895–2902.
  • Mallal S, Phillips E, Carosi G, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358:568–579.
  • Saag M, Balu R, Phillips E, et al. High sensitivity of human leukocyte antigen–B*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin Infect Dis. 2008;46:1111–1118.
  • Rodríguez-Nóvoa S, Martín-Carbonero L, Barreiro P, et al. Genetic factors influencing atazanavir plasma concentrations and the risk of severe hyperbilirubinemia. AIDS. 2007;21(1):41–46.
  • Gounden V, van Niekerk C, Snyman T, et al. Presence of the CYP2B6 516G> T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS Res Ther. 2010;7:32.
  • Abdelhady AM, Shugg T, Thong N, et al. Efavirenz inhibits the human ether-a-go-go related current (hERG) and Induces QT interval prolongation in CYP2B6*6*6 allele carriers. J Cardiovasc Electrophysiol. 2016;27:1206–1213.
  • Schneider J, Kaplan SH, Greenfield S, et al. Better physician-patient relationships are associated with higher reported adherence to antiretroviral therapy in patients with HIV infection. J Gen Intern Med. 2004;19:1096–1103.
  • Halkitis PN, Shrem MT, Zade DD, et al. The physical, emotional and interpersonal impact of HAART: exploring the realities of HIV seropositive individuals on combination therapy. J Health Psychol. 2005;10:345–358.
  • Stirratt MJ, Remien RH, Smith A, et al. The role of HIV serostatus disclosure in antiretroviral medication adherence. AIDS Behav. 2006;10:483–493.
  • Koppensteiner H, Brack-Werner R, Schindler M. Macrophages and their relevance in human immunodeficiency virus type I infection. Retrovirology. 2012;9(1):82.
  • Kumar A, Herbein G. The macrophage: a therapeutic target in HIV-1 infection. Mol Cell Ther. 2014;2:10.
  • Georges H, Gabriel G, Kashif K, et al. Macrophage signaling in HIV-1 infection. Retrovirology. 2010; 7(34):1–13.
  • Huang L, Bosch I, Hofmann W, et al. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol. 1998. doi:10.1128/JVI.72.11.8952-8960.1998.
  • Albini A, Benelli R, Giunciuglio D, et al. Identification of a novel domain of HIV tat involved in monocyte chemotaxis. J Biol Chem. 1998;273:15895–15900.
  • Campbell GR, Loret EP. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology. 2009;6:50.
  • Chen P, Mayne M, Power C, et al. The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases. J Biol Chem. 1997;272:22385–22388.
  • Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis. 2002;186:S193–8.
  • Jacquot G, Le Rouzic E, David A, et al. Localization of HIV-1 Vpr to the nuclear envelope: impact on Vpr functions and virus replication in macrophages. 2007;
  • Subbramanian RA, Kessous-Elbaz A, Lodge R, et al. Human immunodeficiency virus type 1 vpr is a positive regulator of viral transcription and infectivity in primary human macrophages. J Exp Med. 1998;187(7):1103–1111.
  • Bukrinsky M, Adzhubei A. Viral protein R of HIV-1. Rev Med Virol. 1999;9(1):39–49.
  • Eckstein DA, Sherman MP, Penn ML, et al. HIV-1 Vpr enhances viral burden by facilitating infection of tissue macrophages but not nondividing CD4 T Cells. J Exp Med. 2001;194(10):1407–1419. Rockefeller University Press.
  • Vázquez N, Greenwell-Wild T, Marinos NJ, et al. Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J Virol. 2005;79:4479–4491.
  • Collins DR, Lubow J, Lukic Z, et al. Vpr promotes macrophage-dependent HIV-1 infection of CD4+ T lymphocytes. PLoS Pathog. 2015;11(7):1–20.
  • Das SR, Jameel S. Biology of the HIV Nef protein. Indian J Med Res. 2005;121:315–332.
  • Lamers SL, Fogel GB, Singer EJ, et al. HIV-1 Nef in macrophage-mediated disease pathogenesis. Int Rev Immunol. 2012;31:432–450.
  • Tachado SD, Li X, Swan K, et al. Constitutive activation of phosphatidylinositol 3-kinase signaling pathway down-regulates TLR4-mediated tumor necrosis factor-alpha release in alveolar macrophages from asymptomatic HIV-positive persons in vitro. J Biol Chem. 2008;283:33191–33198.
  • Lama J, Mangasarian A, Trono D. Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr Biol. 1999;9:622–631.
  • Foster JL, Garcia JV. HIV-1 Nef: at the crossroads. Retrovirology. 2008;5(1):84.
  • Herbein G, Gras G, Khan KA, et al. Macrophage signaling in HIV-1 infection. Retrovirology. 2010;7(1):34.
  • Aquaro S, Balestra E, Cenci A, et al. HIV infection in macrophage: role of long-lived cells and related therapeutical strategies. J Biol Regul Homeost Agents. 1997;11:69–73.
  • Kedzierska K, Crowe S. The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr Med Chem. 2002;9:1893–1903.
  • Coffey MJ, Woffendin C, Phare SM, et al. RANTES inhibits HIV-1 replication in human peripheral blood monocytes and alveolar macrophages. Am J Physiol. 1997;272:L1025–9.
  • Lane BR, Markovitz DM, Woodford NL, et al. TNF-α inhibits HIV-1 replication in peripheral blood monocytes and alveolar macrophages by inducing the production of RANTES and decreasing CC chemokine. J Immunol. 1999;163(7):3653–3661.
  • Gavegnano C, Schinazi RF. Antiretroviral therapy in macrophages: implication for HIV eradication. Antivir Chem Chemother. 2009;20:63–78.
  • Pei Y, Yeo Y. Drug delivery to macrophages: challenges and opportunities. J Control Release. 2016;240:202–211.
  • Jain S, Tiwary A, Jain N. Sustained and targeted delivery of an anti-HIV agent using elastic liposomal formulation: mechanism of action. Curr Drug Deliv. 2006;3:157–166.
  • Dou H, Morehead J, Destache CJ, et al. Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology. 2007;358:148–158.
  • Mainardes RM, Gremião MPD, Brunetti IL, et al. Zidovudine-loaded PLA and PLA–PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells. J Pharm Sci. 2009;98:257–267.
  • Shegokar R, Singh KK. Nevirapine nanosuspensions for HIV reservoir targeting. Pharmazie. 2011;66:408–415.
  • Kutscher HL,Makita-Chingombe F, e al. Macrophage targeted nanoparticles for antiretroviral (ARV) delivery. J Pers Nanomed. 2015;1(2):40–48.
  • Oussoren C. Liposomes as carriers of the antiretroviral agent dideoxycytidine-5′-triphosphate. Int J Pharm. 1999;180:261–270.
  • Szebeni J, Wahl SM, Betageri GV, et al. Inhibition of HIV-1 in monocyte/macrophage cultures by 2′,3′-Dideoxycytidine-5′-triphosphate, free and in liposomes. AIDS Res Hum Retroviruses. 1990;6:691–702.
  • Makabi-Panzu B, Lessard C, Beauchamp D, et al. Uptake and binding of liposomal 2ʹ,3ʹ-dideoxycytidine by RAW 264.7 cells: a three-step process. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;8:227–235.
  • Garg M, Asthana A, Agashe HB, et al. Stavudine-loaded mannosylated liposomes: in-vitro anti-HIV-I activity, tissue distribution and pharmacokinetics. J Pharm Pharmacol. 2006;58:605–616.
  • Garg M, Jain NK. Reduced hematopoietic toxicity, enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes. J Drug Target. 2006;14:1–11.
  • Dubey V, Nahar M, Mishra D, et al. Surface structured liposomes for site specific delivery of an antiviral agent-indinavir. J Drug Target. 2011;19:258–269.
  • Jain S, Tiwary A, Jain N. PEGylated elastic liposomal formulation for lymphatic targeting of zidovudine. Curr Drug Deliv. 2008;5:275–281.
  • Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target. 2008;16:798–805.
  • Nayak D, Boxi A, Ashe S, et al. Stavudine loaded gelatin liposomes for HIV therapy: preparation, characterization and in vitro cytotoxic evaluation. Mater Sci Eng C. 2017;73:406–416.
  • Saiyed ZM, Gandhi NH, Nair MPN. Magnetic nanoformulation of azidothymidine 5???-triphosphate for targeted delivery across the blood-brain barrier. Int J Nanomedicine. 2010;5:157–166.
  • Gendelman HE, Chaubal M, Grotepas CB, et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol. 2009;183:661–669.
  • Dou H, Destache CJ, Morehead JR, et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood. 2006;108(8):2827–2835.
  • Hillaireau H, Ledoan T, Chacun H, et al. Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int J Pharm. 2007;331:148–152.
  • Mainardes RM, Gremião MPD. Nanoencapsulation and characterization of zidovudine on poly(L-lactide) and poly(L-lactide)—poly(ethylene glycol)-blend nanoparticles. J Nanosci Nanotechnol. 2012;12:8513–8521.
  • Bender AR, Von Briesen H, Kreuter J, et al. Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob Agents Chemother. 1996;40:1467–1471.
  • Shah LK, Amiji MM. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res. 2006;23:2638–2645.
  • Destache CJ, Belgum T, Christensen K, et al. Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect Dis. 2009;9:1–8.
  • Jain SK, Gupta Y, Jain A, et al. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine Nanotechnology, Biol Med. 2008;4:41–48.
  • Basu S. Polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study. Int J Nanomedicine. 2012;7:6049–6061.
  • Zazo H, Colino CI, Warzecha KT, et al. Gold nanocarriers for macrophage-targeted therapy of human immunodeficiency Virus. Macromol Biosci. 2017;17:1–6.
  • Narayanasamy P, Switzer BL, Britigan BE. Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Sci Rep. 2015;5:1–7.
  • Soto ER, O’Connell O, Dikengil F, et al. Targeted delivery of glucan particle encapsulated gallium nanoparticles inhibits HIV growth in human macrophages. J Drug Deliv. 2016;2016:1–8.
  • Borgmann K, Rao KS, Labhasetwar V, et al. Efficacy of Tat-conjugated ritonavir-loaded nanoparticles in reducing HIV-1 replication in monocyte-derived macrophages and cytocompatibility with macrophages and human neurons. AIDS Res Hum Retroviruses. 2010;27:853–862.
  • Puligujja P, McMillan JE, Kendrick L, et al. Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, retention, antiretroviral activities and biodistribution for reduction of human immunodeficiency virus infections. Nanomedicine Nanotechnology, Biol Med. 2013;9:1263–1273.
  • Gnanadhas DP, Dash PK, Sillman B, et al. Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs. J Clin Invest. 2017;127:857–873.
  • Vinogradov SV, Poluektova LY, Makarov E, et al. Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir Chem Chemother. 2010;21:1–14.
  • Singh D, McMillan JE, Hilaire J, et al. Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine. 2016;11(15):1913–1927.
  • Guo D, Zhou T, Araínga M, et al. Creation of a long-acting nanoformulated 2’,3’-Dideoxy-3’-Thiacytidine. J Acquir Immune Defic Syndr. 2017;74:75–83.
  • Dutta T, Garg M, Jain NK. Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur J Pharm Sci. 2008;34:181–189.
  • Dutta T, Jain NK. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim Biophys Acta Gen Subj. 2007;1770:681–686.
  • Dutta T, Agashe HB, Garg M, et al. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J Drug Target. 2007;15:89–98.
  • Paull JRA, Aldunate M, Sterjovski J, et al. Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. Antiviral Res. 2011;90(3):195–199.
  • Gajbhiye V, Ganesh N, Barve J, et al. Synthesis, characterization and targeting potential of zidovudine loaded sialic acid conjugated-mannosylated poly(propyleneimine) dendrimers. Eur J Pharm Sci. 2013;48:668–679.
  • Chattopadhyay N, Zastre J, Wong H-L, et al. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res. 2008;25:2262–2271.
  • Shegokar R, KK S. Preparation, characterization and cell based delivery of stavudine surface modified lipid nanoparticles. J. Nanomedine. Biotherapeutic Discov.. 2012;02:1–9.
  • Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspective. Int J Nanomedicine. 2007;2:289–300.
  • Jain S, Tiwary AK, Sapra B, et al. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech. 2007;8(4):249.
  • Mazzucchelli S, Truffi M, Sorrentino L, et al. Antiretroviral therapy through barriers: a prominent role for nanotechnology in HIV-1 eradication from sanctuaries. J Pharm Pharmacol. 2016;4:328–339.
  • Sattentau QJ, Macrophages SM. HIV-1: an unhealthy constellation. Cell Host Microbe. 2016;19:304–310.
  • Home - ClinicalTrials.gov
  • Choi J, Kim H-Y, Ju EJ, et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials. 2012;33(16):4195–4203.
  • Brynskikh AM, Zhao Y, Mosley RL, et al. Macrophage delivery of therapeutic nanozymes in a murine model of parkinson’s disease. Nanomedicine. 2010;5(3):379–396.
  • Urbaniak T, Machová D, Janoušková O, et al., Microparticles of lamivudine—poly-ε-caprolactone conjugate for drug delivery via internalization by macrophages. Molecules. 24(4): 723. 2019. .
  • Beduneau A, Ma Z, Grotepas CB, et al. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles. PLoS One. 2009;4:1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.