195
Views
4
CrossRef citations to date
0
Altmetric
Review

Drug-eluting bioresorbable scaffolds in cardiovascular disease, peripheral artery and gastrointestinal fields: a clinical update

, , , , , , , , , , , , , & show all
Pages 931-945 | Received 30 Dec 2019, Accepted 01 May 2020, Published online: 27 May 2020

References

  • Schatz RA, Baim DS, Leon M, et al. Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation. 1991;83:148–161.
  • Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48(1):193–202.
  • Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008;371(9616):899–907.
  • Sotomi Y, Onuma Y, Collet C, et al. Bioresorbable scaffold: the emerging reality and future directions. Circ Res. 2017;120(8):1341–1352.
  • Katagiri Y, Stone GW, Onuma Y, et al. State of the art: the inception, advent and future of fully bioresorbable scaffolds. EuroIntervention. 2017;13(6):734–750.
  • Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373(9667):897–910.
  • Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–2491.
  • Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015;373(20):1905–1915.
  • Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease. J Am Coll Cardiol. 2015;66(21):2298–2309.
  • Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36(47):3332–3342.
  • Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017;376(24):2319–2328.
  • Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387(10025):1277–1289.
  • Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016;387(10018):537–544.
  • Lipinski MJ, Escarcega RO, Baker NC, et al. Scaffold thrombosis after percutaneous coronary intervention with ABSORB bioresorbable vascular scaffold: a systematic review and meta-analysis. JACC Cardiovasc Interv. 2016;9(1):12–24
  • Banach M, Serban M-C, Sahebkar A, et al. Comparison of clinical outcomes between bioresorbable vascular stents versus conventional drug-eluting and metallic stents: a systematic review and meta-analysis. EuroIntervention. 2016;12(2):e175–e189.
  • Bangalore S, Toklu B, Bhatt DL. Outcomes with bioabsorbable vascular scaffolds versus everolimus eluting stents: insights from randomized trials. Int J Cardiol. 2016;212:214–222.
  • Kang S-H, Chae I-H, Park -J-J, et al. Stent thrombosis with drug-eluting stents and bioresorbable scaffolds: evidence from a network meta-analysis of 147 trials. JACC Cardiovasc Interv. 2016;9(12):1203–1212.
  • Mukete BN, van der Heijden LC, Tandjung K, et al. Safety and efficacy of everolimus-eluting bioresorbable vascular scaffolds versus durable polymer everolimus-eluting metallic stents assessed at 1-year follow-up: a systematic review and meta-analysis of studies. Int J Cardiol. 2016;221:1087–1094.
  • Knuuti J, Wijns W, Saraste A, et al. ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2019;2019.
  • Stone GW, Kimura T, Gao R, et al. Time-varying outcomes with the absorb bioresorbable vascular scaffold during 5-year follow-up: a systematic meta-analysis and individual patient data pooled study. JAMA Cardiol. 2019;4(12):1261.
  • Puricel S, Arroyo D, Corpataux N, et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. J Am Coll Cardiol. 2015;65(8):791–801.
  • Arroyo D, Gendre G, Schukraft S, et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds: two-year clinical outcomes of the EVERBIO II trial. Int J Cardiol. 2017;243:121–125.
  • Stone GW, Ellis SG, Gori T, et al. Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB IV randomised trial. Lancet. 2018;392(10157):1530–1540.
  • Puricel S, Cuculi F, Weer M, et al. Bioresorbable coronary scaffold thrombosis. J Am Coll Cardiol. 2016;67(8):921–931.
  • Tanaka A, Latib A, Kawamoto H, et al. Clinical outcomes of a real-world cohort following bioresorbable vascular scaffold implantation utilising an optimised implantation strategy. EuroIntervention. 2017;12(14):1730–1737.
  • Ortega-Paz L, Capodanno D, Gori T, et al. Predilation, sizing and post-dilation scoring in patients undergoing everolimus-eluting bioresorbable scaffold implantation for prediction of cardiac adverse events: development and internal validation of the PSP score. EuroIntervention. 2017;12(17):2110–2117.
  • Stone GW. Blinded outcomes assessment of absorb bioresorbable scaffolds implanted with improved technique two-year results from the ABSORB IV randomized trial. TCT. 2019.
  • Mattesini A, Bartolini S, Sorini Dini C, et al. The DESolve novolimus bioresorbable scaffold: from bench to bedside. J Thorac Dis. 2017;9(S9):S950–S8.
  • Verheye S, Ormiston JA, Stewart J, et al. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc Interv. 2014;7(1):89–99.
  • Abizaid A, Costa RA, Schofer J, et al. Serial multimodality imaging and 2-year clinical outcomes of the novel DESolve novolimus-eluting bioresorbable coronary scaffold system for the treatment of single de novo coronary lesions. JACC Cardiovasc Interv. 2016;9(6):565–574.
  • Verheye S, Costa RA, Schofer J, et al. Five-year safety and performance data of a novel third-generation novolimus-eluting bioresorbable scaffold in single de novo lesions. EuroIntervention. 2019;15(8):685–687.
  • Nef H, Wiebe J, Boeder N, et al. A multicenter post-marketing evaluation of the Elixir DESolve ® Novolimus-eluting bioresorbable coronary scaffold system: first results from the DESolve PMCF study. Catheter Cardiovasc Interv. 2018;92(6):1021–1027.
  • Durand E, Sharkawi T, Leclerc G, et al. Head-to-head comparison of a drug-free early programmed dismantling polylactic acid bioresorbable scaffold and a metallic stent in the porcine coronary artery: six-month angiography and optical coherence tomographic follow-up study. Circ Cardiovasc Interv. 2014;7(1):70–79.
  • Yahagi K, Yang Y, Torii S, et al. Comparison of a drug-free early programmed dismantling PDLLA bioresorbable scaffold and a metallic stent in a porcine coronary artery model at 3-year follow-up. J Am Heart Assoc. 2017;6.
  • Fajadet J The ART, stent: design and early first-in-man experiences. Presented in Transcatheter Cardiovasc Therapeutics Miami Beach, FL, USA 2012.
  • Waksman R, Zumstein P, Pritsch M, et al. Second-generation magnesium scaffold Magmaris: device design and preclinical evaluation in a porcine coronary artery model. EuroIntervention. 2017;13(4):440–449.
  • Bennett J, Vanhaverbeke M, Vanden Driessche N, et al. The drug-eluting resorbable magnesium vascular scaffold in complex coronary bifurcations: insights from an in vivo multimodality imaging study. EuroIntervention. 2018;13(17):2036–2046.
  • Waksman R, Lipinski MJ, Acampado E, et al. Comparison of acute thrombogenicity for metallic and polymeric bioabsorbable scaffolds: magmaris versus absorb in a porcine arteriovenous shunt model. Circ Cardiovasc Interv. 2017;10(8). DOI:10.1161/CIRCINTERVENTIONS.116.004762.
  • Garcia-Garcia HM, Haude M, Kuku K, et al. In vivo serial invasive imaging of the second-generation drug-eluting absorbable metal scaffold (Magmaris — DREAMS 2G) in de novo coronary lesions: insights from the BIOSOLVE-II first-in-man trial. Int J Cardiol. 2018;255:22–28.
  • Haude M. Safety and clinical performance of the drug eluting absorbable metal scaffold in the treatment of subjects with de novo lesions in native coronary arteries at 24-month follow-up - BIOSOLVE-II and BIOSOLVE-III. Presented in TCT2018, 2019.
  • Verheye S, Wlodarczak A, Montorsi P, et al. Safety and performance of a resorbable magnesium scaffold under real-world conditions: 12-month outcomes of the first 400 patients enrolled in the BIOSOLVE-IV registry. EuroIntervention. 2019.
  • Sabate M. MAGSTEMI: a randomized trial of a magnesium-based sirolimus-eluting resorbable scaffold vs. metallic DES in patients with STEMI. Presdnted at TCT2019, 2019.
  • Sabate M, Alfonso F, Cequier A, et al. Magnesium-based resorbable scaffold versus permanent metallic sirolimus-eluting stent in patients with ST-segment elevation myocardial infarction: the MAGSTEMI randomized clinical trial. Circulation. 2019;140(23):1904–1916.
  • Abizaid A BRS with clinical data II – from resolve to fantom: differentiating features and clinical update. Presented at TCT2014, 2014.
  • Geuns R-Jv. Highlights (and my Interpretations) from: new BRS - FANTOM II, MeRes-1, FORTITUDE and FUTURE-I (6-9 month results). Presented at TCT2016, 2016.
  • Abizaid A, Carrie D, Frey N, et al. 6-Month clinical and angiographic outcomes of a novel radiopaque sirolimus-eluting bioresorbable vascular scaffold: the FANTOM II study. JACC Cardiovasc Interv. 2017;10(18):1832–1838.
  • Abizaid A FANTOM II trial: safety & performance study of the fantom sirolimus-eluting bioresorbable coronary scaffold – first report on initial 48 month outcomes. Presented at TCT2019, 2019.
  • Koltowski L, Tomaniak M, Ochijewicz D, et al. Second generation, sirolimus-eluting, bioresorbable tyrocore scaffold implantation in patients with ST-segment elevation myocardial infarction: baseline OCT and 30-day clinical outcomes – a FANTOM STEMI pilot study. Catheter Cardiovasc Interv. 2019. DOI:10.1002/ccd.28414.
  • Seth A, Onuma Y, Costa R, et al. First-in-human evaluation of a novel poly-L-lactide based sirolimus-eluting bioresorbable vascular scaffold for the treatment of de novo native coronary artery lesions: meRes-1 trial. EuroIntervention. 2017;13(4):415–423.
  • Seth A, Onuma Y, Chandra P, et al. Three-year clinical and two-year multimodality imaging outcomes of a thin-strut sirolimus-eluting bioresorbable vascular scaffold: meRes-1 trial. EuroIntervention. 2019;15(7):607–614.
  • Sabate M, Windecker S, Iniguez A, et al. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction—TROFI II trial. Eur Heart J. 2016;37(3):229–240.
  • Polimeni A, Anadol R, Munzel T, et al. Predictors of bioresorbable scaffold failure in STEMI patients at 3 years follow-up. Int J Cardiol. 2018;268:68–74.
  • Anadol R, Dimitriadis Z, Polimeni A, et al. Bioresorbable everolimus-eluting vascular scaffold for patients presenting with non-ST elevation-acute coronary syndrome: a three-years follow-up1. Clin Hemorheol Microcirc. 2018;69(1–2):3–8.
  • Brugaletta S, Gori T, Tousek P, et al. Very long-term outcome of ABSORB bioresorbable vascular scaffold vs. everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 5-year results of the BVS-EXAMINATION study. EuroIntervention. 2019.
  • Ielasi A, Campo G, Rapetto C, et al. A prospective evaluation of a pre-specified absorb BVS implantation strategy in ST-segment elevation myocardial infarction: the BVS STEMI STRATEGY-IT study. JACC Cardiovasc Interv. 2017;10(18):1855–1864.
  • Ielasi A, Campo G, Cortese B, et al. One-year results following a pre-specified ABSORB implantation strategy in ST-elevation myocardial infarction (BVS STEMI STRATEGY-IT study). Cardiovasc Revasc Med. 2019;20(8):700–704.
  • Ielasi A, Cerrato E, Geraci S, et al. Sirolimus-eluting magnesium resorbable scaffold implantation in patients with acute myocardial infarction. Cardiology. 2019;142(2):93–96.
  • Qi Y, Qi H, He Y, et al. Strategy of metal–polymer composite stent to accelerate biodegradation of iron-based biomaterials. ACS Appl Mater Interfaces. 2018;10(1):182–192.
  • Zheng J-F, Qiu H, Tian Y, et al. Preclinical evaluation of a novel sirolimus-eluting iron bioresorbable coronary scaffold in porcine coronary artery at 6 months. JACC Cardiovasc Interv. 2019;12(3):245–255.
  • Dou K. Iron-based BRS: design features, experimental studies, and FIM experience. Presented at TCT2018, 2018.
  • Bo X A first-in-man study of the firesorb sirolimus target eluting bioresorbable scaffold in patients with coronary artery disease (FUTURE-I) 3-year clinical and imaging outcomes. Presented at CIT2019, 2019
  • ITM AM. RENUVIATM technology update and lessons from the feasibility study. Presented at CRT2018, 2018
  • Tenekecioglu E, Serruys PW, Onuma Y, et al. Randomized comparison of absorb bioresorbable vascular scaffold and mirage microfiber sirolimus-eluting scaffold using multimodality imaging. JACC Cardiovasc Interv. 2017;10(11):1115–1130.
  • Zhang Y-J, Wang X-Z, Fu G, et al. Clinical and multimodality imaging results at 6 months of a bioresorbable sirolimus-eluting scaffold for patients with single de novo coronary artery lesions: the NeoVas first-in-man trial. EuroIntervention. 2016;12(10):1279–1287.
  • Han Y, Xu B, Fu G, et al. A randomized trial comparing the neovas sirolimus-eluting bioresorbable scaffold and metallic everolimus-eluting stents. JACC Cardiovasc Interv. 2018;11(3):260–272.
  • Xu K, Fu G, Xu B, et al. Safety and efficacy of the novel sirolimus-eluting bioresorbable scaffold for the treatment of de novo coronary artery disease: one-year results from a prospective patient-level pooled analysis of NeoVas trials. Catheter Cardiovasc Interv. 2019;93(S1):832–838.
  • Wu Y, Shen L, Ge L, et al. Six-month outcomes of the XINSORB bioresorbable sirolimus-eluting scaffold in treating single de novo lesions in human coronary artery. Catheter Cardiovasc Interv. 2016;87(Suppl S1):630–637.
  • Wu Y, Shen L, Yin J, et al. Twelve-month angiographic and clinical outcomes of the XINSORB bioresorbable sirolimus-eluting scaffold and a metallic stent in patients with coronary artery disease. Int J Cardiol. 2019;293:61–66.
  • Guan C, Gao L, Sun Z. TCT-392 a first-in-man study of the bioheart sirolimus-eluting bioresorbable scaffold in patients with coronary artery disease: one-year clinical and imaging outcomes. J Am Coll Cardiol. 2018;72(13):B158–B159.
  • Han Y. Emerging polymeric and metallic BRS from China. Presented at TCT2018, 2018.
  • Tenekecioglu E, Torii R, Katagiri Y, et al. Post-implantation shear stress assessment: an emerging tool for differentiation of bioresorbable scaffolds. Int J Cardiovasc Imaging. 2019;35(3):409–418.
  • Tenekecioglu E, Torii R, Bourantas CV, et al. Non-Newtonian pulsatile shear stress assessment: a method to differentiate bioresorbable scaffold platforms. Eur Heart J. 2017;38(33):2570.
  • Thondapu V, Tenekecioglu E, Poon EKW, et al. Endothelial shear stress 5 years after implantation of a coronary bioresorbable scaffold. Eur Heart J. 2018;39(18):1602–1609.
  • Katagiri Y, Torii R, Takahashi K, et al. Preclinical evaluation of a thin-strut bioresorbable scaffold (ArterioSorb): acute-phase invasive imaging assessment and hemodynamic implication. EuroIntervention. 2019.
  • Rapoza RJ. Falcon development and status. Presented at TCT2018, 2018.
  • Sanders SCaB. Stentit, minimally invasive vascular regeneration. Presented at TCT Shark Tank 2019.
  • Byrne RA, Stefanini GG, Capodanno D, et al. Report of an ESC-EAPCI task force on the evaluation and use of bioresorbable scaffolds for percutaneous coronary intervention: executive summary. Eur Heart J. 2018;39(18):1591–1601.
  • Bartus S, Januszek R, Legutko J, et al. Long-term effects of rotational atherectomy in patients with heavy calcified coronary artery lesions: a single-centre experience. Kardiol Pol. 2017;75:564–572.
  • Katagiri Y, Serruys PW, Asano T, et al. How does the failure of absorb apply to the other bioresorbable scaffolds? An expert review of first-in-man and pivotal trials. EuroIntervention. 2019;15(1):116–123.
  • Polimeni A, Gori T. Bioresorbable vascular scaffold: a step back thinking of the future. Postepy Kardiol Interwencyjnej. 2018;14(2):117–119.
  • Tamai H, Igaki K, Kyo E, et al. Initial and 6-month results of biodegradable poly- l -lactic acid coronary stents in humans. Circulation. 2000;102(4):399–404.
  • Nishio S, Kosuga K, Igaki K, et al. Long-term (>10 years) clinical outcomes of first-in-human biodegradable poly- l -lactic acid coronary stents. Circulation. 2012;125(19):2343–2353.
  • Yamawaki T, Shimokawa H, Kozai T, et al. Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo. J Am Coll Cardiol. 1998;32(3):780–786.
  • Werner M, Micari A, Cioppa A, et al. Evaluation of the biodegradable peripheral Igaki-Tamai stent in the treatment of de novo lesions in the superficial femoral artery: the GAIA study. JACC Cardiovasc Interv. 2014;7(3):305–312.
  • Varcoe RL, Schouten O, Thomas SD, et al. Initial experience with the absorb bioresorbable vascular scaffold below the knee: six-month clinical and imaging outcomes. J Endovasc Ther. 2015;22(2):226–232.
  • Varcoe RL, Schouten O, Thomas SD, et al. Experience with the absorb everolimus-eluting bioresorbable vascular scaffold in arteries below the knee. JACC Cardiovasc Interv. 2016;9(16):1721–1728.
  • Varcoe RL, Thomas SD, Lennox AF. Three-year results of the absorb everolimus-eluting bioresorbable vascular scaffold in infrapopliteal arteries. J Endovasc Ther. 2018;25(6):694–701.
  • Parikh S Understanding BTK disease: impact of lesion type, severity, and location on technique and device selection. Presented at TCT2019, 2019.
  • Boland ED, Coleman BD, Barnes CP, et al. Electrospinning polydioxanone for biomedical applications. Acta Biomater. 2005;1(1):115–123.
  • Chang CC, Onuma Y, Achenbach S, et al. Absorb bioresorbable scaffold versus Xience metallic stent for prevention of restenosis following percutaneous coronary intervention in patients at high risk of restenosis: rationale and design of the COMPARE ABSORB trial. Cardiovasc Revasc Med. 2019;20(7):577–582.
  • Tijssen RYG, Kraak RP, Elias J, et al. Implantation techniques (predilatation, sizing, and post-dilatation) and the incidence of scaffold thrombosis and revascularisation in lesions treated with an everolimus-eluting bioresorbable vascular scaffold: insights from the AIDA trial. EuroIntervention. 2018;14(4):e434–e42.
  • Anadol R, Lorenz L, Weer M, et al. Characteristics and outcome of patients with complex coronary lesions treated with bioresorbable scaffolds: three-year follow-up in a cohort of consecutive patients. EuroIntervention. 2018;14(9):e1011–e9.
  • Gori T, Weer M, Gonner S, et al. Characteristics, predictors, and mechanisms of thrombosis in coronary bioresorbable scaffolds. JACC Cardiovasc Interv. 2017;10(23):2363–2371.
  • Dimitriadis Z, Polimeni A, Anadol R, et al. Procedural predictors for bioresorbable vascular scaffold thrombosis: analysis of the individual components of the “PSP” technique. J Clin Med. 2019;8(1):93.
  • Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.