595
Views
31
CrossRef citations to date
0
Altmetric
Review

Drug delivery to macrophages: a review of nano-therapeutics targeted approach for inflammatory disorders and cancer

, , , , , & show all
Pages 1239-1257 | Received 06 May 2020, Accepted 12 Jun 2020, Published online: 29 Jun 2020

References

  • Ahmed AU. An overview of inflammation: mechanism and consequences. Front Biol. 2011;6(4):274.
  • Kelly C, Jefferies C, Cryan S-A. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:1–11.
  • Jain NK, Mishra V, Mehra NK. Targeted drug delivery to macrophages. Expert Opin Drug Deliv. 2013;10(3):353–367.
  • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6. doi:10.12703/P6-13
  • *Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol. 2013;93(6):875–881.
  • Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol. 2015;15(5):271–282.
  • Headland SE, Norling LV. The resolution of inflammation: principles and challenges. In: Seminars in immunology. Elsevier; 2015.
  • Moore E, Suresh V, Ying G, et al. M0 and M2 macrophages enhance vascularization of tissue engineering scaffolds. Regen Eng Transl Med. 2018;4(2):51–61.
  • Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167(2):457–470. e13.
  • Zeeshan M, Ali H, Khan S, et al. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int J Pharm. 2019;558:201–214.
  • Jahagirdar P. Mannose receptor and targeting strategies. In: Targeted intracellular drug delivery by receptor mediated endocytosis, edited by Padma V. Devarajan, Prajakta Dandekar, and Anisha A. D’Souza. AAPS Advances in the Pharmaceutical Sciences Series. Cham: Springer International Publishing,  2019. p. 433-456.
  • Suzuki Y, Shirai M, Asada K, et al. Macrophage mannose receptor, CD206, predict prognosis in patients with pulmonary tuberculosis. Sci Rep. 2018;8(1):13129.
  • Lokhande AS, Jahagirdar P, Dandekar P, et al. Scavenger receptor and targeting strategies. In: Targeted intracellular drug delivery by receptor mediated endocytosis, edited by Padma V. Devarajan, Prajakta Dandekar, and Anisha A. D’Souza. AAPS Advances in the Pharmaceutical Sciences Series. Cham: Springer International Publishing, 2019. p. 297-321.
  • Ahmed M, Baumgartner R, Aldi S, et al. Human serum albumin-based probes for molecular targeting of macrophage scavenger receptors. Int J Nanomedicine. 2019;14:3723.
  • He S, Liang Y, Shao F, et al. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3–mediated pathway. Proc Nat Acad Sci. 2011;108(50):20054–20059.
  • Anwar MA, Shah M, Kim J, et al. Recent clinical trends in Toll‐like receptor targeting therapeutics. Med Res Rev. 2019;39(3):1053–1090.
  • Seneviratne AN, Sivagurunathan B, Monaco C. Toll-like receptors and macrophage activation in atherosclerosis. Clin Chim Acta. 2012;413(1–2):3–14.
  • Lea SR, Reynolds S, Kaur M, et al. The effects of repeated Toll-like receptors 2 and 4 stimulation in COPD alveolar macrophages. Int J Chron Obstruct Pulmon Dis. 2018;13:771.
  • Chaung H-C, Huang T-C, Yu J-H, et al. Immunomodulatory effects of β-glucans on porcine alveolar macrophages and bone marrow haematopoietic cell-derived dendritic cells. Vet Immunol Immunopathol. 2009;131(3–4):147–157.
  • Soto ER, O’Connell O, Dikengil F, et al. Targeted delivery of glucan particle encapsulated gallium nanoparticles inhibits HIV growth in human macrophages. J Drug Deliv. 2016;2016:1–8.
  • Sun JY, Shen J, Thibodeaux J, et al. In vivo optical imaging of folate receptor‐β in head and neck squamous cell carcinoma. Laryngoscope. 2014;124(8):E312–E319.
  • O’Shannessy DJ, Somers EB, Wang L-C, et al. Expression of folate receptors alpha and beta in normal and cancerous gynecologic tissues: correlation of expression of the beta isoform with macrophage markers. J Ovarian Res. 2015;8(1):29.
  • Genua M, Rutella S, Correale C, et al. The triggering receptor expressed on myeloid cells (TREM) in inflammatory bowel disease pathogenesis. J Transl Med. 2014;12(1):293.
  • Xiao B, Laroui H, Ayyadurai S, et al. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials. 2013;34(30):7471–7482.
  • *Zhang M, Xu C, Liu D, et al. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J Crohn’s Colitis. 12(2):217–229. 2018. .
  • Xiao B, Xu Z, Viennois E, et al. Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol Ther. 2017;25(7):1628–1640.
  • Poh S, Chelvam V, Ayala-López W, et al. Selective liposome targeting of folate receptor positive immune cells in inflammatory diseases. Nanomedicine. 2018;14(3):1033–1043.
  • Lee Y, Sugihara K, Gillilland MG, et al. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater. 2019;1–9.
  • Sarwar HS, Akhtar S, Sohail MF, et al. Redox biology of Leishmania and macrophage targeted nanoparticles for therapy. Nanomedicine. 2017;12(14):1713–1725.
  • Alexandru-Flaviu T, Cornel C. Macrophages targeted drug delivery as a key therapy in infectious disease. BMBN. 2014;2(1):17–20.
  • Sarwar HS, Varikuti S, Sohail MF, et al. Oral delivery and enhanced efficacy of antimonal drug through macrophage-guided multifunctional nanocargoes against visceral Leishmaniasis. Eur J Pharm Biopharm. 2020.
  • Chaubey P, Mishra B. Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydr Polym. 2014;101:1101–1108.
  • Afzal I, Sarwar HS, Sohail MF, et al. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine. 2019;14(4):387–406.
  • Chaubey P, Mishra B, Mudavath SL, et al. Mannose-conjugated curcumin-chitosan nanoparticles: efficacy and toxicity assessments against Leishmania donovani. Int J Biol Macromol. 2018;111:109–120.
  • Biswaro LS, Garcia MP, da Silva JR, et al. Itraconazole encapsulated PLGA‐nanoparticles covered with mannose as potential candidates against leishmaniasis. J Biomed Mater Res Part B. 2019;107(3):680–687.
  • Singh PK, Jaiswal AK, Pawar VK, et al. Fabrication of 3-O-sn-phosphatidyl-L-serine anchored PLGA nanoparticle bearing amphotericin B for macrophage targeting. Pharm Res. 2018;35(3):60.
  • Guirado E, Schlesinger LS, Kaplan G. Macrophages in tuberculosis: friend or foe. In: Seminars in immunopathology. . 2013;35(5):563–83.
  • Knight M, Braverman J, Asfaha K, et al. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog. 2018;14(1):e1006874.
  • Guirado E, Schlesinger L. Modeling the Mycobacterium tuberculosis granuloma–the critical battlefield in host immunity and disease. Front Immunol. 2013;4:98.
  • Pi J, Shen L, Yang E, et al. Macrophage‐targeted isoniazid–selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli. Angew Chem. 2020;59(8):3226–3234.
  • Choi S-R, Britigan BE, Moran DM. et al. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One. 2017;12(5).
  • Maretti E, Costantino L, Rustichelli C, et al. Surface engineering of solid lipid nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm. 2017;528(1–2):440–451.
  • Pi J, Shen L, Yang E, et al. Macrophage‐targeted isoniazid‐selenium nanoparticles promote innate immunity, inducing synergistic antimicrobial and bactericidal destructions of tuberculosis bacilli. Angew Chem. 2019.
  • Basha RY, TS SK, Doble M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr Polym. 2019;218:53–62.
  • Mefford ME, Kunstman K, Wolinsky SM, et al. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5. Virology. 2015;481:210–222.
  • Herskovitz J, Gendelman HE. HIV and the macrophage: from cell reservoirs to drug delivery to viral eradication. J Neuroimmune Pharmacol. 2019;14(1):52–67.
  • Rappaport J, Volsky DJ. Role of the macrophage in HIV-associated neurocognitive disorders and other comorbidities in patients on effective antiretroviral treatment. J Neurovirol. 2015;21(3):235–241.
  • Mobarakeh VI, Modarressi MH, Rahimi P, et al. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. Int J Biol Macromol. 2019;129:305–315.
  • Dalpiaz A, Fogagnolo M, Ferraro L, et al. Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery. Eur J Pharm Biopharm. 2019;144:91–100.
  • Urbaniak T, Machová D, Janoušková O, et al. Microparticles of lamivudine—poly-ε-caprolactone conjugate for drug delivery via internalization by macrophages. Molecules. 2019;24(4):723.
  • **Ao Z, Wang L, Mendoza EJ, et al. Incorporation of Ebola glycoprotein into HIV particles facilitates dendritic cell and macrophage targeting and enhances HIV-specific immune responses. PloS One. 2019; 14(5)
  • **Khan T, Mayuresh Patkar M, Momin M, et al. Macrophage targeted nanocarrier delivery systems in HIV therapeutics. Expert Opin Drug Deliv. 2020;(just–accepted).
  • Nogueira E, Gomes AC, Preto A, et al. Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine. 2016;12(4):1113–1126.
  • Lacerte P, Brunet A, Egarnes B, et al. Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Res Ther. 2016;18(1):10.
  • Thomas TP, Goonewardena SN, Majoros IJ, et al. Folate‐targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheumatism. 2011;63(9):2671–2680.
  • Jain S, Tran T-H, Amiji M. Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials. 2015;61:162–177.
  • Meka RR, Venkatesha SH, Acharya B, et al. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine. 2019;14(11):1455–1469.
  • Zhao J, Zhao M, Yu C, et al. Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis. Int J Nanomedicine. 2017;12:6735.
  • Li P, Yang X, Yang Y, et al. Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice. J Control Release. 2020;319:87–103.
  • Randolph GJ. Mechanisms that regulate macrophage burden in atherosclerosis. Circ Res. 2014;114(11):1757–1771.
  • Sanchez-Gaytan BL, Fay F, Lobatto ME, et al. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug Chem. 2015;26(3):443–451.
  • SHARMA G, SHE Z-G, VALENTA DT, et al. Targeting of macrophage foam cells in atherosclerotic plaque using oligonucleotide-functionalized nanoparticles. Nano Life. 2010;1(3–4):207.
  • van der Valk FM, van Wijk DF, Lobatto ME, et al. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine. 2015;11(5):1039–1046.
  • Gao C, Huang Q, Liu C, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 2020;11(1):1–14.
  • Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264(1):182–203.
  • Nairz M, Ferring-Appel D, Casarrubea D, et al. Iron regulatory proteins mediate host resistance to Salmonella infection. Cell Host Microbe. 2015;18(2):254–261.
  • Gonzalez-Escobedo G, Gunn JS, McCormick BA. Gallbladder epithelium as a niche for chronic Salmonella carriage. Infect Immun. 2013;81(8):2920–2930.
  • Zaki NM, Hafez MM. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. Aaps Pharmscitech. 2012;13(2):411–421.
  • Mudakavi RJ, Vanamali S, Chakravortty D, et al. Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella. RSC Adv. 2017;7(12):7022–7032.
  • Elbi S, Nimal TR, Rajan VK, et al. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B Biointerfaces. 2017;160:40–47.
  • Tran T-H, Rastogi R, Shelke J, et al. Modulation of macrophage functional polarity towards anti-inflammatory phenotype with plasmid DNA delivery in CD44 targeting hyaluronic acid nanoparticles. Sci Rep. 2015;5(1):1–15.
  • Parayath NN, Amiji MM Preparation of hyaluronic acid-based nanoparticles for macrophage-targeted MicroRNA delivery and transfection, In Nanoparticles in biology and medicine :Methods and Protocols, edited by Enrico Ferrari and Mikhail Soloviev, 99–110. Methods in Molecular Biology. New York, NY: Springer US. 2020. p. 99–110.
  • Shahbazi M-A, Sedighi M, Bauleth-Ramos T, et al. Targeted reinforcement of macrophage reprogramming toward M2 polarization by IL-4-loaded hyaluronic acid particles. ACS Omega. 2018;3(12):18444–18455.
  • Badylak SF, Valentin JE, Ravindra AK, et al. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14(11):1835–1842.
  • Kim Y-H, Furuya H, Tabata Y. Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials. 2014;35(1):214–224.
  • Li T, Peng M, Yang Z, et al. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomater. 2018;71:96–107.
  • Eren AD, Sinha R, Eren ED, et al. Decellularized porcine achilles tendon induces anti-inflammatory macrophage phenotype in vitro and tendon repair in vivo. J Immunol Regen Med. 2020;8:100027.
  • Spiller KL, Freytes DO, Vunjak-Novakovic G. Macrophages modulate engineered human tissues for enhanced vascularization and healing. Ann Biomed Eng. 2015;43(3):616–627.
  • Hsu C-W, Poché RA, Saik JE, et al. Improved angiogenesis in response to localized delivery of macrophage-recruiting molecules. PloS One. 2015;10(7).
  • Harel-Adar T, Mordechai TB, Amsalem Y, et al. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Nat Acad Sci. 2011;108(5):1827–1832.
  • Smits AIPM, Bouten CVC. Tissue engineering meets immunoengineering: prospective on personalized in situ tissue engineering strategies. Curr Opin Biomed Eng. 2018;6:17–26.
  • Godwin JW, Debuque R, Salimova E, et al. Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen Med. 2017;2(1):1–11.
  • *BARTHES JGD, Dollinger C, Muller CB, et al. Corrigendum: immune assisted tissue engineering via incorporation of macrophages in cell-laden hydrogels under cytokine stimulation. Front Bioeng Biotechnol. 2019;7:29.
  • Wu R-X, Ma C, Liang Y, et al. ECM-mimicking nanofibrous matrix coaxes macrophages toward an anti-inflammatory phenotype: cellular behaviors and transcriptome analysis. Appl Mater Today. 2020;18:100508.
  • Gou S, Huang Y, Wan Y, et al. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials. 2019;212:39–54.
  • Wang B, Zhuang X, Deng Z-B, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22(3):522–534.
  • Wei F, Lang Y, Shen Q, et al. Osteopontin-loaded PLGA nanoparticles enhance the intestinal mucosal barrier and alleviate inflammation via the NF-κB signaling pathway. Colloids Surf B Biointerfaces. 2020;190:110952.
  • Kunjachan S, Gupta S, Dwivedi AK, et al. Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis. J Microencapsul. 2011;28(4):301–310.
  • Monteiro LM, Löbenberg R, Ferreira EI, et al. Targeting Leishmania amazonensis amastigotes through macrophage internalisation of a hydroxymethylnitrofurazone nanostructured polymeric system. Int J Antimicrob Agents. 2017;50(1):88–92.
  • Esfandiari F, Motazedian MH, Asgari Q, et al. Paromomycin-loaded mannosylated chitosan nanoparticles: synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Trop. 2019;197:105072.
  • Clemens DL, Lee B-Y, Xue M, et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 2012;56(5):2535–2545.
  • Vieira AC, Magalhães J, Rocha S, et al. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine. 2017;12(24):2721–2736.
  • Narayanasamy P, Switzer BL, Britigan BE. Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Sci Rep. 2015;5(1):8824.
  • Shegokar R, Singh KK. Preparation, characterization and cell based delivery of stavudine surface modified lipid nanoparticles. Journal of Nanomedicine & Biotherapeutic Discovery. 2012;2(3):1–9.
  • Gouveia VM, Lopes-de-Araújo J, Costa Lima SA, et al. Hyaluronic acid-conjugated pH-sensitive liposomes for targeted delivery of prednisolone on rheumatoid arthritis therapy. Nanomedicine. 2018;13(9):1037–1049.
  • Heo R, You DG, Um W, et al. Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis. Biomaterials. 2017;131:15–26.
  • Bilthariya U, Jain N, Rajoriya V, et al. Folate-conjugated albumin nanoparticles for rheumatoid arthritis-targeted delivery of etoricoxib. Drug Dev Ind Pharm. 2015;41(1):95–104.
  • Varasteh Z, Mohanta S, Li Y, et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68 Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques. EJNMMI Res. 2019;9(1):5.
  • Tae H, Lee S, Ki CS. β-Glucan hybridized poly(ethylene glycol) microgels for macrophage-targeted protein delivery. J Ind Eng Chem. 2019;75:69–76.
  • Mudakavi RJ, Raichur AM, Chakravortty D. Lipid coated mesoporous silica nanoparticles as an oral delivery system for targeting and treatment of intravacuolar Salmonella infections. RSC Adv. 2014;4(105):61160–61166.
  • Sakhrani NM, Padh H. Organelle targeting: third level of drug targeting. Drug Des Devel Ther. 2013;7:585.
  • Kim J, Bae J-S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016;2016:1–11.
  • Colvin EK. Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front Oncol. 2014;4:137.
  • Flecken T, Sarobe P. Tim-3 expression in tumour-associated macrophages: a new player in HCC progression. Gut. 2015;64(10):1502–1503.
  • Fujiwara Y, Komohara Y, Ikeda T, et al. Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription‐3 and nuclear factor‐kappa B in tumor cells and tumor‐associated macrophages. Cancer Sci. 2011;102(1):206–211.
  • Wang Y, Lin Y-X, Qiao S-L, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials. 2017;112:153–163.
  • Su L, Zhang W, Wu X, et al. Glycocalyx‐mimicking nanoparticles for stimulation and polarization of macrophages via specific interactions. Small. 2015;11(33):4191–4200.
  • Niu M, Naguib YW, Aldayel AM, et al. Biodistribution and in vivo activities of tumor-associated macrophage-targeting nanoparticles incorporated with doxorubicin. Mol Pharm. 2014;11(12):4425–4436.
  • Qian Y, Qiao S, Dai Y, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11(9):9536–9549.
  • Locke LW, Mayo MW, Yoo AD, et al. PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes. Biomaterials. 2012;33(31):7785–7793.
  • Huang W-C, Chen S-H, Chiang W-H, et al. Tumor microenvironment-responsive nanoparticle delivery of chemotherapy for enhanced selective cellular uptake and transportation within tumor. Biomacromolecules. 2016;17(12):3883–3892.
  • Penn CA, Yang K, Zong H, et al. Therapeutic impact of nanoparticle therapy targeting tumor-associated macrophages. Mol Cancer Ther. 2018;17(1):96–106.
  • Zimel MN, Horowitz CB, Rajasekhar VK, et al. HPMA–copolymer nanocarrier targets tumor-associated macrophages in primary and metastatic breast cancer. Mol Cancer Ther. 2017;16(12):2701–2710.
  • Iwata H, Goettsch C, Sharma A, et al. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nat Commun. 2016;7(1):1–19.
  • Gustafson HH, Holt-Casper D, Grainger DW, et al. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510.
  • Mayor S, Parton RG, Donaldson JG. Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol. 2014;6(6):a016758.
  • Kadiu I, Nowacek A, McMillan J, et al. Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine. 2011;6(6):975–994.
  • Moore TL, Hauser D, Gruber T, et al. Cellular shuttles: monocytes/macrophages exhibit transendothelial transport of nanoparticles under physiological flow. ACS Appl Mater Interfaces. 2017;9(22):18501–18511.
  • Low PS, Turk MJ. Treatment and diagnosis of macrophage mediated disease. Google Patents; 2008.
  • Low PS, Turk MJ. Treatment of macrophage mediated disease. Google Patents; 2010.
  • Kay H. Platinum complexes for targeted drug delivery. Google Patents; 2011.
  • Gieseler RK, Marquitan G, Scolaro M, et al. Targeted lipid-drug formulations for delivery of drugs to myeloid and lymphoid immune cells. Google Patents; 2016.
  • Hulsmans M, Nahrendorf M, Weissleder R. Targeting macrophages to modulate electrical conduction in the heart. Google Patents; 2019.
  • Tveita A. Fusion proteins targeting tumour associated macrophages for treating cancer. Google Patents; 2019.
  • Vlahov IR, Leamon CP, Qi L, et al. Folate conjugate for use in targeting tumor associated macrophages. Google Patents; 2020.
  • Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. Aaps Pharmscitech. 2014;15(6):1527–1534.
  • **Abid S, Marcos E, Parpaleix A, et al. CCR2/CCR5-mediated macrophage–smooth muscle cell crosstalk in pulmonary hypertension. Eur Respir J. 54(4):1802308. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.