3,012
Views
13
CrossRef citations to date
0
Altmetric
Review

Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases

, , , &
Pages 151-167 | Received 02 Jul 2020, Accepted 11 Sep 2020, Published online: 06 Oct 2020

References

  • Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature. 2004;430:242–249.
  • Rohr JR, Barrett CB, Civitello DJ, et al. Emerging human infectious diseases and the links to global food production. Nat Sustain. 2019;2:445–456.
  • Morens DM, Fauci AS. Emerging infectious diseases: Threats to human health and global stability. PLoS Pathog. 2013;9(7):e1003467.
  • Bloom DE, Cadarette D. Infectious disease threats in the twenty-first century: Strengthening the global response. Front Immunol. 2019;10:549.
  • Cohen ML. Changing patterns of infectious disease. Nature. 2000;406:762–767.
  • Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature. 2008;451:990–993.
  • Muehlenbein MP. Disease and human/animal interactions. Annu Rev Anthropol. 2016;45:395–416.
  • Bloom DE, Black S, Rappuoli R. Emerging infectious diseases: A proactive approach. Proc Natl Acad Sci U S A. 2017;114(16):4055–4059.
  • Lee VJ, Ho M, Kai CW, et al. Epidemic preparedness in urban settings: New challenges and opportunities. Lancet Infect Dis. 2020;20(5):527–529.
  • Nicola M, Alsafi Z, Sohrabi C, et al. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg. 2020;78:185–193.
  • Miller IF, Becker AD, Grenfell BT, et al. Disease and healthcare burden of COVID-19 in the United States. Nat Med. 2020;26:1212–1217.
  • Anderson RM, Heesterbeek H, Klinkenberg D, et al. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020;395(10228):931–934.
  • Hiscott J, Alexandridi M, Muscolini M, et al. The global impact of the coronavirus pandemic. Cytokine Growth F R. 2020;53:1–9.
  • Yang P, Wang X. COVID-19: A new challenge for human beings. Cell Mol Immunol. 2020;17:555–557.
  • Wang YT, Landeras-Bueno S, Hsieh L, et al. Spiking pandemic potential: Structural and immunological aspects of SARS-CoV-2. Trends Microbiol. 2020;28(8):605–618.
  • Zhang J, Litvinova M, Liang Y, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. 2020;368(6498):1481–1486.
  • Guan W, Chen R, Zhong N. Strategies for the prevention and management of coronavirus disease 2019. Eur Respir J. 2020;55:2000597.
  • Xiao Y, Torok ME. Taking the right measures to control COVID-19. Lancet Infect Dis. 2020;20(5):523–524.
  • Ladner JT, Grubaugh ND, Pybus OG, et al. Precision epidemiology for infectious disease control. Nat Med. 2019;25:206–211.
  • Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368(6489):395–400.
  • Kraemer MUG, Yang CH, Gutierrez B, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science. 2020;368(6490):493–497.
  • Liang C. New opportunities to meet the grand challenges in infectious diseases. Front Genome Ed. 2020;2:1.
  • Dhama K, Sharun K, Tiwari R, et al. COVID-19, an emerging coronavirus infection: Advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccine Immunother. 2020;16(6):1232–1238.
  • Marston HD, Folkers GK, Morens DM, et al. Emerging viral diseases: Confronting threats with new technologies. Sci Transl Med. 2014;6(253):253ps10.
  • Rauch S, Jasny E, Schmidt KE, et al. New vaccine technologies to combat outbreak situations. Front Immunol. 2018;9:1963.
  • Zhang C, Maruggi G, Shan H, et al. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.
  • Cable J, Srikantiah P, Crowe JE Jr, et al. Vaccine innovations for emerging infectious diseases—a symposium report. Ann NY Acad Sci. 2020;1462:14–26.
  • Quaresma JAS. Organization of the skin immune system and compartmentalized immune responses in infectious diseases. Clin Microbiol Rev. 2019;32(4):e00034–18.
  • Netea MG, Schlitzer A, Placek K, et al. Innate and adaptive immune memory: An evolutionary continuum in the host’s response to pathogens. Cell Host Microbe. 2019;25(1):13–26.
  • Jo EK. Interplay between host and pathogen: Immune defense and beyond. Exp Mol Med. 2019;51:149.
  • Sehrawat S, Rouse BT. Immunity to infections. eLS. 2017;1–12.
  • Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34.
  • Pezeshki A, Ovsyannikova IG, McKinney BA, et al. The role of systems biology approaches in determining molecular signatures for the development of more effective vaccines. Expert Rev Vaccines. 2019;18(3):253–267.
  • Pulendran B, Ahmed R. Translating innate immunity into immunological memory: Implications for vaccine development. Cell. 2006;124(4):849–863.
  • Koff WC, Burton DR, Johnson PR, et al. Accelerating next-generation vaccine development for global disease prevention. Science. 2013;340(6136):1232910.
  • Bookstaver ML, Tsai SJ, Bromberg JS, et al.. Improving vaccine and immunotherapy design using biomaterials. Trends Immunol. 2018;39(2):135–150.
  • Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol. 2019;196(2):189–204.
  • Chesson CB, Ekpo-Otu S, Endsley JJ, et al. Biomaterials-based vaccination strategies for the induction of CD8+ T cell responses. ACS Biomater Sci Eng. 2017;3:126–143.
  • Chen Z, Lv Y, Qi J, et al. Overcoming or circumventing the stratum corneum barrier for efficient transcutaneous immunization. Drug Discov Today. 2018;23(1):181–186.
  • Gamazo C, Pastor Y, Larrañeta E, et al. Understanding the basis of transcutaneous vaccine delivery. Ther Deliv. 2019;10(1):63–80.
  • Harder J, Schroder JM, Glaser R. The skin surface as antimicrobial barrier: Present concepts and future outlooks. Exp Dermatol. 2013;22(1):1–5.
  • Kabashima K, Honda T, Ginhoux F, et al. The immunological anatomy of the skin. Nat Rev Immunol. 2019;19:19–30.
  • Tsuruta D, Green KJ, Getsios S, et al. The barrier function of skin: How to keep a tight lid on water loss. Trends Cell Biol. 2002;12(8):355–357.
  • Eyerich S, Eyerich K, Traidl-Hoffmann C, et al. Cutaneous barriers and skin immunity: Differentiating a connected network. Trends Immunol. 2018;39(4):315–327.
  • Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: Innate lymphocytes, dendritic cells and T cells. Nat Immunol. 2013;14(10):978–985.
  • Larregina AT, Falo LD. Changing paradigms in cutaneous immunology: Adapting with dendritic cells. J Invest Dermatol. 2005;124(1):1–12.
  • Engelke L, Winter G, Hook S, et al. Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine. 2015;33(37):4663–4674.
  • Kupper TS. Old and new: Recent innovations in vaccine biology and skin T cells. J Invest Dermatol. 2012;132(302):829–834.
  • Huang CM. Topical vaccination: The skin as a unique portal to adaptive immune responses. Semin Immunopathol. 2007;29(1):71–80.
  • Mathers AR, Larregina AT. Professional antigen-presenting cells of the skin. Immunol Res. 2006;36(1–3):127–136.
  • Combadiere B, Liard C. Transcutaneous and intradermal vaccination. Hum Vaccin. 2011;7(8):811–827.
  • Banchereau J, Klechevsky E, Schmitt N, et al. Harnessing human dendritic cell subsets to design novel vaccines. Ann N Y Acad Sci. 2009;1174:24–32.
  • Sparber F, Tripp CH, Hermann M, et al. Langerhans cells and dermal dendritic cells capture protein antigens in the skin: Possible targets for vaccination through the skin. Immunobiology. 2010;215(9–10):770–779.
  • Romani N, Thurnher M, Idoyaga J, et al. Targeting of antigens to skin dendritic cells: Possibilities to enhance vaccine efficacy. Immunol Cell Biol. 2010;88(4):424–430.
  • Levin C, Perrin H, Combadiere B. Tailored immunity by skin antigen-presenting cells. Hum Vaccine Immunother. 2015;11(1):27–36.
  • Fehres CM, Garcia-Vallejo JJ, Unger WWJ, et al. Skin-resident antigen-presenting cells: Instruction manual for vaccine development. Front Immunol. 2013;4:157.
  • Paus R, Schroder JM, Reich K, et al. Who is really in control of skin immunity under physiological circumstances –lymphocytes, dendritic cells or keratinocytes? Exp Dermatol. 2007;15(11):913–929.
  • Sugita K, Kabashima K, Atarashi K, et al.. Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clin Exp Immunol. 2006;147(1):176–183.
  • Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight. 2019;4(1):e123947.
  • Miller LS, Modlin RL. Toll-like receptors in the skin. Semin Immunopathol. 2007;29:15–26.
  • Glenn GM, Kenney RT. Mass vaccination: Solutions in the skin. Curr Top Microbiol Immunol. 2006;304:247–268.
  • Karande P, Mitragotri S. Transcutaneous immunization: An overview of advantages, disease targets, vaccines, and delivery technologies. Annu Rev Chem Biomol Eng. 2010;1:175–201.
  • Zaric M, Becker PD, Hervouet C, et al. Skin immunisation activates an innate lymphoid cell-monocyte axis regulating CD8+ effector recruitment to mucosal tissues. Nat Commun. 2019;10:2214.
  • Chen D, Endres RL, Erickson CA, et al. Epidermal immunization by a needle-free powder delivery technology: Immunogenicity of influenza vaccine and protection in mice. Nat Med. 2000;6:1187–1190.
  • Pan Y, Liu L, Tian T, et al. Skin delivery of modified vaccinia ankara viral vectors generates Superior T cell immunity against a respiratory viral challenge. 2020: Preprint at DOI: 10.1101/2020.05.06.079046.
  • Liu L, Zhong Q, Tian T, et al. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat Med. 2010;16(2):224–227.
  • Jiang X, Clark RA, Liu L, et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature. 2012;483:227–231.
  • Amorij JP, Kersten GFA, Saluja V, et al. Towards tailored vaccine delivery: Needs, challenges and perspectives. J Control Release. 2010;161(2):363–376.
  • Bal SM, Ding Z, Riet Ev, et al. Advances in transcutaneous vaccine delivery: Do all ways lead to Rome?. J Control Release. 2010;148(3):266–282.
  • Mikszta JA, Alarcon JB, Brittingham JM, et al. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med. 2002;8(4):415–419.
  • Koutsonanos DG, MdP Martin, Zarnitsyn VG, et al. Transdermal influenza immunization with vaccine coated microneedle arrays. PLoS One. 2009;4(3):e4773.
  • Gorzelanny C, Mess C, Schneider SW, et al. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them? Pharmaceutics. 2020;12(7):684.
  • Brewer MG, Anderson EA, Pandya RP, et al. Peptides derived from the tight junction protein CLDN1 disrupt the skin barrier and promote responsiveness to an epicutaneous vaccine. J Invest Dermatol. 2020;140(2):361–369.e3.
  • Yan L, Alba M, Tabassum N, et al. Micro- and nanosystems for advanced transdermal delivery. Adv Therap. 2019;2:1900141.
  • Mitragotri S. Immunization without needles. Nat Rev Immunol. 2005;5(12):905–916.
  • Lee MY, Shin MC, Yang VC. Transcutaneous antigen delivery system. BMB Rep. 2013;46(1):17–24.
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–1258.
  • Gonnet J, Poncelet L, Meriaux C, et al. Mechanisms of innate events during skin reaction following intradermal injection of seasonal influenza vaccine. J Proteom. 2020;216:103670.
  • Lambert PH, Laurent PE. Intradermal vaccine delivery: Will new delivery systems transform vaccine administration?. Vaccine. 2008;26:3197–3208.
  • Matsuo K, Hirobe S, Okada N, et al. Frontiers of transcutaneous vaccination systems: Novel technologies and devices for vaccine delivery. Vaccine. 2013;31(19):2403–2415.
  • Kim YC, Jarrahian C, Zehrung D, et al. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol. 2012;351:77–112.
  • Kim YC, Prausnitz MR. Enabling skin vaccination using new delivery technologies. Drug Deliv Transl Res. 2011;1:7–12.
  • Hauri AM, Armstrong GL, Hutin YJF. The global burden of disease attributable to contaminated injections given in health care settings. Int J Std Aids. 2004;15:7–16.
  • Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447:12–21.
  • Karande P, Jain A, Ergun K, et al. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc Natl Acad Sci U S A. 2005;102(13):4688–4693.
  • Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–137.
  • Zyl Lv, Preez J, Gerber M, et al. Essential fatty acids as transdermal penetration enhancers. J Pharm Sci. 2016;105:188–193.
  • Barry BW. Mode of action of penetration enhancers in human skin. J Control Release. 1987;6:85–97.
  • Asbill CS, Michniak BB. Percutaneous penetration enhancers: Local versus transdermal activity. Pharmaceut Sci Tech Today. 2000;3(1):36–41.
  • Pathan IB, Setty CM. Chemical penetration enhancers for transdermal drug delivery systems. Trop J Pharm Res. 2009;8(2):173–179.
  • Ahad A, Aqil M, Kohli K, et al. Chemical penetration enhancers: A patent review. Expert Opin Ther Pat. 2009;19(7):969–988.
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268.
  • Arora A, Kisak E, Karande P, et al. Multicomponent chemical enhancer formulations for transdermal drug delivery: More is not always better. J Control Release. 2010;144:175–180.
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–124.
  • Mitragotri S. Devices for overcoming biological barriers: The use of physical forces to disrupt the barriers. Adv Drug Deliv Rev. 2013;65:100–103.
  • Alexander A, Dwivedi S, Ajazuddin, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012;164:26–40.
  • Weiss R, Hessenberger M, Kitzmuller S, et al. Transcutaneous vaccination via laser microporation. J Control Release. 2010;162(2):391–399.
  • Tadros AR. STAR particles for enhanced cutaneous delivery of topical therapeutics. Georgia Institute of Technology; 2017; Atlanta, GA, USA.
  • Tadros AR, Romanyuk A, Miller IC, et al. STAR particles for enhanced topical drug and vaccine delivery. Nat Med. 2020;26:341–347.
  • Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382:607–609.
  • Banga RJ, Chernyak N, Narayan SP, et al. Liposomal spherical nucleic acids. J Am Chem Soc. 2014;136:9866–9869.
  • Zheng D, Giljohann DA, Chen DL, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci U S A. 2012;109(30):11975–11980.
  • Choi CHJ, Hao L, Narayan SP, et al. Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci U S A. 2013;110(19):7625–7630.
  • Liu H, Kang RS, Bagnowski K, et al. Targeting the IL-17 receptor using liposomal spherical nucleic acids as topical therapy for psoriasis. J Invest Dermatol. 2020;140(2):435–444.e4.
  • Korkmaz E, Falo LD. Spherical nucleic acids as emerging topical therapeutics: A focus on psoriasis. J Invest Dermatol. 2020;140:278–281.
  • Lewandowski KT, Thiede R, Guido N, et al. Topically delivered tumor necrosis factor-a targeted gene regulation for psoriasis. J Invest Dermatol. 2017;137:2027–2030.
  • Mokhtarzadeh A, Vahidnezhad H, Youssefian L, et al.. Applications of spherical nucleic acid nanoparticles as delivery systems. Trends Mol Med. 2019;25(12):1066–1079.
  • Radovic-Moreno AF, Chernyak N, Mader CC, et al. Immunomodulatory spherical nucleic acids. Proc Natl Acad Sci U S A. 2015;112(13):3892–3897.
  • Wang S, Qin L, Yamankurt G, et al. Rational vaccinology with spherical nucleic acids. Proc Natl Acad Sci U S A. 2019;116(21):10473–10481.
  • Skakuj K, WangS, Qin L, et al. Conjugation chemistry-dependent T‑cell activation with spherical nucleic acids. J Am Chem Soc. 2018;140:1227–1230.
  • Guan C, Chernyak N, Dominguez D, et al. RNA-based immunostimulatory liposomal spherical nucleic acids as potent TLR7/8 modulators. Small. 2018;14(9):e1803284.
  • Yamankurt G, Berns EJ, Xue A, et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat Biomed Eng. 2019;3:318–327.
  • Liu Y, Chen X. Efficient screening of spherical nucleic acids. Nat Biomed Eng. 2019;3:257–258.
  • Kapadia CH, Melamed JR, Day ES. Spherical nucleic acid nanoparticles: Therapeutic potential. BioDrugs. 2018;32:297–309.
  • Vance RE, Eichberg MJ, Portnoy DA, et al. Listening to each other: Infectious disease and cancer immunology. Sci Immunol. 2017;2:eaai9339.
  • Amanat F, Krammer F. SARS-CoV-2 vaccines: Status report. Immunity. 2020;52(4):583–589.
  • Le TT, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19:305–306.
  • Mullard A. COVID-19 vaccine development pipeline gears up. Lancet. 2020;395:1751–1752.
  • Henry S, McAllister DV, Allen MG, et al. Microfabricated microneedles: A novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922–925.
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64:1547–1568.
  • McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng. 2000;2:289–313.
  • Hong X, Wei L, Wu F, et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther. 2013;7:945–952.
  • Rodgers AM, Cordeiro AS, Donnelly RF. Technology update: Dissolvable microneedle patches for vaccine delivery. Med Devices (Auckl). 2019;12:379–398. .
  • Uppu DSSM, Turvey ME, Sharif ARM, et al. Temporal release of a three-component protein subunit vaccine from polymer multilayers. J Control Release. 2020;317:130–141.
  • DeMuth PC, Min Y, Huang B, et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater. 2013;12:367–376.
  • Shields CW IV, Wang LLW, Evans MA, et al. Materials for immunotherapy. Adv Mater. 2020;32:1901633.
  • Larrañeta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32.
  • Schepens B, Vos PJ, Saelens X, et al. Vaccination with influenza hemagglutinin-loaded ceramic nanoporous microneedle arrays induces protective immune responses. Eur J Pharm Biopharm. 2019;136:259–266.
  • Du G, Sun X. Current advances in sustained release microneedles. Pharma Fronts. 2020;2:e11–e22.
  • Wang PM, Cornwell M, Hill J, et al. Precise microinjection into skin using hollow microneedles. J Invest Dermatol. 2006;126:1080–1087.
  • Singh P, Carrier A, Chen Y, et al. Polymeric microneedles for controlled transdermal drug delivery. J Control Release. 2019;315:97–113.
  • Kim MJ, Park SC, Rizal B, et al. Fabrication of circular obelisk-type multilayer microneedles using micro-milling and spray deposition. Front Bioeng Biotech. 2018;6:54.
  • Jamaledin R, Natale CD, Onesto V, et al. Progress in microneedle-mediated protein delivery. J Clin Med. 2020;9:542.
  • He X, Sun J, Zhuang J, et al. Microneedle system for transdermal drug and vaccine delivery: Devices, safety, and prospects. Dose Response. 2019;17(4):1559325819878585.
  • Rad ZF, Nordon RE, Anthony CJ, et al. High-fidelity replication of thermoplastic microneedles with open microfluidic channels. Microsyst Nanoeng. 2017;3:17034.
  • Balmert SC, Carey CD, Falo GD, et al. Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J Control Release. 2020;317:336–346.
  • Kim JD, Kim M, Yang H, et al. Droplet-born air blowing: Novel dissolving microneedle fabrication. J Control Release. 2013;170:430–436.
  • Yang H, Kim S, Kang G, et al. Centrifugal lithography: Self-shaping of polymer microstructures encapsulating biopharmaceutics by centrifuging polymer drops. Adv Healthc Mater. 2017;6:1700326.
  • Krieger KJ, Bertollo N, Dangol M, et al. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng. 2019;5:42.
  • Donnelly RF, Majithiya R, Singh TRR, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57.
  • Lutton REM, Larrañeta E, Kearney MC, et al. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int J Pharm. 2015;494(1):417–429.
  • Ingrole RSJ, Gill HS. Microneedle coating methods: A review with a perspective. J Pharmacol Exp Ther. 2019;370(3):555–569.
  • Sammoura F, Kang J, Heo YM, et al. Polymeric microneedle fabrication using a microinjection molding technique. Microsyst Technol. 2007;13(5):517–522.
  • Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117:227–237.
  • Luttge R, Berenschot EJW, de Boer MJ, et al. Integrated lithographic molding for microneedle-based devices. J Microelectromech S. 2007;16(4):872–884.
  • Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29:2113–2124.
  • Moga KA, Bickford LR, Geil RD, et al. Rapidly–dissolvable microneedle patches via a highly scalable and reproducible soft lithography approach. Adv Mater. 2013;25:5060–5066.
  • Bediz B, Korkmaz E, Khilwani R, et al. Dissolvable microneedle arrays for intradermal delivery of biologics: Fabrication and application. Pharm Res. 2014;31:117–135.
  • Yeung C, Chen S, King B, et al. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics. 2019;13:064125.
  • Courtenay AJ, Rodgers AM, McCrudden MTC, et al. Novel hydrogel-forming microneedle array for intradermal vaccination in mice using ovalbumin as a model protein antigen. Mol Pharm. 2019;16(1):118–127.
  • Groot AMd, Platteel ACM, Kuijt N, et al. Nanoporous microneedle arrays effectively induce antibody responses against diphtheria and tetanus toxoid. Front Immunol. 2017;8:1789.
  • Xiang Z, Wang H, Pant A, et al. Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery. Biomicrofluidics. 2013;7:026502.
  • Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release. 2011;149:242–249.
  • Lee K, Kim JG, Lee CY, et al. A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. Biomaterials. 2011;32:7705–7710.
  • Chen MC, Huang SF, Lai KY, et al. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials. 2013;34:3077–3086.
  • Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng. 2017;8:177–200.
  • Bhatnagar S, Gadeela PR, Thathireddy P, et al. Microneedle-based drug delivery: Materials of construction. J Chem Sci. 2019;131:90.
  • Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release. 2016;240:135–141.
  • Bae WG, Ko H, So JY, et al. Snake fang–inspired stamping patch for transdermal delivery of liquid formulations. Sci Transl Med. 2019;11(503):eaaw3329.
  • Kolluru C, Gomaa Y, Prausnitz MR. Development of a thermostable microneedle patch for polio vaccination. Drug Deliv Transl Res. 2019;9:192–203.
  • Peyraud N, Zehrung D, Jarrahian C, et al. Potential use of microarray patches for vaccine delivery in low- and middle- income countries. Vaccine. 2019;37(32):4427–4434.
  • Vrdoljak A, McGrath MG, Carey JB, et al. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J Control Release. 2012;159:34–42.
  • Leone M, Monkare J, Bouwstra JA, et al. Dissolving microneedle patches for dermal vaccination. Pharm Res. 2017;34(11):2223–2240. .
  • Ye Y, Jicheng Y, Wen D, et al. Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev. 2018;127:106–118.
  • Liao JF, Lee JC, Lin CK, et al. Self-assembly DNA polyplex vaccine inside dissolving microneedles for high-potency intradermal vaccination. Theranostics. 2017;7(10):2593–2605.
  • Chandrasekhar S, Iyer LK, Panchal JP, et al. Microarrays and microneedle arrays for delivery of peptides, proteins, vaccines and other applications. Expert Opin Drug Deliv. 2013;10(8):1155–1170.
  • Kim E, Erdos G, Huang S, et al. Preventative vaccines for Zika virus outbreak: Preliminary evaluation. EBioMedicine. 2016;13:315–320.
  • DeMuth PC, Li AV, Abbink P, et al. Vaccine delivery with microneedle skin patches in nonhuman primates. Nat Biotechnol. 2013;31(12):1082–1085.
  • Bachy V, Hervouet C, Becker PD, et al. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proc Natl Acad Sci U S A. 2013;110(8):3041–3046.
  • Sullivan SP, Koutsonanos DG, Martin MdP, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16:915–920.
  • Moon S, Wang Y, Edens C, et al. Dose sparing and enhanced immunogenicity of inactivated rotavirus vaccine administered by skin vaccination using a microneedle patch. Vaccine. 2013;31(34):3396–3402.
  • Nguyen TT, Choi J, Kim JS, et al. Skin immunization with third-generation hepatitis B surface antigen using microneedles. Vaccine. 2019;37:5954–5961.
  • Pastor Y, Larrañeta E, Erhard A, et al. Dissolving microneedles for intradermal vaccination against shigellosis. Vaccines (Basel). 2019;7(4):159.
  • Prow TW, Chen X, Prow NA, et al. Nanopatch-targeted skin vaccination against west nile virus and chikungunya virus in mice. Small. 2010;6(16):1776–1784.
  • Turvey ME, Uppu DSSM, Sharif ARM, et al. Microneedle-based intradermal delivery of stabilized dengue virus. Bioeng Transl Med. 2019;4:e10127.
  • Meyer BK, Kendall MAF, Williams DM, et al. Immune response and reactogenicity of an unadjuvanted intradermally delivered human papillomavirus vaccine using a first generation NanopatchTM in rhesus macaques: An exploratory, pre-clinical feasibility assessment. Vaccine: X. 2019;2:100030.
  • Pearson FE, O’Mahony C, Moore AC, et al. Induction of CD8+ T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine. Vaccine. 2015;33(28):3248–3255.
  • Christiansen D, Earnest-Silveira L, Grubor-Bauk B, et al. Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci Rep. 2019;9:9251.
  • Yan Q, Cheng Z, Liu H, et al. Enhancement of Ag85B DNA vaccine immunogenicity against tuberculosis by dissolving microneedles in mice. Vaccine. 2018;36:4471–4476.
  • Matsuo K, Hirobe S, Yokota Y, et al. Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza. J Control Release. 2012;160:495–501.
  • Ding Z, Verbaan FJ, Bivas-Benita M, et al. Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release. 2009;136:71–78.
  • Donadei A, Kraan H, Ophorst O, et al. Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J Control Release. 2019;311-312:96–103.
  • Edens C, Dybdahl-Sissoko NC, Weldon WC, et al. Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. Vaccine. 2015;33:4683–4690.
  • Chen YC, Chen SJ, Cheng HF, et al. Development of Yersinia pestis F1 antigen-loaded liposome vaccine against plague using microneedles as a delivery system. J Drug Deliv Sci Technol. 2020;55:101443.
  • Mikszta JA, Dekker JP, Harvey NG, et al. Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. Infect Immun. 2006;74(12):6806–6810.
  • Mikszta JA, Sullivan VJ, Dean C, et al. Protective immunization against inhalational anthrax: A comparison of minimally invasive delivery platforms. J Infect Dis. 2005;191(2):278–288.
  • Liu Y, Ye L, Lin F, et al. Intradermal vaccination with adjuvanted ebola virus soluble glycoprotein subunit vaccine by microneedle patches protects mice against lethal ebola virus challenge. J Infect Dis. 2018;218:S545–S552.
  • Liu Y, Ye L, Lin F, et al. Intradermal immunization by ebola virus GP subunit vaccines using microneedle patches protects mice against lethal EBOV challenge. Sci Rep. 2018;8:11193.
  • Kask AS, Chen X, Marshak JO, et al. DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge. Vaccine. 2010;28:7483–7491.
  • Edens C, Collins ML, Goodson JL, et al. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine. 2015;33:4712–4718.
  • Edens C, Collins ML, Ayers J, et al. Measles vaccination using a microneedle patch. Vaccine. 2013;31:3403–3409.
  • Arya JM, Dewitt K, Scott-Garrard M, et al. Rabies vaccination in dogs using a dissolving microneedle patch. J Control Release. 2016;239:19–26.
  • Carey JB, Pearson FE, Vrdoljak A, et al. Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice. Plos One. 2011;6(7):e22442.
  • Jeong HR, Bae JY, Park JH, et al. Preclinical study of influenza bivalent vaccine delivered with a two compartmental microneedle array. J Control Release. 2020;324:280–288.
  • Joyce JC, Carroll TD, Collins ML, et al. A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaques. J Infect Dis. 2018;218(1):124–132.
  • Kim E, Erdos G, Huang S, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine. 2020;55:102743.
  • Maaden Kvd, Trietsch SJ, Kraan H, et al. Novel hollow microneedle technology for depth-controlled microinjection-mediated dermal vaccination: A study with polio vaccine in rats. Pharm Res. 2014;31:1846–1854.
  • Hiraishi Y, Nandakumar S, Choi SO, et al. Bacillus Calmette-Guérin vaccination using a microneedle patch. Vaccine. 2011;29:2626–2636.
  • Choi IJ, Na W, Kang A, et al. Patchless administration of canine influenza vaccine on dog’s ear using insertion-responsive microneedles (IRMN) without removal of hair and its in vivo efficacy evaluation. Eur J Pharm Biopharm. 2020;153:150–157.
  • Kommareddy S, Baudner BC, Bonificio A, et al. Influenza subunit vaccine coated microneedle patches elicit comparable immune responses to intramuscular injection in guinea pigs. Vaccine. 2013;31:3345–3441.
  • Choi YH, Perez-Cuevas MB, Kodani M, et al. Feasibility of Hepatitis B vaccination by microneedle patch: Cellular and humoral immunity studies in rhesus macaques. J Infect Dis. 2019;220:1926–1934.
  • Perez-Cuevas MB, Kodani M, Choi Y, et al. Hepatitis B vaccination using a dissolvable microneedle patch is immunogenic in mice and rhesus macaques. Bioeng Transl Med. 2018;3:186–196.
  • Andrinov AK, DeCollibus DP, Gillis HA, et al. Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc Natl Acad Sci U S A. 2009;106(45):18936–18941.
  • Levin Y, Kochba E, Hung I, et al. Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future. Hum Vaccin Immunother. 2015;11(4):991–997.
  • Rouphael NG, Paine M, Mosley R, et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017;390(10095):649–658.
  • Forster AH, Witham K, Depelsenaire ACI, et al. Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial. Plos Med. 2020;17(3):e1003024.
  • Vescovo P, Rettby N, Ramaniraka N, et al. Safety, tolerability and efficacy of intradermal rabies immunization with DebioJectTM. Vaccine. 2017;35:1782–1788.
  • Jahan N, Archie SR, Shoyaib AA, et al. Recent approaches for solid dose vaccine delivery. Sci Pharm. 2019;87(4):27.
  • Nguyen TT, Oh K, Kim Y, et al. Progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccin Immunother. 2020. In Press.
  • Badizadegan K, Goodson JL, Rota PA, et al. The potential role of using vaccine patches to induce immunity: Platform and pathways to innovation and commercialization. Exp Rev Vaccines. 2020;19(2):175–194.
  • Marshall S, Sahm LJ, Moore AC. The success of microneedle-mediated vaccine delivery. Human Vaccin Immunother. 2016;12(11):2975–2983.
  • Lee KJ, Jeong SS, Roh DH, et al. A practical guide to the development of microneedle systems – In clinical trials or on the market. Int J Pharm. 2020;573:118778.
  • Queiroz MLB, Shanmugam S, Santos LNS, et al.. Microneedles as an alternative technology for transdermal drug delivery systems: A patent review. Expert Opin Ther Pat. 2020;30(6):433–452.
  • Weldon WC, Zarnitsyn VG, Esser ES, et al. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PLoS One. 2012;7(7):e41501.
  • McCrudden MTC, Torrisi BM, Al-Zahrani S, et al. Laser-engineered dissolving microneedle arrays for protein delivery: Potential for enhanced intradermal vaccination. J Pharm Pharmacol. 2015;67(3):409–425.
  • Shin JH, Lee JH, Jeong SD, et al. C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin. Drug Deliv Transl Res. 2020;10(3):815–825.
  • Erdos G, Balmert SC, Carey CD, et al. Improved cutaneous genetic immunization by microneedle array delivery of an adjuvanted adenovirus vaccine. J Invest Dermatol. In Press;2020.
  • Shin JH, Noh JY, Kim KH, et al. Effect of zymosan and poly (I:C) adjuvants on responses to microneedle immunization coated with whole inactivated influenza vaccine. J Control Release. 2017;265:83–92.
  • Zhao JH, Zhang QB, Liu B, et al. Enhanced immunization via dissolving microneedle array-based delivery system incorporating subunit vaccine and saponin adjuvant. Int J Nanomed. 2017;12:4763–4772.
  • Patani A, McKay PF, Garland MJ, et al. Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. J Control Release. 2012;162(3):529–537.
  • Muller DA, Depelsenaire ACI, Shannon AE, et al. Efficient delivery of dengue virus subunit vaccines to the skin by microprojection array. Vaccines (Basel). 2019;7(4):189.
  • Fernando GJP, Chen X, Primiero CA, et al. Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody responses. J Control Release. 2012;159:215–221.
  • Vreman S, McCaffrey J, Popma-de Graaf DJ, et al. Toll-like receptor agonists as adjuvants for inactivated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine. Vet Immunol Immunop. 2019;212:27–37.
  • Carter D, Hoeven Nv, Baldwin S, et al. The adjuvant GLA-AF enhances human intradermal vaccine responses. Sci Adv. 2018;4:eaas9930.
  • Depelsenaire ACI, Meliga SC, McNeilly CL, et al. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J Invest Dermatol. 2014;134:2361–2370.
  • Ng HI, Tuong ZK, Fernando GJP, et al. Microprojection arrays applied to skin generate mechanical stress, induce an inflammatory transcriptome and cell death, and improve vaccine-induced immune responses. Npj Vaccines. 2019;4:41.
  • Boopathy AV, Mandal A, Kulp DW, et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc Natl Acad Sci U S A. 2019;116(33):16473–16478.
  • Chen MC, Lai KY, Ling MH, et al. Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater. 2018;65:66–75.
  • DeMuth PC, Min Y, Irvine DJ, et al. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv Healthc Mater. 2014;3(1):47–58.
  • Chiu YH, Chen MC, Wan SW. Sodium hyaluronate/chitosan composite microneedles as a single dose intradermal immunization system. Biomacromolecules. 2018;19:2278–2285.
  • Moon JJ, Huang B, Irvine DJ. Engineering nano- and microparticles to tune immunity. Adv Mater. 2012;24:3724–3746.
  • Irvine DJ, Swartz MA, Szeto GL. Engineering synthetic vaccines using cues from natural immunity. Nat Mater. 2013;12:978–990.
  • Fan Y, Moon JJ. Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:e1403.
  • Silva AL, Soema PC, Slutter B, et al. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother. 2016;12(4):1056–1069.
  • Bachmann MF, Jennings GT. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10:787–796.
  • Slutter B, Jiskoot W. Sizing the optimal dimensions of a vaccine delivery system: A particulate matter. Expert Opin Drug Deliv. 2016;13(2):167–170.
  • Irvine DJ, Read BJ. Shaping humoral immunity to vaccines through antigen-displaying nanoparticles. Curr Opin Immunol. 2020;65:1–6.
  • Pielenhofer J, Sohl J, Windbergs M, et al. Current progress in particle-based systems for transdermal vaccine delivery. Front Immunol. 2020;11:266.
  • Vora LK, Donnelly RF, Larrañeta E, et al. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: Proof of concept. J Control Release. 2017;265:93–101.
  • Angkawinitwong U, Courtenay AJ, Rodgers AM, et al. A novel transdermal protein delivery strategy via electrohydrodynamic coating of PLGA microparticles onto microneedles. ACS Appl Mater Interfaces. 2020;12(11):12478–12488.
  • Du G, Hathout RM, Nasr M, et al. Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J Control Release. 2017;266:109–118.
  • DeMuth PC, Su X, Samuel RE, et al. Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv Mater. 2010;22(43):4851–4856.
  • Yang HW, Ye L, Guo XD, et al. Ebola vaccination using a DNA vaccine coated on PLGA-PLL/γPGA nanoparticles administered using a microneedle patch. Adv Healthc Mater. 2017;6(1):1600750.
  • Li Z, He Y, Deng L, et al. A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. J Mater Chem B. 2020;8:216–225.
  • Tu J, Du G, Nejadnik MR, et al. Mesoporous silica nanoparticle-coated microneedle arrays for intradermal antigen delivery. Pharm Res. 2017;34:1693–1706.
  • Du G, Woythe L, Maaden Kvd, et al. Coated and hollow microneedle-mediated intradermal immunization in mice with diphtheria toxoid loaded mesoporous silica nanoparticles. Pharm Res. 2018;35(10):189.
  • Du G, Hathout RM, Nasr M, et al. Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J Control Release. 2017;266:109–118.
  • Mönkäre J, Pontier M, Kampen EEMv, et al. Development of PLGA nanoparticle loaded dissolving microneedles and comparison with hollow microneedles in intradermal vaccine delivery. Eur J Pharm Biopharm. 2018;119:111–121.
  • Zaric M, Lyubomska O, Touzelet O, et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated Poly‑D,L‑lactideco-Glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano. 2013;7:2042–2055.
  • Zaric M, Lyubomska O, Poux C, et al. Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and Th1 immune responses by murine langerhans cells. J Invest Dermatol. 2015;135:425–434.
  • Guarecuco R, Lu J, McHugh KJ, et al. Immunogenicity of pulsatile-release PLGA microspheres for single-injection vaccination. Vaccine. 2018;36(22):3161–3168.
  • Mazzara JM, Ochyl LJ, Hong JKY, et al. Self‐healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches. Bioeng Transl Med. 2019;4:116–128.
  • DeMuth PC, Garcia-Beltran WF, Ai-Ling ML, et al. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Adv Funct Mater. 2013;23:161–172.
  • Irvine DJ, Aung A, Silva M. Controlling timing and location in vaccines. Adv Drug Deliv Rev. In Press;2020.
  • Tzeng SY, Guarecuco R, McHugh KJ, et al. Thermostabilization of inactivated polio vaccine in PLGA-based microspheres for pulsatile release. J Control Release. 2016;233:101–113.
  • Garcea RL, Meinerz NM, Dong M, et al. Single-administration, thermostable human papillomavirus vaccines prepared with atomic layer deposition technology. Npj Vaccines. 2020;5:45.
  • Lemoine C, Thakur A, Krajišnik D, et al. Technological approaches for improving vaccination compliance and coverage. Vaccines (Basel). 2020;8:304.
  • Gu P, Wusiman A, Zhang Y, et al. Rational design of PLGA nanoparticle vaccine delivery systems to improve immune responses. Mol Pharm. 2019;16:5000–5012.
  • Schipper P, Maaden KVD, Romeijn S, et al. Repeated fractional intradermal dosing of an inactivated polio vaccine by a single hollow microneedle leads to superior immune responses. J Control Release. 2016;242:141–147.
  • Joyce JC, Sella HE, Jost H, et al. Extended delivery of vaccines to the skin improves immune responses. J Control Release. 2019;304:135–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.