617
Views
30
CrossRef citations to date
0
Altmetric
Review

Electrospun nanofiber-based drug delivery platform: advances in diabetic foot ulcer management

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 25-42 | Received 29 Jun 2020, Accepted 11 Sep 2020, Published online: 25 Sep 2020

References

  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas. Diabetes Res Clinical Pract. 2019 September 10;157:107843.
  • Bowering CK. Diabetic foot ulcers. Pathophysiology, assessment, and therapy. Can Family Physician. 2001 May 01; 47(5):1007–1016.
  • Lin S-Y, Lin N-Y, Huang -Y-Y, et al. Methicillin-resistant Staphylococcus aureus nasal carriage and infection among patients with diabetic foot ulcer. J Microbiol Immunol Infect. 2018 April 01;53(2):292–299.
  • Aziz ARA, Alsabek MB. Diabetic foot and disaster; risk factors for amputation during the Syrian crisis. J Diabetes Complications. 2019 Feb;01:107493.
  • Jeyaraman K, Berhane T, Hamilton M, et al. Mortality in patients with diabetic foot ulcer: a retrospective study of 513 cases from a single Centre in the Northern Territory of Australia. BMC Endocr Disord. 2019 Jan 01;19(1):1.
  • Papatheodorou K, Banach M, Bekiari E, et al. Complications of diabetes 2017. J Diabetes Res. 2018 March 11;2018:1–4. .
  • Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019 June 13;5(1):41.
  • Gumy LF, Bampton ET, Tolkovsky AM. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci. 2008 Feb 01;37(2):298–311.
  • Tresierra-Ayala MÁ, García Rojas A. Association between peripheral arterial disease and diabetic foot ulcers in patients with diabetes mellitus type 2. Med Universitaria. 2017 Jan 07;19(76):123–126.
  • Ford HR, Hoffman RA, Wing EJ, et al. Characterization of wound cytokines in the sponge matrix model. Arch Surg. 1989 Dec 01;124(12):1422–1428.
  • Khanna S, Biswas S, Shang Y, et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PloS One. 2010 March 04;5(3):e9539.
  • Zhao H, Lu S, Chai J, et al. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation. J Diabetes Complications. 2017 Sep 01;31(9):1363–1369.
  • Huang S-M, Wu C-S, Chiu M-H, et al. High glucose environment induces M1 macrophage polarization that impairs keratinocyte migration via TNF-α: an important mechanism to delay the diabetic wound healing. J Dermatol Sci. 2019 Dec 01;96(3):159–167.
  • Singh SK, Sahay RK, Krishna A. Oxidative stress in diabetic foot ulcer. Diabetes & metabolic syndrome. Clin Res Rev. 2008 June 01;2(2):109–113.
  • Sadati SM, Radfar M, Hamidi AK, et al. Association between the polymorphism of Glu298Asp in Exon 7 of the eNOS gene with foot ulcer and oxidative stress in adult patients with type 2 diabetes. Can J Diabetes. 2018 Feb 01;42(1):18–22.
  • Müller WE, Tolba E, Dorweiler B, et al. Electrospun bioactive mats enriched with Ca-polyphosphate/retinol nanospheres as potential wound dressing. Biochem Biophys Rep. 2015 Sep;01(3):150–160. .
  • Kim S, Kwon J. Thymosin beta 4 improves dermal burn wound healing via downregulation of receptor of advanced glycation end products in db/db mice. Biochim Biophys Acta Gen Subj. 2014 Dec 01;1840(12):3452–3459.
  • Huang S-M, Wu C-S, Chiu M-H, et al. High-glucose environment induced intracellular O-GlcNAc glycosylation and reduced galectin-7 expression in keratinocytes: implications on impaired diabetic wound healing. J Dermatol Sci. 2017 Aug 01;87(2):168–175.
  • Wang C, Wang Q, Gao W, et al. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing. Acta Biomater. 2018 March;15(69):156–169. .
  • Ren X, Han Y, Wang J, et al. An aligned porous electrospun fibrous membrane with controlled drug delivery–an efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater. 2018 April 01;70:140–153.
  • Lee C-H, Hung K-C, Hsieh M-J, et al. Core-shell insulin-loaded nanofibrous scaffolds for repairing diabetic wounds. Nanomedicine. 2020 Feb 01;24:102123. .
  • Rashtchian M, Hivechi A, Bahrami SH, et al. Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydr Polym. 2020 April 01;233:115873.
  • Venault A, Lin K-H, Tang S-H, et al. Zwitterionic electrospun PVDF fibrous membranes with a well-controlled hydration for diabetic wound recovery. J Membr Sci. 2020 March 15;598:117648. .
  • Yildirimer L, Zhao X, Sun X, et al. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Eur J Vasc Endovascular Surg. 2018 Nov 01;56(5):e19–e20.
  • Jao D, Beachley VZ. Continuous dual-track fabrication of polymer micro-/nanofibers based on direct drawing. ACS Macro Lett. 2019 May 03;8(5):588–595.
  • Tao SL, Desai TA. Aligned arrays of biodegradable poly (ϵ-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett. 2007 May 08;7(6):1463–1468.
  • You F, Li Y, Zou Q, et al. Fabrication and osteogenesis of a porous nanohydroxyapatite/polyamide scaffold with an anisotropic architecture. ACS Biomater Sci Eng. 2015 Aug 13;1(9):825–833.
  • Guler MO, Hsu L, Soukasene S, et al. Presentation of RGDS epitopes on self-assembled nanofibers of branched peptide amphiphiles. Biomacromolecules. 2006 May 19;7(6):1855–1863.
  • Tanpichai S, Biswas SK, Witayakran S, et al. Water hyacinth: a sustainable lignin-poor cellulose source for the production of cellulose nanofibers. ACS Sustain Chem Eng. 2019 Nov 11;7(23):18884–18893.
  • Ajmal G, Bonde GV, Thokala S, et al. Ciprofloxacin HCl and quercetin functionalized electrospun nanofiber membrane: fabrication and its evaluation in full thickness wound healing. Artif Cells Nanomed Biotechnol. 2019 Dec 04;47(1):228–240.
  • Bajakova J, Chaloupek J, Lukáš D, et al., editors. Drawing—The production of individual nanofibers by experimental method. Proceedings of the 3rd International Conference on Nanotechnology-Smart Materials (NANOCON’11); 2011 Sept 23. Brno, Czech Republic, EU.
  • Morie A, Garg T, Goyal AK, et al. Nanofibers as novel drug carrier – an overview. Artif Cells Nanomed Biotechnol. 2016 Jan 02;44(1):135–143.
  • Ramakrishna S. An introduction to electrospinning and nanofibers. World Sci. 2005 June;1–396.
  • Shao J, Chen C, Wang Y, et al. Structure and surface nanomechanics of poly (l-lactide) from thermally induced phase separation process. Appl Surf Sci. 2012 June 15;258(17):6665–6671.
  • Long Y-Z, Li -M-M, Gu C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci. 2011 Oct 01;36(10):1415–1442.
  • Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 2007 Oct 01;8(10):3276–3278.
  • Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008 May 01;29(13):1989–2006.
  • Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 2007 Dec 10;59(14):1392–1412.
  • Prabu GTV, Dhurai B. A novel profiled multi-pin electrospinning system for nanofiber production and encapsulation of nanoparticles into nanofibers. Sci Rep. 2020March09;10(1):4302.40.
  • Gilotra S, Chouhan D, Bhardwaj N, et al. Potential of silk sericin based nanofibrous mats for wound dressing applications. Mater Sci Eng C. 2018 Sep 01;90:420–432. .
  • Ahmed R, Tariq M, Ali I, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol. 2018 Dec 01;120:385–393. .
  • Lv F, Wang J, Xu P, et al. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater. 2017 Sep 15;60:128–143. .
  • Almasian A, Najafi F, Eftekhari M, et al. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: preparation, characterization, in vitro and in vivo studies. Mater Sci Eng C. 2020 May 01;114:111039. .
  • Ramalingam R, Dhand C, Leung CM, et al. Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. Mater Sci Eng C. 2019 March 01;98:503–514. .
  • Jr DC A, An -S-S, Selders GS, et al. Electrospun gelatin–arabinoxylan ferulate composite fibers for diabetic chronic wound dressing application. Int J Polym Mater Polym Biomater. 2019 July 24;68(11):660–668.
  • Zheng Z, Liu Y, Huang W, et al. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing. Artif Cells Nanomed Biotechnol. 2018 April 13;46(sup2):493–501.
  • Kuwabara M, Sato Y, Ishihara M, et al. Healing of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid cleansing and silver nanoparticle/chitin-nanofiber sheet covering. Wound Med. 2020 March 01;28:100183.
  • Movahedi M, Asefnejad A, Rafienia M, et al. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: in vitro and in vivo evaluation. Int J Biol Macromol. 2020 March 01;146:627–637. .
  • Tort S, Acartürk F, Beşikci A. Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. Int J Pharm. 2017 Aug 30;529(1–2):642–653.
  • Tort S, Demiröz FT, Cevher ŞC, et al. The effect of a new wound dressing on wound healing: biochemical and histopathological evaluation. Burns. 2020 Feb 01;46(1):143–155.
  • Ajmal G, Bonde GV, Mittal P, et al. Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int J Pharm. 2019 Aug 15;567:118480. .
  • Khan G, Patel RR, Yadav SK, et al. Development, optimization and evaluation of tinidazole functionalized electrospun poly (ε-caprolactone) nanofiber membranes for the treatment of periodontitis. RSC Adv. 2016 Oct 21;6(102):100214–100229.
  • Perumal G, Pappuru S, Chakraborty D, et al. Synthesis and characterization of curcumin loaded PLA—Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater Sci Eng C. 2017 July 01;76:1196–1204. .
  • Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, et al. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C. 2016 Dec 01;69:1183–1191.
  • Ramadass SK, Nazir LS, Thangam R, et al. Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf B Biointerfaces. 2019 March 01;175:636–643. .
  • Liu F, Li X, Wang L, et al. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: an efficient strategy to accelerate diabetic wound healing. Int J Biol Macromol. 2020 April 01;149:627–638. .
  • Lee C-H, Chang S-H, Chen W-J, et al. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. J Colloid Interface Sci. 2015 Feb 01;439:88–97. .
  • Yu J-W, Deng Y-P, Han X, et al. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc Diabetol. 2016 June 18;15(1):88.
  • Mohammadi MR, Kargozar S, Bahrami S, et al. An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polym Degrad Stab. 2020 April 01;174:109105. .
  • Gao W, Jin W, Li Y, et al. A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing. J Mat Chem B. 2017 July 27;5(35):7285–7296.
  • Quignard S, Coradin T, Powell JJ, et al. Silica nanoparticles as sources of silicic acid favoring wound healing in vitro. Colloids Surf B Biointerfaces. 2017 July 01;155:530–537. .
  • Yu H, Peng J, Xu Y, et al. Bioglass activated skin tissue engineering constructs for wound healing. ACS Appl Mater Interfaces. 2016 Jan 13;8(1):703–715.
  • Mabrouk M, Choonara YE, Marimuthu T, et al. Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. Int J Pharm. 2016 June 30;507(1):41–49.
  • Chen Q, Wu J, Liu Y, et al. Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing. Mater Sci Eng C. 2019 Dec 01;105:110083.
  • Garcia-Orue I, Gainza G, Gutierrez FB, et al. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharm. 2017 May 25;523(2):556–566.
  • Zhang Y, Huang Z-M, Xu X, et al. Preparation of Core−Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning. Chem Mater. 2004 Sep 01;16(18):3406–3409.
  • Xie Z, Paras CB, Weng H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013 Dec 01;9(12):9351–9359.
  • Williams H, Campbell L, Crompton RA, et al. Microbial host interactions and impaired wound healing in mice and humans: defining a role for BD14 and NOD2. J Invest Dermatol. 2018 Oct 01;138(10):2264–2274.
  • Metcalf DG, Bowler PG. Biofilm delays wound healing: A review of the evidence. Burns Trauma. 2013 June 1;1(1):5–12.
  • Zhou Q, Wang T, Wang C, et al. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties. Colloids Surf A Physicochem Eng Asp. 2020 Jan 20;585:124081. .
  • Khan MQ, Kharaghani D, Shahzad A, et al. Fabrication of antibacterial electrospun cellulose acetate/silver-sulfadiazine nanofibers composites for wound dressings applications. Polym Test. 2019 April;01(74):39–44. .
  • Rath G, Hussain T, Chauhan G, et al. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater Sci Eng C. 2016 Jan;01(58):242–253. .
  • Zine R, Sinha M. Nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/collagen/graphene oxide scaffolds for wound coverage. Mater Sci Eng C. 2017 Nov 01;80:129–134. .
  • Song DW, Kim SH, Kim HH, et al. Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater. 2016 July;15(39):146–155. .
  • Nogueira F, Karumidze N, Kusradze I, et al. Immobilization of bacteriophage in wound-dressing nanostructure. Nanomedicine. 2017 Nov 01;13(8):2475–2484.
  • Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev. 2009Oct05;61(12):1033–1042.
  • Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J Royal Soc Interface. 2011 Feb 06;8(55):153–170.
  • Kim KW, Lee KH, Khil MS, et al. The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens. Fibers Polym. 2004 June 01;5(2):122–127.
  • Ojha SS, Afshari M, Kotek R, et al. Morphology of electrospun nylon‐6 nanofibers as a function of molecular weight and processing parameters. J Appl Polym Sci. 2008 April 05;108(1):308–319.
  • Matabola KP, Moutloali RM. The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. J Mater Sci. 2013 Aug 01;48(16):5475–5482.
  • Nezarati RM, Eifert MB, Cosgriff-Hernandez E. Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng Part C Methods. 2013 Oct 01;19(10):810–819.
  • Wongsasulak S, Kit KM, McClements DJ, et al. The effect of solution properties on the morphology of ultrafine electrospun egg albumen–PEO composite fibers. Polymer. 2007 Jan 12;48(2):448–457.
  • De Vrieze S, Van Camp T, Nelvig A, et al. The effect of temperature and humidity on electrospinning. J Mater Sci. 2009 March 01;44(5):1357–1362.
  • Nurwaha D, Han W, Wang X. Effects of processing parameters on electrospun fiber morphology. J Textile Inst. 2013 April 01;104(4):419–425.
  • Huang L, Bui -N-N, Manickam SS, et al. Controlling electrospun nanofiber morphology and mechanical properties using humidity. J Polym Sci B Polym Phys. 2011 Dec 15;49(24):1734–1744.
  • Schiffman JD, Schauer CL. Cross-linking chitosan nanofibers. Biomacromolecules. 2006 Dec 30;8(2):594–601.
  • Shin Y, Hohman M, Brenner M, et al. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer. 2001 Sep 07;42(25):09955–09967.
  • Desai K, Kit K, Li J, et al. Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules. 2008 Jan 17;9(3):1000–1006.
  • Tang C, Saquing CD, Harding JR, et al. In situ cross-linking of electrospun poly (vinyl alcohol) nanofibers. Macromolecules. 2010 Dec 14;43(2):630–637.
  • Mickova A, Buzgo M, Benada O, et al. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules. 2012 March 08;13(4):952–962.
  • Steed DL, Attinger C, Colaizzi T, et al. Guidelines for the treatment of diabetic ulcers. Wound Repair Regener. 2006 Nov 01;14(6):680–692.
  • Venugopal J, Ramakrishna S. Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng. 2005 May 01;11(5–6):847–854.
  • Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev. 2011 Oct 01;17(5):349–364.
  • Fu J, Chen Z, Xu Q, et al. The production of porous carbon nanofibers from cross-linked polyphosphazene nanofibers. Carbon. 2011 March 11;49(3):1037–1039.
  • Zhuang X, Cheng B, Kang W, et al. Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydr Polym. 2010 Sep 05;82(2):524–527.
  • Frone AN, Berlioz S, Chailan J-F, et al. Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr Polym. 2013 Jan 02;91(1):377–384.
  • Mabrouk M, Kumar P, Choonara YE, et al. Artificial, triple-layered, nanomembranous wound patch for potential diabetic foot ulcer intervention. Materials. 2018 Oct 29;11(11):2128.
  • Nam J, Huang Y, Agarwal S, et al. Materials selection and residual solvent retention in biodegradable electrospun fibers. J Appl Polym Sci. 2008 Feb 05;107(3):1547–1554.
  • Ebaid H, Salem A, Sayed A, et al. Whey protein enhances normal inflammatory responses during cutaneous wound healing in diabetic rats. Lipids Health Dis. 2011 Dec 14;10(1):235.
  • Zhou T, Wang N, Xue Y, et al. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B Biointerfaces. 2016 july 01;143:415–422.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.