376
Views
33
CrossRef citations to date
0
Altmetric
Review

A review of recent advances in nanodiamond-mediated drug delivery in cancer

, &
Pages 369-382 | Received 04 Jul 2020, Accepted 02 Oct 2020, Published online: 19 Oct 2020

References

  • Mochalin VN, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nat Nanotechnol. 2012;7(1):11–23.
  • Vaijayanthimala V, Lee D, Kim S, et al. Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. Expert Opin Drug Deliv. 2014;12(6):1–15.
  • Balasubramanian G, Lazariev A, Arumugam SR, et al. Nitrogen-Vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Curr Opin Chem Biol. 2014;20:69–77.
  • Hsiao -W-W-W, Hui YY, Tsai P-C, et al. Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res. 2016;49(3):400–407.
  • Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamond (Review). Nanotechnology. 2017;28:252001.
  • Whitlow J, Pacelli S, Paul A. Multifunctional nanodiamonds in regenerative medicine: recent advances and future directions. J Control Release. 2017;261:62–86.
  • Torelli MD, Nunn NA, Shenderova OAA. Perspective on Fluorescent Nanodiamond Bioimaging. Small. 2019;15(48):e1902151.
  • Shenderova OA, Shames AI, Nunn NA, et al. Review article: synthesis, properties, and applications of fluorescent diamond particles. J Vac Sci Technol B. 2019;37(3):030802.
  • Jariwala DH, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Mater Sci Eng C. 2020;113:110996.
  • Lim DG, Prima RE, Kim KH, et al. Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int J Pharm. 2016;514(1):41–51.
  • Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12.
  • Yu S-J, Kang M-W, Chang H-C, et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005;127(50):17604–17605.
  • Schrand AM, Huang H-C, Carlson C, et al., Are diamond nanoparticles cytotoxic? J Phys Chem B. 111(1): 2–7. 2007. .
  • Schrand AM, Hens SAC, Shenderova OA. Nanodiamond particles: properties and perspectives for bioapplications. Critl Rev Solid State Mater Sci. 2009;34(1–2):18–74.
  • Wu T-J, Tzeng Y-K, Chang -W-W, et al. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol. 2013;8(9):682–689.
  • Zhu Y, Li J, Li W, et al. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics. 2012;2(3):302–312.
  • Liu -K-K, Wang -C-C, Cheng C-L, et al., Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials. 30(26): 4249–4259. 2009.
  • Chang Y-R, Lee H-Y, Chen K, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol. 2008;3(5):284–288.
  • Chao JI, Perevedentseva E, Chung P–H, et al. Nanometer-sized diamond particle as a probe for biolabeling. Biophys J. 2007;93(6):2199–2208.
  • Cheng CY, Perevedentseva E, Tu JS, et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl Phys Lett. 2007;90:163903.
  • Davies G, editor. Properties and Growth of Diamond. EMIS Datareviews Series No. 9. INSPEC. London: The Institute of Electrical Engineers; 1994.
  • Davies G, Hamer MF. Optical studies of the 1.945 eV vibronic band in diamond. Proc R Soc Lond A. 1976;348:285–298.
  • Gruber A, Drabenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic Resonance on single defect centers. Science. 1997;276:2012–2014.
  • Wee T, Tzeng Y, Han C, et al. Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond. J Phys Chem A. 2007;111:9379.
  • Vlasov II, Shiryaev AA, Rendler T, et al. Molecular-sized fluorescent nanodiamonds. Nat Nanotechnol. 2014;9:54–58.
  • Hsu J-H, Su W-D, Yang K-L, et al. Nonblinking green emission from single H3 color centers in nanodiamonds. Appl Phys Lett. 2011;98:193116.
  • Mochalin VN, Gogotsi Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am ChemSoc. 2009;131(13):4594–4595.
  • Smith BR, Gruber D, Plakhotnik T. The effects of surface oxidation on luminescence of nano diamonds. Diamond Relat Mater. 2010;19:314.
  • Kovalenko A, Petráková V, Ashcheulov P, et al. Parameters affecting the luminescence of nanodiamond particles: quantum chemical calculations. Phys Status Solidi A. 2012;209:1769–1773.
  • Maitra U, Jain A, George SJ, et al. Tunable fluorescence in chromophore-functionalized nanodiamond induced by energy transfer. Nanoscale. 2013;3:3192–3197.
  • Shenderova O, Hens S, Vlasov I, et al. Carbon-dot-decorated nanodiamonds. Part Part Syst Charact. 2014;31:580–590.
  • Khalid A, Chung K, Rajasekharan R, et al. Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification. Sci Rep. 2015;5:11179.
  • Petrakova V, Rehor I, Stursa J, et al. Charge-sensitive fluorescent nanosensors created from nanodiamonds. Nanoscale. 2015;7:12307.
  • Reineck P, Lau DWM, Wilson ER, et al. Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano. 2017;11:10924–10934.
  • Khomich AA, Kudryavtsev OS, Dolenko TA, et al. Anomalous enhancement of nanodiamond luminescence upon heating. Laser Phys Lett. 2017;14:025702.
  • Reineck P, Lau DWM, Wilson ER, et al. Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence. Sci Rep. 2018;8:2478.
  • Thalassinos G, Stacey A, Dontschuk N, et al. Fluorescence and physico-chemical properties of hydrogenated detonation nanodiamonds. J Carbon Res C. 2020;6:7.
  • Zhang D, Zhao Q, Zang J, et al. Luminescent hybrid materials based on nanodiamonds. Carbon. 2018;127:170–176.
  • Hui YY, Zhang B, Chang YC, et al. Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt Express. 2010;18(6):5896–5905.
  • Johnstone GE, Cairns GS, Patton BR. Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy. R Soc Open Sci. 2019;6:190589.
  • Kuo Y, T Y H, Wu YC, et al. Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials. 2013;34:8352–8360.
  • Suhling K, Hirvonen LM, Levitt JA, et al. Fluorescence Lifetime Imaging. In: Ho AHP, Somekh MG, Kim Deditors. Handbook of Photonics for Biomedical Engineering. Dordrecht. Netherlands: Springer; 2017. p. 353–405.
  • Ackermann J, Krueger A. Highly sensitive and reproducible quantification of oxygenated surface groups on carbon nanomaterials. Carbon. 2020;163:56–62.
  • Chung P-H, Perevedentseva E, Tu J-S, et al. Spectroscopic study of bio-functionalized nanodiamonds. Diamond Relat Mater. 2006;15:622–625.
  • Huang KJ, Lee C–Y, Hung S–F, et al. Phagocytosis and immune response studies: macrophage-nanodiamonds interactions in vitro and in vivo. J Biophotonics. 2017;10(10):1315–1326.
  • Krüger A. New carbon materials: biological applications of functionalized nanodiamond materials. Chem Eur J. 2008;14:1382–1390.
  • Zheng WW, Hsieh Y–H, Chiu YC, et al. Organic functionalization of ultradispersed nanodiamond: synthesis and applications. J Mater Chem. 2009;19:8432–8441.
  • Krüger A, Kataoka F, Ozawa M, et al. Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon. 2005;43:1722–1730.
  • Pentecost A, Gour S, Mochalin V, et al. Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl Mater Interfaces. 2010;2(11):3289–3294.
  • Krüger A, Liang Y, Jarre G, et al. Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem. 2006;16(24):2322–2328.
  • Ozawa M, Inaguma M, Takahashi M, et al. Preparation and behavior of brownish, clear nanodiamond colloids. Adv Mater. 2007;19(9):1201–1206.
  • Badea I, Kaur R. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomedicine. 2013;8:203–220.
  • Kume A, Mochalin VN. Sonication-assisted hydrolysis of ozone oxidized detonation nanodiamond. Diamond and related materials. 103(107705):2020.
  • Turcheniuk K, Trecazzi C, Deeleepojananan C, et al. Salt assisted ultrasonic deaggregation of nanodiamond. ACS Appl Mater Interfaces. 2016;8:25461–25468.
  • Yang W, Auciello O, Butler JE, et al. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater. 2002;1:253–257.
  • Ushizawa K, Sato Y, Mitsumori T, et al. Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem Phys Lett. 2002;351:105–108.
  • Perevedentseva E, Cai P-J, Chiu Y-C, et al. Characterizing protein activities of lysozyme and nanodiamond complex prepared for bio applications. Langmuir. 2011;27:1085.
  • Huang LC, Chang HC. Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir. 2004;20:5879–5884.
  • Krüger A, Stegk J, Liang Y, et al. Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir. 2008;24:4200–4204.
  • Liu KK, Chen MF, Chen PY, et al. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology. 2008;19:205102.
  • Shimkunas RA, Robinson E, Lam R, et al. Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials. 2009;30:5720–5728.
  • Huang H, Pierstorff E, Osawa E, et al. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007;7(11):3305–3314.
  • Mochalin VN, Pentecost A, Li X-M, et al. Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol Pharm. 2013;10(10):3728–3735.
  • Beltz J, Pfaff A, Abdullahi IM, et al. Effect of nanodiamond surface chemistry on adsorption and release of tiopronin. Diamond Relat Mater. 2019;100:107590.
  • Giammarco J, Mochalin VN, Haeckel J, et al. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release. J Colloid Interface Sci. 2016;468:253–261.
  • Bo G, Fei Z, Zhi J. Nanodiamond as the pH-responsive vehicle for an anticancer drug. Small. 2010;6(14):1514–1519.
  • Li L, Tian L, Wang Y, et al. Smart pH-responsive and high doxorubicin loading nanodiamond for in vivo selective targeting, imaging, and enhancement of anticancer therapy. J Mater Chem B. 2016;4:5046–5058.
  • Landeros-Martínez -L-L, Chavez-Flores D, Orrantia-Borunda E, et al. Construction of a nanodiamond–Tamoxifen complex as a breast cancer drug delivery vehicle. J Nanomater. 2016; Article ID 2682105:1-9.
  • Locharoenrat K. Efficacy of nanodiamond–doxorubicin complexes on human breast adenocarcinoma cell lines. Artif Cell Nanomed Biotechnol. 2019;47(1):4053–4058.
  • Chow EK, Zhang XQ, Chen M, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med. 2011;3(73):73ra21–73ra21.
  • Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release. 2008;132(3):164–170.
  • Suarato G, Li W, Meng YH. Role of pH-responsiveness in the design of chitosan-based cancer nanotherapeutics: A review. Biointerphases. 2016;11(4):04B201.
  • Khalid A, Mitropoulos AN, Marelli B. et al. Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release. Biomed Opt Exp. 2016;7(1):132–147.
  • Wei S, Li L, Dua X, et al. OFF–ON nanodiamond drug platform for targeted cancer imaging and therapy. J Mater Chem B. 2019;7:3390-3402.
  • Setyawati MI, Mochalin VN, Leong DT. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano. 2016;10:1170–1181.
  • Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153:198–205.
  • Rouhani P, Singh RN. Polyethyleneimine-functionalized magnetic Fe3O4 and nanodiamond particles as a platform for amoxicillin delivery. J Nanosci Nanotech. 2020;20(7):3957–3970.
  • Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA. 1980;77:1561–1565.
  • Jordan MA, Toso RJ, Thrower D, et al. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA. 1993;90:9552–9556.
  • Chao JI, Zheng WW, Liu KK, et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21(31):315106.
  • Lin YW, Raj EN, Liao WS, et al. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition. Sci Rep. 2017;7(1):9814.
  • Madamsetty VS, Sharma A, Toma M, et al. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine. 2019;18:112–121.
  • Madamsetty VS, Pal K, Keshavan S, et al. Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale. 2019;11:22006–22018.
  • Yu Y, Yang X, Liu M, et al. Anticancer drug delivery to cancer cells using alkyl amine-functionalized nanodiamond supraparticles. Nanoscale Adv. 2019;1:3406.
  • Komiyama M, Yoshimoto K, Sisido M, et al. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull Chem Soc Jpn. 2017;90:967.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20.
  • Yu Y, Yang X, Liu M, et al. Multifunctional cancer phototherapy using fluorophore-functionalized nanodiamond supraparticles. ACS Appl Bio Mater. 2019;2(8):3693–3705.
  • Zhao L, Xu YH, Akasaka T, et al. Polyglycerol- coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials. 2014;35:5393–5406.
  • Li TF, Li K, Wang C, et al. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. J Control Release. 2017;268:128–146.
  • Li TF, Li K, Zhang Q, et al. Dendritic cell-mediated delivery of doxorubicin-polyglycerol-nanodiamond composites elicits enhanced anti-cancer immune response in glioblastoma. Biomaterials. 2018;181:35–52.
  • Moore L, Chow EKH, Osawa E, et al. Ho D. diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv Mater. 2013;25(26):3532–3541.
  • Xia Y, Deng X, Cao M, et al. Nanodiamond-based layer-by-layer nanohybrids mediate targeted delivery of miR-34a for triple negative breast cancer therapy. RSC Adv. 2018;8:13789–13797.
  • Medina MM, Oza G, Sharma A, et al. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health. 2020;17:2078.
  • Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res. 2019;38:430.
  • Li TF, Xu YH, Li K, et al. Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater. 2019;86:381–394.
  • Yuan S–J, Xu YH, Wang C, et al. Doxorubicin-polyglycerol-nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer. J Nanobiotechnology. 2019;17(1):100.
  • Chen M, Pierstorff ED, Lam R, et al. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 2009;3(7):2016–2022.
  • Zhang Z, Niu B, Chen J, et al. The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials. 2014;35:4565e4572.
  • Roy U, Drozd V, Durygin A, et al. Characterization of nanodiamond based anti-HIV drug delivery to the brain. Sci Rep. 2018;8:1603.
  • Pentecost A, Kim MJ, Jeon S, et al. Immunomodulatory nanodiamond aggregate-based platform for the treatment of rheumatoid arthritis. Regen Biomater. 2019;6(3):163–174.
  • Yuan Y, Chen Y, Liu J-H, et al., Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater. 18(1): 95–100. 2009.
  • Puzyr AP, Baron AV, Purtov KV, et al. Nanodiamonds with novel properties: A biological study. Diam Relat Mater. 2007;16(12):2124–2128.
  • Zapadnuyk IP, Zapadnuyk VI, Zakhariya EA, et al. Laboratory animals. Breeding, managing, using in experiments. Kiev: Vischa Shkola; 1983.
  • Zhang X, Yin J, Kang C, et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett. 2010;198(2):237–243.
  • Yuan Y, Wang X, Jia G, et al. Pulmonary toxicity and translocation of nanodiamonds in mice. Diam Relat Mater. 2010;19(4):291–299.
  • Rojas S, Gispert JD, Martın R, et al. Biodistribution of Amino-functionalized diamond nanoparticles. In Vivo studies based on 18F radionuclide emission. ACS Nano. 2011;5(7):5552–5559.
  • Vaijayanthimala V, Cheng P-Y, Yeh S-H, et al. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials. 2012;33(31):7794e7802.
  • Barone FC, Marcinkiewicz C, Li J, et al. Pilot study on biocompatibility of fluorescent nanodiamond-(NV)-Z~800 particles in rats: safety, pharmacokinetics, and bio-distribution (part III). Int J Nanomed. Volume 13, 5449–5468. doi:10.2147/ijn.s171117.
  • Moore L, Yang J, Lan TTH, et al. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis. ACS Nano. 2016;10(8):7385–7400.
  • Rojas S, Gispert JD, Martín R, et al. Biodistribution of amino-functionalized diamond nanoparticles. In Vivo studies based on 18F radionuclide emission. ACS Nano. 2011;5(7):5552–5559.
  • Purtov K, Petunin A, Inzhevatkin E, et al. Biodistribution of different sized nanodiamonds in mice. J Nanosci Nanotechnol. 2015;15(2):1070–1075.
  • Moore LK, Caldwell MA, Townsend T, et al. Water-soluble nanoconjugate for enhanced cellular delivery of receptor-targeted magnetic resonance contrast agents. Bioconjug Chem. 2019;30(11):2947–2957.
  • Miller MR, Raftis JB, Langrish JP, et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 2017;11(5):4542–4552.
  • Badun GA, Chernysheva MG, Yakovlev R, et al. A novel approach radiolabeling detonation nanodiamonds through the tritium thermal activation method. Radiochimica Acta. 2014;102(10):941.
  • Girard HA, El-Kharbachi A, Garcia-Argote S, et al. Tritium labeling of detonation nanodiamonds. Chem Commun. 2014;50(22):2916–2918.
  • Happel P, Waag T, Schimke M, et al., Intrinsically32 P-Labeled diamond nanoparticles for in vivo imaging and quantification of their biodistribution in chicken embryos. Adv Funct Mater. 28(36): 1802873. 2018.
  • Xiao J, Duan X, Yin Q, et al. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials. 2013;34(37):9648–9656.
  • Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9–10):1521e32.
  • Lipka J, Semmler-Behnke M, Sperling RA, et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31(25):6574e81.
  • Li Y, Tong Y, Cao R, et al. In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles. Int J Nanomed. 2014;9:1065–1082.
  • Wang Z, Tian Z, Dong Y, et al. Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery. Diam Relat Mater. 2015;58:84–93.
  • Ryu T-K, Baek SW, Lee G-J, et al. Targeted tumor therapy based on nanodiamonds decorated with doxorubicin and folic acid. Macromol Biosci. 2017;17(2):1600180.
  • Volnova AB, Gordeev SK, Lenkov DN. Targeted delivery of 4-Aminopyridine into the rat brain by mini containers from carbon-nanodiamonds composite. J Neurosci Neuroeng. 2013 2;2(6):569–573.
  • Xi G, Robinson E, Mania-Farnell B, et al. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomedicine: Nanotechnology, Biology and Medicine. 2014;10(2):381–391.
  • Moscariello P, Raabe M, Liu W, et al. Unraveling in vivo brain transport of protein-coated fluorescent nanodiamonds. Small. 2019;15(42):1902992.
  • Henna TK, Raphey VR, Sankar R, et al. Carbon nanostructures: the drug and the delivery system for brain disorders. Int J Pharm. 2020;578:119098.
  • Huang Y, Kao C, Liu K, et al. The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Sci Rep. 2015;4(1):6919.
  • Taylor AC, González CH, Miller BS, et al. Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation. Sci Rep. 2017;7(1):7307.
  • Li M, Li Q, Hou W, et al. A redox-sensitive core-crosslinked nanosystem combined with ultrasound for enhanced deep penetration of nanodiamonds into tumors. RSC Adv. 2020;10(26):15252–15263.
  • Ryu TK, Kang RH, Jeong K-Y, et al. Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J Control Release. 2016;232:152–160.
  • Pacelli S, Maloney R, Chakravarti AR, et al. Controlling adult stem cell behavior using nanodiamond-reinforced hydrogel: implication in bone regeneration therapy. Sci Rep. 2017;7(1):6577.
  • Cui C, Wang Y, Zhao W, et al. RGDS covalently surfaced nanodiamond as a tumor targeting carrier of VEGF-siRNA: synthesis, characterization and bioassay. Journal of Materials Chemistry B. 2015;3(48):9260–9268.
  • Gu M, Boon Toh T, Hooi L, et al. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Applied Materials & Interfaces. 2019;11(49):45427–45441.
  • Yi H, Li X, Wang Z, et al. Nanodiamonds interfere with Wnt-regulated cell migration and adipocyte differentiation in cells and embryonic development in vivo. Part Part Syst Char. 2017;34(1):1600208.
  • Hong C, Song D, Lee D-K, et al. Reducing posttreatment relapse in cleft lip palatal expansion using an injectable estrogen–nanodiamond hydrogel. Proc Natl Acad Sci USA. 2017;114(35):E7218–E7225.
  • Su L-J, Wu M-S, Hui YY, et al. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Sci Rep. 2017;7(1):45607.
  • Bisso S, Leroux J-C. Nanopharmaceuticals: A focus on their clinical translatability. Int J Pharm. 2020;578:119098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.