352
Views
6
CrossRef citations to date
0
Altmetric
Review

Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma

ORCID Icon, , , , , , , , , , , ORCID Icon & show all
Pages 489-513 | Received 22 Mar 2020, Accepted 18 Nov 2020, Published online: 20 Jan 2021

References

  • Bravi F, Bosetti C, Tavani A, et al. Coffee reduces risk for hepatocellular carcinoma: an updated meta-analysis. Clin Gastroenterol Hepatol. 2013Nov1;11(11):1413–1421.
  • Tejeda-Maldonado J, García-Juárez I, Aguirre-Valadez J, et al. Diagnosis and treatment of hepatocellular carcinoma: an update. World J Hepatol. 2015 Mar 27;7(3):362.
  • Deng GL, Zeng S, Shen H. Chemotherapy and target therapy for hepatocellular carcinoma: new advances and challenges. World J Hepatol. 2015 Apr 18;7(5):787.
  • Gomaa AI, Waked I. Recent advances in multidisciplinary management of hepatocellular carcinoma. World J Hepatol. 2015 Apr 8; 7(4):673.
  • Zhang X, Ng HL, Lu A, et al. Drug delivery system targeting advanced hepatocellular carcinoma: current and future. Nanomedicine. 2016 May 1;12(4):853–869.
  • Dutta R, Mahato RI. Recent advances in hepatocellular carcinoma therapy. Pharmacol Therapeut. 2017 May 1;173:106–117. .
  • Zhang H, Zhai Y, Hu Z, et al. Genome-wide association study identifies 1p36. 22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet. 2010 Sep;;42(9):755.
  • Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006 Sep;;6(9):674.
  • Zhang W, He H, Zang M, et al. Genetic features of aflatoxin-associated hepatocellular carcinoma. Gastroenterology. 2017 Jul 1;153(1):249–262.
  • Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011 Mar;;53(3):1020–1022.
  • Bismuth H, Majno PE. Hepatobiliary surgery. J Hepatol. 2000 Jan 1;32:208–224. .
  • Guglielmi A, Ruzzenente A, Valdegamberi A, et al. Radiofrequency ablation versus surgical resection for the treatment of hepatocellular carcinoma in cirrhosis. J Gastrointestinal Surg. 2008 Jan 1;12(1):192–198.
  • Abu-Hilal M, Primrose JN, Casaril A, et al. Surgical resection versus radiofrequency ablation in the treatment of small unifocal hepatocellular carcinoma. J Gastrointestinal Surg. 2008 Sep 1;12(9):1521–1526.
  • Llovet JM, Real MI, Montaña X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002 May 18;359(9319):1734–1739.
  • Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003 Feb;;37(2):429–442.
  • Powell MA, Sill MW, Goodfellow PJ, et al. A phase II trial of brivanib in recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study. Gynecol Oncol. 2014 Oct 1;135(1):38–43.
  • Waller LP, Deshpande V, Pyrsopoulos N. Hepatocellular carcinoma: A comprehensive review. World J Hepatol. 2015 Nov 18;7(26):2648.
  • Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol. 2015 Jul 28;7(15):1964.
  • Cai Y, Xu Y, Chan HF, et al. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Mol Pharm. 2016 Jan 25;13(3):699–709.
  • Chen KW, Ou TM, Hsu CW, et al. Current systemic treatment of hepatocellular carcinoma: A review of the literature. World J Hepatol. 2015 Jun 8;7(10):1412.
  • Bupathi M, Kaseb A, Meric-Bernstam F, et al. Hepatocellular carcinoma: where there is unmet need. Mol Oncol. 2015 Oct 1;9(8):1501–1509.
  • Marelli UK, Rechenmacher F, Sobahi TR, et al. Tumor targeting via integrin ligands. Front Oncol. 2013 Aug 30;3:222.
  • Yang Z, Liao X, Lu Y, et al. Add-on therapy with traditional Chinese medicine improves outcomes and reduces adverse events in hepatocellular carcinoma: a meta-analysis of randomized controlled trials. Evidence-Based Complement Alternative Med. 2017;12(1):2017.
  • Chou ST, Hsiang CY, Lo HY, et al. Exploration of anti-cancer effects and mechanisms of Zuo-Jin-Wan and its alkaloid components in vitro and in orthotopic HepG2 xenograft immunocompetent mice. BMC Complement Altern Med. 2017 Dec;17(1):121.
  • Li YL, Zhang J, Min D, et al. Anticancer effects of 1, 3-dihydroxy-2-methylanthraquinone and the ethyl acetate fraction of hedyotisdiffusawilld against HepG2 carcinoma cells mediated via apoptosis. PLoS One. 2016 Apr 11;11(4):e0151502.
  • Hsu CM, Hsu YA, Tsai Y, et al. Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells. Biochem Biophys Res Commun. 2010 Feb 19;392(4):473–478.
  • Lin ZK, Liu J, Jiang GQ, et al. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncol Rep. 2017 Mar 1;37(3):1611–1618.
  • Zhou W, Xu X, Gao J, et al. TCM matrine induces cell arrest and apoptosis with recovery expression of the hepato-specific miR122a in human hepatocellular carcinoma Hep G2cell line. Int J Clin Exp Med. 2015;8(6):9004.
  • Tsuruo T, Mikihiko Naito, Akihiro Tomida, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003; 94(1):15–21
  • Voutila J, Reebye V, Roberts TC, et al., Development and mechanism of small activating RNA targeting CEBPA, a novel therapeutic in clinical trials for liver cancer. Mol Ther. 25(12): 2705–2714. 2017. .
  • Harada T, Matsumoto S, Hirota S, et al. Chemically modified antisense oligonucleotide against ARL4C inhibits primary and metastatic liver tumor growth. Mol Cancer Ther. 2019;18(3):602–612. .
  • Liu B, Shi Y, Peng W, et al. Diosmetin induces apoptosis by upregulating p53 via the TGF-β signal pathway in HepG2 hepatoma cells. Mol Med Rep. 2016 Jul 1;14(1):159–164.
  • Wang N, Zhu M, Wang X, et al. Berberine-induced tumor suppressor p53 up-regulation gets involved in the regulatory network of MIR-23a in hepatocellular carcinoma. Biochimica Et Biophysica Acta (Bba)-gene Regulatory Mechanisms. 2014 Sep 1;1839(9):849–857.
  • Wang N, Feng Y, Zhu M, et al. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. J Cell Biochem. 2010 Dec 15;111(6):1426–1436.
  • Wang Y, Xu M, Di ZH, et al. Regulation of demethylation and re-expression of RASSF1A gene in hepatocellular carcinoma cell lines treated with NCTD in vitro. J Cancer Res Ther. 2015 Oct 1;11(4):818.
  • Yie Y, Zhao S, Tang Q, et al. Ursolic acid inhibited growth of hepatocellular carcinoma HepG2 cells through AMPKα-mediated reduction of DNA methyltransferase 1. Mol Cell Biochem. 2015 Apr 1;402(1–2):63–74.
  • Geisler F, Strazzabosco M. Emerging roles of Notch signaling in liver disease. Hepatology. 2015 Jan 1;61(1):382–392.
  • Pez F, Lopez A, Kim M, et al. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol. 2013 Nov 1;59(5):1107–1117.
  • Monga SP. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology. 2015 Jun 1;148(7):1294–1310.
  • Moeini A, Cornellà H, Villanueva A. Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer. 2012;1(2):83–93.
  • Li M, Yu X, Li W, et al. Deguelin suppresses angiogenesis in human hepatocellular carcinoma by targeting HGF-c-Met pathway. Oncotarget. 2018Jan2;9(1):152.
  • Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis. 2007 Feb;27(1):55–76
  • Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010 Sep;;29(36):4989.
  • Giles RH, Van Es JH, Clevers H. Caught up in a Wnt storm: wnt signaling in cancer. Biochim Biophys Acta (BBA)- Rev Cancer. 2003 Jun 5;1653(1):1–24.
  • Zhu X, Wu X, Cheng J, et al. Dalbinol, a rotenoid from Amorphafruticosa L., exerts anti-proliferative activity by facilitating β-catenin degradation in hepatocellular carcinoma cells. Oncotarget. 2017 Jul 18;8(29):47755.
  • Chen Z, Huang C, Ma T, et al. Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine. 2018 Apr 1;43:37–45. .
  • Hua H, Zhu Y, Song YH. Ruscogenin suppressed the hepatocellular carcinoma metastasis via PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother. 2018 May 1;101:115–122. .
  • Yao C, Liu BB, Qian XD, et al. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity. Onco Targets Therapy. 2018;11:2017.
  • Avila MA, Berasain C, Sangro B, et al. New therapies for hepatocellular carcinoma. Oncogene. 2006 Jun;;25(27):3866.
  • Xu W, Huang JJ, Cheun PC. Extract of Pleurotus pulmonarius suppresses liver cancer development and progression through inhibition of VEGF-induced PI3K/AKT signaling pathway. PLoS One. 2012;7(3):e34406.
  • Xie L, Li M, Liu D, et al. a Novel Mycotoxin, Represses the Progression of Hepatocellular Carcinoma via MARCH1 Regulation of the PI3K/AKT/β-catenin Signaling Pathway. Molecules. 2019 Jan 22;24(3):3.
  • Zhou LJ, Mo YB, Bu X, et al. Erinacine Facilitates the Opening of the Mitochondrial Permeability Transition Pore Through the Inhibition of the PI3K/Akt/GSK-3β Signaling Pathway in Human Hepatocellular Carcinoma. Cell Physiol Biochem. 2018;50(3):851–867.
  • Tsai CF, Hsieh TH, Lee JN, et al. Curcumin suppresses phthalate-induced metastasis and the proportion of cancer stem cell (CSC)-like cells via the inhibition of AhR/ERK/SK1 signaling in hepatocellular carcinoma. J Agric Food Chem. 2015 Dec 1;63(48):10388–10398.
  • Granado-Serrano AB, Martín MA, Bravo L, et al. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr. 2006 Nov 1;136(11):2715–2721.
  • Jayasooriya RG, Choi YH, Hyun JW, et al. Camptothecin sensitizes human hepatoma Hep3B cells to TRAIL-mediated apoptosis via ROS-dependent death receptor 5 upregulation with the involvement of MAPKs. Environ Toxicol Pharmacol. 2014 Nov 1;38(3):959–967.
  • Wang H, Ye Y, Chu JH, et al. Oridonin induces G2/M cell cycle arrest and apoptosis through MAPK and p53 signalling pathways in HepG2 cells. Oncol Rep. 2010 Sep;24(3):647–651.
  • Tang ZH, Li T, Chang LL, et al. Glycyrrhetinic Acid triggers a protective autophagy by activation of extracellular regulated protein kinases in hepatocellular carcinoma cells. J Agric Food Chem. 2014 Nov 24;62(49):11910–11916.
  • Liu ZC, Yang ZX, Zhou JS, et al. Curcumin regulates hepatoma cell proliferation and apoptosis through the Notch signaling pathway. Int J Clin Exp Med. 2014;7(3):714.
  • Zhang Z, Miao L, Lv C, et al. Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis. 2013;4(6):e657. 20013
  • Liu W, Ning R, Chen RN, et al. B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells. MolCarcinog. 2016 May;55(5):440–457.
  • Jia H, Yang Q, Wang T, et al. Rhamnetin induces sensitization of hepatocellular carcinoma cells to a small molecular kinase inhibitor or chemotherapeutic agents. Biochim Biophys Acta. 2016 Jul 1;1860(7):1417–1430.
  • Iizuka N, Oka M, Yamada-Okabe H, et al. Differential gene expression in distinct virologic types of hepatocellular carcinoma: association with liver cirrhosis. Oncogene. 2003 May;;22(19):3007.
  • Yoshiji H, Kuriyama S, Yoshii J, et al. Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice. Hepatology. 2004 Jun;;39(6):1517–1524.
  • Sawey ET, Chanrion M, Cai C, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell. 2011 Mar 8;19(3):347–358.
  • Zhu AX, Duda DG, Sahani DV, et al. C and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011 May;;8(5):292.
  • Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell Communicat Signal. 2013 Dec;;11(1):97.
  • Parat A, Bordeianu C, Dib H, et al. Dendrimer–nanoparticle conjugates in nanomedicine. Nanomedicine. 2015;6(6):977–992.
  • Zhang J, Li J, Shi Z, et al. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater. 2017 Aug ;1(58):349–364.
  • Xia Q, Li L, Zhao L. Silica nanoparticle-based dual-responsive nano-prodrug system for liver cancer therapy. Exp Ther Med. 2017;14(3):2071–2077.
  • Ferreira DDS, Lopes SCDA, Franco MS, et al. PH-sensitive liposomes for drug delivery in cancer treatment. TherDeliv. 2013;4(9):1099–1123.
  • Kuhn DA, Vanhecke D, Michen B, et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol. 2014;5:1625–1636.
  • Zhang Y, Liu S, Wang X, et al. Prevention of local liver cancer recurrence after surgery using multilayered cisplatin-loaded polylactide electrospun nanofibers. Chin J Polym Sci. 2014;32(8):1111–1118. .
  • Hanaoka H, Nakajima T, Sato K, et al. Photoimmunotherapy of hepatocellular carcinoma-targeting Glypican-3 combined with nanosized albumin-bound paclitaxel. Nanomedicine. 2015 Apr;10(7):1139–1147.
  • He ZY, Zheng X, Wu XH, et al. Development of glycyrrhetinic acid-modified stealth cationic liposomes for gene delivery. Int J Pharm. 2010 Sep 15;397(1–2):147–154.
  • Tros de Ilarduya C, Düzgüneş N. Delivery of therapeutic nucleic acids via transferrin and transferrin receptors: lipoplexes and other carriers. Expert Opin Drug Deliv. 2013 Nov 1;10(11):1583–1591.
  • Abdellatif AA, Zayed G, El-Bakry A, et al. Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors. Drug Dev Ind Pharm. 2016 Nov 1;42(11):1782–1791.
  • Takahashi H, Ozturk M, Wilson B, et al. In Vivo expression of two novel tumor‐associated antigens and their use in immunolocalization of human hepatocellular carcinoma. Hepatology. 1989 Apr;;9(4):625–634.
  • Mattheolabakis G, Milane L, Singh A, et al. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015 Sep 14;23(7–8):605–618.
  • Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465.
  • Chen X, Liu L, Jiang C. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharmaceutica Sinica B. 2016 Jul 1;6(4):261–267.
  • Wang Y, Song D, Costanza F, et al. Targeted delivery of tanshinone IIA-conjugated mPEG-PLGA-PLL-cRGD nanoparticles to hepatocellular carcinoma. J Biomed Nanotechnol. 2014 Nov 1;10(11):3244–3252.
  • Peretz S, Regev O. Carbon nanotubes as nanocarriers in medicine. Current Opinion in Colloid & Interface Science. 2012: 17; 360–368
  • Sarika PR, James NR, Kumar PA, et al. Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydr Polym. 2015 Dec 10;134:167–174. .
  • Tian J, Wang L, Wang L, et al. A wogonin-loaded glycyrrhetinic acid-modified liposome for hepatic targeting with anti-tumor effects. Drug Deliv. 2014 Nov 1;21(7):553–559.
  • Zhao X, Chen Q, Li Y, et al. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethyl nitrosamine-induced hepatocellular carcinoma in mice. Eur J Pharm Biopharm. 2015 Jun 1;93:27–36. .
  • Grill AE, Koniar B, Panyam J. Co-delivery of natural metabolic inhibitors in a self-micro-emulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Deliv Transl Res. 2014 Aug 1;4(4):344–352.
  • Zhu R, Wu X, Xiao Y, et al. Synergetic effect of SLN-curcumin and LDH-5-Fu on SMMC-7721 liver cancer cell line. Cancer Biother Radiopharm. 2013 Oct 1;28(8):579–587.
  • Alizadeh AM, Sadeghizadeh M, Najafi F, et al. Encapsulation of curcumin in diblock copolymer micelles for cancer therapy. Biol Med Res Int. 2015;2015:1–14.
  • Ucisik MH, Küpcü S, Schuster B, et al. Characterization of curcuemulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnol. 2013 Dec;11(1):37.
  • Ghosh D, Choudhury ST, Ghosh S, et al. Nanocapsulated curcumin: oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chem Biol Interact. 2012 Feb 5;195(3):206–214.
  • Hu B, Sun D, Sun C, et al. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma. Biochem Biophys Res Commun. 2015 Dec 25;468(4):525–532.
  • Yoysungnoen P, Wirachwong P, Changtam C, et al. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J Gastroenterol. 2008 Apr 7;14(13):2003.
  • Farazuddin M, Dua B, Zia Q, et al. Chemotherapeutic potential of curcumin-bearing microcells against hepatocellular carcinoma in model animals. Int J Nanomed. 2014;9:1139.
  • Duan J, Zhang Y, Han S, et al. Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly (butyl cyanoacrylate) nanoparticles. Int J Pharm. 2010 Nov 15;400(1–2):211–220.
  • Hu Y, Wang S, Wu X, et al. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma. J Ethnopharmacol. 2013 Oct 7;149(3):601–612.
  • Chen C, Huang X, Cai H, et al. Anti-proliferation and anti-angiogenesis of curcumin-K30 solid dispersion. J Central South Univ Med Sci. 2010 Oct;35(10):1029–1036.
  • Montazeri M, Sadeghizadeh M, Pilehvar-Soltanahmadi Y, et al. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines. Int J Pharm. 2016 Jul 25;509(1–2):244–254.
  • Babaei E, Sadeghizadeh M, Hassan ZM, et al. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol. 2012 Jan 1;12(1):226–234.
  • Zhou N, Zan X, Wang Z, et al. Galactosylated chitosan–polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr Polym. 2013 Apr 15;94(1):420–429.
  • Liu J, Liu J, Xu H, et al. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomed. 2014;9:197.
  • Cao H, Wang Y, He X, et al. Codelivery of sorafenib and curcumin by directed self-assembled nanoparticles enhances therapeutic effect on hepatocellular carcinoma. Mol Pharm. 2015 Feb 5;12(3):922–931.
  • Zhao X, Chen Q, Liu W, et al. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int J Nanomed. 2015;10:257.
  • Luckanagul JA, Pitakchatwong C, Bhuket PR, et al. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr Polym. 2018 Feb ;1(181):1119–1127.
  • Zhao X, Liu J, Hu Y, et al. Optimization on condition of glycyrrhetinic acid liposome by RSM and the research of its immunological activity. Int J Biol Macromol. 2012 Oct 1;51(3):299–304.
  • Li J, Yu H, Li S, et al. Enhanced distribution and extended elimination of glycyrrhetinic acid in mice liver by mPEG-PLA modified (mPEGylated) liposome. J Pharm Biomed Anal. 2010 Apr 6;51(5):1147–1153.
  • Chen J, Chen Y, Cheng Y, et al. Modifying glycyrrhetinic acid liposomes with liver-targeting ligand of galactosylated derivative: preparation and evaluations. Oncotarget. 2017 Nov 24;8(60):102046.
  • Ochi MM, Amoabediny G, Rezayat SM, et al. In vitro co-delivery evaluation of novel pegylated nano-liposomal herbal drugs of silibinin and glycyrrhizic acid (nano-phytosome) to hepatocellular carcinoma cells. Cell J (Yakhteh). 2016 Jul;;18(2):135.
  • Wang Z, Li Q, Zhao X, et al. Preparation, formula optimization and antitumor actions of mannitol coupling camptothecin nanoparticles. Int J Pharm. 2014 Apr 25;465(1–2):360–367.
  • Ozaki I, Yamamoto K, Mizuta T, et al. Differential expression of laminin receptors in human hepatocellular carcinoma. Gut. 1998 Dec 1;43(6):837–842.
  • Negishi M, Irie A, Nagata N, et al. Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochimi Biophys Acta (BBA) Biomembr. 1991 Jul 1;1066(1):77–82.
  • Mao SJ, Hou SX, He R, et al. Uptake of albumin nanoparticle surface modified with glycyrrhizin by primary cultured rat hepatocytes. World J Gastroenterol. 2005 May 28;11(20):3075.
  • Zu Y, Meng L, Zhao X, et al. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery. Int J Nanomed. 2013;8:1207.
  • Shi L, Tang C, Glycyrrhizin-modified YC. O-carboxymethyl chitosan nanoparticles as drug vehicles targeting hepatocellular carcinoma. Biomaterials. 2012 Oct 1;33(30):7594–7604.
  • Zhao MX, Ji LN, Mao ZW. β‐cyclodextrin/glycyrrhizic acid functionalised quantum dots selectively enter hepatic cells and induce apoptosis. Chem–A Eur J. 2012 Feb 6;18(6):1650–1658.
  • El-Marakby EM, Hathout RM, Taha I, et al. A novel serum-stable liver targeted cytotoxic system using valerate-conjugated chitosan nanoparticles surface decorated with glycyrrhizin. Int J Pharm. 2017 Jun 15;525(1):123–138.
  • Chopdey PK, Tekade RK, Mehra NK, et al. Glycyrrhizin conjugated dendrimer and multi-walled carbon nanotubes for liver specific delivery of doxorubicin. J Nanosci Nanotechnol. 2015 Feb 1;15(2):1088–1100.
  • Zhang J, Zhang M, Ji J, et al. Glycyrrhetinic acid-mediated polymeric drug delivery targeting the acidic microenvironment of hepatocellular carcinoma. Pharm Res. 2015 Oct 1;32(10):3376–3390.
  • Zhang J, Zheng Y, Xie X, et al. Cleavable multifunctional targeting mixed micelles with sequential pH-triggered tat peptide activation for improved anti-hepatocellular carcinoma efficacy. Mol Pharm. 2017 Oct 10;14(11):3644–3659.
  • Zheng Y, Wu Y, Yang W, et al. Preparation, characterization, and drug release in vitro of chitosan‐glycyrrhetic acid nanoparticles. J Pharmaceut Sci. 2006 Jan;;95(1):181–191.
  • Rohilla R, Garg T, Bariwal J, et al. Development, optimization and characterization of glycyrrhetinic acid–chitosan nanoparticles of atorvastatin for liver targeting. Drug Deliv. 2016 Sep 1;23(7):2290–2297.
  • Sheng-Jun M, Yue-Qi B, Hui J, et al. Preparation, characterization and uptake by primary cultured rat hepatocytes of liposomes surface-modified with glycyrrhetinic acid. Die Pharmazie- Int J Pharm Sci. 2007 Aug 1; 62(8):614–619.
  • Cheng M, Gao X, Wang Y, et al. Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo. Mar Drugs. 2013 Sep;11(9):3517–3536.
  • Tian Z, Yang C, Wang W. Shieldable tumor targeting based on pH responsive self-assembly/disassembly of gold nanoparticles. ACS Appl Mater Interfaces. 2014 Sep 30;6(20):17865–17876.
  • Chen J, Jiang H, Wu Y, et al. A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in-vitro/vivo evaluation. Drug Design Develop Therapy. 2015;9:2265.
  • Wu F, Xu T, Liu C, et al. Glycyrrhetinic acid-poly (ethylene glycol)-glycyrrhetinic acid tri-block conjugates based self-assembled micelles for hepatic targeted delivery of poorly water-soluble drug. Sci World J. 2013;2013:1–10.
  • Yan G, Chen Q, Xu L, et al. Preparation and evaluation of liver-targeting micelles loaded with oxaliplatin. Artif Cells Nanomed Biotechnol. 2016 Feb 17;44(2):491–496.
  • Yan T, Cheng J, Liu Z, et al. Acid-sensitive polymeric vector targeting to hepato carcinoma cells via glycyrrhetinic acid receptor-mediated endocytosis. Mater Sci Eng C. 2018 Jun ;1(87):32–40.
  • Zhang C, Wang W, Liu T, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials. 2012 Mar 1;33(7):2187–2196.
  • Huang W, Wang W, Wang P, et al. Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier. J Mater Sci. 2011 Apr 1;22(4):853–863.
  • Tian Q, Zhang CN, Wang XH, et al. Glycyrrhetinic acid-modified chitosan/poly (ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials. 2010 Jun 1;31(17):4748–4756.
  • Jayakumar R, Nwe N, Tokura S, et al. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007 Feb 28;40(3):175–181.
  • Tian Q, Wang XH, Wang W, et al. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomedicine. 2012 Aug 1;8(6):870–879.
  • Guo H, Lai Q, Wang W, et al. Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int J Pharm. 2013 Jul 15;451(1–2):11.
  • Qi WW, Yu HY, Guo H, et al. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy. Mol Pharm. 2015 Feb 5;12(3):675–683.
  • Cong Y, Shi B, Lu Y, et al. One-step conjugation of glycyrrhetinic acid to cationic polymers for high-performance gene delivery to cultured liver cell. Sci Rep. 2016 Feb 23;6(1):21891.
  • Mezghrani O, Tang Y, Ke X, et al. Hepatocellular carcinoma dually-targeted nanoparticles for reduction triggered intracellular delivery of doxorubicin. Int J Pharm. 2015 Jan 30;478(2):553–568.
  • Zhang L, Yao J, Zhou J, et al. Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int J Pharm. 2013 Jan 30;441(1–2):654–664.
  • Cheng M, Gao X, Wang Y, et al. Synthesis of liver-targeting dual-ligand modified GCGA/5-FU nanoparticles and their characteristics in vitro and in vivo. Int J Nanomed. 2013;8:4265.
  • Du H, Liu M, Yu A, et al. Insight into the role of dual-ligand modification in low molecular weight heparin based nanocarrier for targeted delivery of doxorubicin. Int J Pharm. 2017 May 15;523(1):427–438.
  • Han M, Liu X, Guo Y, et al. Preparation, characterization, biodistribution and antitumor efficacy of hydroxy-camptothecin nanosuspensions. Int J Pharm. 2013 Oct 15;455(1–2):85–92.
  • Zheng S, Chang S, Lu J, et al. Characterization of 9-nitrocamptothecin liposomes: anticancer properties and mechanisms on hepatocellular carcinoma in vitro and in vivo. PloS One. 2011 Jun 9;6(6):e21064.
  • Fang T, Dong Y, Zhang X, et al. Integrating a novel SN38 prodrug into the PEGylated liposomal system as a robust platform for efficient cancer therapy in solid tumors. Int J Pharm. 2016 Oct 15;512(1):39–48.
  • Wei W, Shi SJ, Liu J, et al. Lipid nanoparticles loaded with 10-hydroxycamptothecin–phospholipid complex developed for the treatment of hepatoma in clinical application. J Drug Target. 2010 Aug 1;18(7):557–566.
  • Zhu A, Yuan L, Jin W, et al. Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release. Acta Biomater. 2009 Jun 1;5(5):1489–1498.
  • Su Z, Niu J, Xiao Y, et al. Effect of octreotide–polyethylene glycol (100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine. Mol Pharm. 2011 Aug 16;8(5):1641–1651.
  • Zhou L, Li X, Chen X, et al. In vivo antitumor and antimetastatic activities of camptothecin encapsulated with N-trimethyl chitosan in a preclinical mouse model of liver cancer. Cancer Lett. 2010 Nov 1;297(1):56–64.
  • Luo X, Xu G, Song H, et al. Promoted antitumor activities of acid-labile electrospun fibers loaded with hydroxycamptothecin via intratumoral implantation. Eur J Pharm Biopharm. 2012 Nov 1;82(3):545–553.
  • Yang A, Liu Z, Yan B, et al. Preparation of camptothecin-loaded targeting nanoparticles and their antitumor effects on hepatocellular carcinoma cell line H22. Drug Deliv. 2016 Jun 12;23(5):1699–1706.
  • Zhao H, Wu M, Zhu L, et al. Cell-penetrating peptide-modified targeted drug-loaded phase-transformation lipid nanoparticles combined with low-intensity focused ultrasound for precision theranostics against hepatocellular carcinoma. Theranostics. 2018;8(7):1892.
  • Han J, Hou ZQ, Wang YG, et al. Synthesis and evaluation of hydroxycamptothecin-encapsulated chitosan nanospheres for the treatment of liver cancer. Technol Cancer Res Treat. 2015 Feb;;14(1):111–117.
  • Chu T, Zhang Q, Li H, et al. Development of intravenous lipid emulsion of tanshinone IIA and evaluation of its anti-hepatoma activity in vitro. Int J Pharm. 2012 Mar 15;424(1–2):76–88.
  • Wei W, Yue ZG, Qu JB, et al. Galactosylated nanocrystallites of insoluble anticancer drug for liver-targeting therapy: an in vitro evaluation. Nanomedicine. 2010 Jun;;5(4):589–596.
  • Zhang J, Li Y, Fang X, et al. TPGS-g-PLGA/Pluronic F68 mixed micelles for tanshinone IIA delivery in cancer therapy. Int J Pharm. 2014 Dec 10;476(1–2):185–198.
  • Li Q, Wang Y, Feng N, et al. Novel polymeric nanoparticles containing tanshinone IIA for the treatment of hepatoma. J Drug Target. 2008 Jan 1;16(10):725–732.
  • Ma H, Fan Q, Yu J, et al. Anticancer activities of tanshinone microemulsion against hepatocellular carcinoma in vitro and in vivo. Mol Med Rep. 2013 Jan 1;7(1):59–64.
  • Ghosh A, Ghosh D, Sarkar S, et al. Anticarcinogenic activity of nanoencapsulated quercetin in combating diethyl nitrosamine-induced hepatocarcinoma in rats. Eur J Cancer Prev. 2012 Jan 1;21(1):32–41.
  • Men K, Duan X, Wei Wei X, et al. Nanoparticle-delivered quercetin for cancer therapy. Anti-Cancer Agent Med Chem. 2014 Jul 1;14(6):826–832.
  • Wang C, Su L, Wu C, et al. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev Ind Pharm. 2016 Dec 1;42(12):1938–1944.
  • Varshosaz J, Jafarian A, Salehi G, et al. Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma. J Liposome Res. 2014 Sep 1;24(3):191–203.
  • Yuan ZP, Chen LJ, Wei YQ, et al. Nano-liposomal quercetin inhibits formation of malignant ascites of hepatocellular carcinoma. Chinese J Cancer. 2006 Aug;;25(8):941–945.
  • Guo D, Wu C, Li J, et al. Synergistic effect of functionalized nickel nanoparticles and quercetin on inhibition of the SMMC-7721 cells proliferation. Nanoscale Res Lett. 2009 Dec;4(12):1395. .
  • Mandal AK, Ghosh D, Sarkar S, et al. Nano capsulated quercetin downregulates rat hepatic MMP-13 and controls diethyl nitrosamine-induced carcinoma. Nanomedicine. 2014;9(15):2323–2337.
  • Duan C, Zhang D, Wang F, et al. N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int J Pharm. 2011 May 16;409(1–2):252–259.
  • Abd-Rabou AA, Ahmed HHCS. PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv Med Sci. 2017 Sep 1;62(2):357–367.
  • Lou H, Gao L, Wei X, et al. Oridonin nanosuspension enhances anti-tumor efficacy in SMMC-7721 cells and H22 tumor bearing mice. Colloids Surf B Biointerfaces. 2011 Oct 15;87(2):319–325.
  • Feng N, Wu P, Li Q, et al. Oridonin-loaded poly (ε-caprolactone)–poly (ethylene oxide)–poly (ε-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma. J Drug Target. 2008 Jan 1;16(6):479–485.
  • Wang C, Li W, Hu B. The anti-tumor effect of folate-targeted liposome microbubbles loaded with oridonin as ultrasound-triggered tumor-targeted therapeutic carrier system. J Drug Target. 2017 Jan 2;25(1):83–91.
  • Duan C, Gao J, Zhang D, et al. Galactose-decorated pH-responsive nanogels for hepatoma-targeted delivery of oridonin. Biomacromolecules. 2011 Nov 16;12(12):4335–4343.
  • Zhou Y, Yu Q, Qin X, et al. Improving the anticancer efficacy of laminin receptor-specific therapeutic ruthenium nanoparticles (RuBB-loaded EGCG-RuNPs) via ROS-dependent apoptosis in SMMC-7721 cells. ACS Appl Mater Interfaces. 2015 Jun 10;8(24):15000–15012.
  • Chen F, Zhang J, He Y, et al. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater Sci. 2016;4(1):167–182.
  • Li Q, Wang W, Liu Y, et al. The biological characteristics of a novel camptothecin–artesunate conjugate. Bioorg Med Chem Lett. 2015 Jan 1;25(1):148–152.
  • Zhang H, Zheng D, Ding J, et al. Efficient delivery of ursolic acid by poly (N-vinylpyrrolidone)-block-poly (ε-caprolactone) nanoparticles for inhibiting the growth of hepatocellular carcinoma in vitro and in vivo. Int J Nanomed. 2015;10:1909.
  • Zhao R, Li T, Zheng G, et al. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials. 2017 Oct 1;143:1–6.
  • Tu YS, Sun DM, Zhang JJ, et al. Preparation and characterization of andrographolide niosomes and its anti-hepatocellular carcinoma activity. J Microencapsul. 2014 Jun 1;31(4):307–316.
  • Majeed H, Antoniou J, Fang Z. Apoptotic effects of eugenol-loaded nanoemulsions in human colon and liver cancer cell lines. Asian Pac J Cancer Prev. 2014 Jan 1;15(21):9159–9164.
  • Jin M, Shen X, Zhao C, et al. In vivo study of effects of artesunate nanoliposomes on human hepatocellular carcinoma xenografts in nude mice. Drug Deliv. 2013 Apr 1;20(3–4):127–133.
  • Lin YC, Kuo JY, Hsu CC, et al. Optimizing manufacture of liposomal berberine with evaluation of its antihepatoma effects in a murine xenograft model. Int J Pharm. 2013 Jan 30;441(1–2):381–388.
  • Sanchis J, Canal F, Lucas R, et al. Polymer–drug conjugates for novel molecular targets. Nanomedicine. 2010 Aug;;5(6):915–935.
  • Yin XB, Wu LQ, Fu HQ, et al. Inhibitory effect of humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles conjugate on growth of human hepatocellular carcinoma: in vitro and in vivo studies. Asian Pac J Trop Med. 2014 May 1;7(5):337–343.
  • Gokuladhas K, Jayakumar S, Rajan B, et al. Exploring the potential role of chemo preventive agent, hesperetin conjugated pegylated gold nanoparticles in diethylnitrosamine-induced hepatocellular carcinoma in male wistar albino rats. Indian J Clin Biochem. 2016 Apr 1;31(2):171–184.
  • Xu P, Li J, Shi L, et al. Synergetic effect of functional cadmium–tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition. Int J Nanomed. 2013;8:3729.
  • Jiang Z, Chi J, Han B, et al. Preparation and pharmacological evaluation of norcantharidin-conjugated carboxymethyl chitosan in mice bearing hepatocellular carcinoma. Carbohydr Polym. 2017 Oct 15;174:282–290. .
  • Li G, Cai C, Qi Y, et al. Hydroxyethyl starch–10-hydroxy camptothecin conjugate: synthesis, pharmacokinetics, cytotoxicity and pharmacodynamics research. Drug Deliv. 2016 Jan 2;23(1):277–284.
  • Yang R, Zhang S, Kong D, et al. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm Res. 2012 Dec;;29(12):3512–3525. Epub 2012 Aug 15. .
  • Yang DH, Kim HJ, Park K, et al. Preparation of poly-l-lysine-based nanoparticles with pH-sensitive release of curcumin for targeted imaging and therapy of liver cancer in vitro and in vivo. Drug Deliv. 2018 Nov;25(1):950–960. .
  • Xu LS, Liu JH, Lin P, et al. Preparation of As2O3 nanoparticles and its drug release characteristics in vitro]. Nan Fang Yi Ke Da XueXue Bao. 2010 Aug;30(8):1790–1792.
  • Xiangbao Y, Linquan W, Mingwen H, et al. Humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles, an antibody conjugate with potent and selective anti-hepatocellular carcinoma activity. Biomed Pharmacother. 2014 Jun;;68(5):597–602. Epub 2014 Apr 27. .
  • Rahman M, Al-Ghamdi SA, Alharbi KS, et al. Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma. Drug Deliv. 2019 Dec;;26(1):782–793.
  • Rahman M, Beg S, Alharbi KS, et al. QbD-driven development of nano-antioxidant therapy containing solid lipid nanoparticles of ganoderic acid for the treatment of hepatocellular carcinoma. (In press). J Pharm Innov.
  • Kimura Y, Taniguchi M, Baba K. Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum: mechanism of action and isolation of an active substance. Anticancer Res. 2002:22(6A):3309–18.
  • Lin Z, Zhang H. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin. 2004;25(11):1387–95.
  • Friedman T, Roblin R, Rogers S. Gene therapy for human genetic disease? Science. 1972;178(4061):648–649.
  • Sahin U, Kariko K, Tuereci O. mRNA-based therapeutics-developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759–780.
  • Liu Y, Xu CF, Iqbal S, et al. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev. 2017;115:98–114.
  • Xie Y, Qiao HZ, Su ZG, et al. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials. 2014;35(27):7978–7991.
  • Fluiter K, ALMA TA, Wissel MB, et al. In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides. Nucleic Acids Res. 2003;31:953–962.
  • Schaffer DV, Fidelman NA, Dan N, et al. DA. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. BiotechnolBioeng. 2000;67:598–606.
  • Hong BJ, Chipre AJ, Nguyen ST. Acid-degradable polymer-caged lipoplex (PCL) platform for siRNA delivery: facile cellular triggered release of siRNA. J Am Chem Soc. 2013;135(47):17655–17658.
  • Gao LY, Liu XY, Chen CJ, et al. Core–shell type lipid/rPAA–Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials. 2014;35(6):2066–2078.
  • Sethuraman VA, Na K, Bae YH. pH-responsive sulfonamide/PEI system for tumour specific gene delivery: an in vitro study. Biomacromolecules. 2006;7(1):64–70.
  • Wei H, Volpatti LR, Sellers DL, et al. Stabilized nanoparticles for efficient in vivo plasmid delivery. Angew Chem Int Ed Eng. 2013;52(20):5377–5381.
  • Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49:4373–4384.
  • Li YM, Yang JH, Xu B, et al. Enhanced therapeutic siRNA to tumor cells by a pH-sensitive agmatine-chitosan bioconjugate. ACS Appl Mater Interfaces. 2015;7(15):8114–8124.
  • Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles, Pharm. Res. 2008;25:55–71.
  • Hatakeyama H, Akita H, Kogure K, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 2007;14(1):68–77.
  • Zhu L, Perche F, Wang T, et al. Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials. 2014;35(13):4213–4222.
  • Perche F, Biswas S, Wang T, et al. Hypoxia targeted siRNA delivery. Angew Chem Int Ed Eng. 2014;53(13):3362–3366.
  • Zintchenko A, Ogris M, Wagner E. Temperature dependent gene expression induced by PNIPAM-based copolymers: potential of hyperthermia in gene transfer. Bioconjug Chem. 2006;17(3):766–772.
  • Wang Y, Fang J, Cheng D, et al. A pH-sensitive micelle for codelivery of siRNA and doxorubicin to hepatoma cells. Polymer. 2014 June 25;55(15):3217–3226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.