465
Views
29
CrossRef citations to date
0
Altmetric
Review

Clay nanoparticles as pharmaceutical carriers in drug delivery systems

, , & ORCID Icon
Pages 695-714 | Received 16 Aug 2020, Accepted 08 Dec 2020, Published online: 21 Dec 2020

References

  • Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed Engl. 2008;47(8):1382–1395.
  • Li J, Mao H, Kawazoe N, et al. Insight into the interactions between nanoparticles and cells. Biomater Sci. 2017 Jan 31;5(2):173–189.
  • Aftab S, Shah A, Nadhman A, et al. Nanomedicine: an effective tool in cancer therapy. Int J Pharm. 2018;540(1–2):132–149.
  • Xu ZP, Zeng QH, Lu GQ, et al. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci. 2006;61(3):1027–1040.
  • Chaturvedi K, Ganguly K, Kulkarni AR, et al. Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opin Drug Deliv. 2011 Nov;8(11):1455–1468.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res. 2016 Oct;33(10):2373–2387.
  • Kulkarni PV, Roney CA, Antich PP. Quinoline-n-butylcyanoacrylate-based nanoparticles for braintargeting for the diagnosis ofAlzheimer’s disease. Nanomed Nanobiotechnol. 2010;2(1):35–47.
  • Suhas DP, Raghu AV, Jeong HM, et al. Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique. RSC Adv. 2013;3(38):38.
  • Maisanaba S, Guzman-Guillen R, Puerto M, et al. In vitro toxicity evaluation of new silane-modified clays and the migration extract from a derived polymer-clay nanocomposite intended to food packaging applications. J Hazard Mater. 2018 Jan 5;341:313–320.
  • Gaharwar AK, Cross LM, Peak CW, et al. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater. 2019 Jun;31(23):e1900332.
  • Lazzara G, Riela S, Fakhrullin RF. Clay-based drug-delivery systems: what does the future hold? Ther Deliv. 2017;8(8):633–646.
  • Gruner MC, Zanoni KPS, Borgognoni CF, et al. Reaching biocompatibility with nanoclays: eliminating the cytotoxicity of Ir(III) complexes. ACS Appl Mater Interfaces. 2018 Aug 15;10(32):26830–26834.
  • Wagner A, White AP, Stueckle TA, et al. Early assessment and correlations of nanoclay’s toxicity to their physical and chemical properties. ACS Appl Mater Interfaces. 2017 Sep 20; 9(37):32323–32335. .
  • Khatoon N, Chu MQ, Zhou CH. Nanoclay-based drug delivery systems and their therapeutic potentials. J Mater Chem B. 2020 Aug 26;8(33):7335–7351.
  • Gujjari A, Rodriguez BV, Pescador J, et al. Factors affecting the association of single- and double-stranded RNAs with montmorillonite nanoclays. Int J Biol Macromol. 2018 Apr 1;109:551–559.
  • Lvov Y, Wang W, Zhang L, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater. 2016 Feb 10;28(6):1227–1250.
  • Giuseppe Cavallaro1 GLRF. 2. Mesoporous inorganic nanoscale particles for drug adsorption and controlled release. Ther Deliv. 2018;9(4): 287–301.
  • Aguzzi C, Cerezo P, Viseras C, et al. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci. 2007;36(1–3):22–36.
  • Mishra AK, Allauddin S, Narayan R, et al. Characterization of surface-modified montmorillonite nanocomposites. Ceram Int. 2012;38(2):929–934.
  • Narmani A, Rezvani M, Farhood B, et al. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res. 2019 Jun;80(4):404–424.
  • Panahi Y, Gharekhani A, Hamishehkar H, et al. Stomach-specific drug delivery of clarithromycin using a semi interpenetrating polymeric network hydrogel made of montmorillonite and chitosan: synthesis, characterization and in vitro drug release study. Adv Pharm Bull. 2019 Feb;9(1):159–173.
  • Makó É, Kovács A, Kristóf T. Influencing parameters of direct homogenization intercalation of kaolinite with urea, dimethyl sulfoxide, formamide, and N-methylformamide. Appl Clay Sci. 2019 Dec;182:105287.1–105287.11.
  • Roozbahani M, Kharaziha M, Emadi R. pH sensitive dexamethasone encapsulated laponite nanoplatelets: release mechanism and cytotoxicity. Int J Pharm. 2017 Feb 25;518(1–2):312–319.
  • Yendluri R, Lvov Y, de Villiers MM, et al. Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery. J Pharm Sci. 2017 Oct;106(10):3131–3139.
  • Kong Y, Ge H, Xiong J, et al. Palygorskite polypyrrole nanocomposite: A new platform for electrically tunable drug delivery. Appl Clay Sci. 2014;99:119–124.
  • Li Y, Tian G, Gong L, et al. Evaluation of natural sepiolite clay as adsorbents for aflatoxin B1: A comparative study. J Environ Chem Eng. 2020;8(4):4.
  • Kuang Y, Chen H, Chen Z, et al. Poly(amino acid)/ZnO/mesoporous silica nanoparticle based complex drug delivery system with a charge-reversal property for cancer therapy. Colloids Surf B Biointerfaces. 2019 Sep 1;181:461–469.
  • Yamada H, Michalik J, Sadlo J, et al. Electron spin resonance studies on silver atoms in imogolite fibers. Appl Clay Sci. 2001;19(1–6):173–178.
  • Shaban M, Sayed MI, Shahien MG, et al. Adsorption behavior of inorganic- and organic-modified kaolinite for congo red dye from water, kinetic modeling, and equilibrium studies. J Sol Gel Sci Techn. 2018;87(2):427–441.
  • Viseras C, Cerezo P, Sanchez R, et al. Current challenges in clay minerals for drug delivery. Appl Clay Sci. 2010;48(3):291–295.
  • Mittal G, Rhee KY, Mišković-Stanković V, et al. Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos Part B Eng. 2018;138:122–139.
  • Bitinis N, Hernandez M, Verdejo R, et al. Recent advances in clay/polymer nanocomposites. Adv Mater. 2011 Nov 23;23(44):5229–5236.
  • Aristilde L, Marichal C, Jocelyne Miehe-Brendl E, et al. Interactions of oxytetracycline with a smectite clay A spectroscopic study with molecular simulations. Environ Sci Technol. 2010;44(20):7839–7845.
  • Kevadiya BD, Bajaj HC. The layered silicate, Montmorillonite (MMT) as a drug delivery carrier. Key Eng Mater. 2013;571:111–132.
  • Segad M, Jönsson B, Åkesson T, et al. Ca/ Na montmorillonite: structure, forces and swelling properties. Langmuir. 2010;26(8):5782–5790.
  • Elmore SE, Mitchell N, Mays T, et al. Common African cooking processes do not affect the aflatoxin binding efficacy of refined calcium montmorillonite clay. Food Control. 37. 2014 Mar;37:27-32.
  • Jayrajsinh S, Shankar G, Agrawal YK, et al. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J Drug Delivery Sci Technol. 2017;39:200–209.
  • Hsu S-H, Wang M-C, Lin -J-J. Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Appl Clay Sci. 2012;56:53–62.
  • Mundargi RC, Patil SA, Agnihotri SA, et al. Development of polysaccharide-based colon targeted drug delivery systems for the treatment of amoebiasis. Drug Dev Ind Pharm. 2008;33(3):255–264.
  • Kevadiya BD, Patel TA, Jhala DD, et al. Layered inorganic nanocomposites: a promising carrier for 5-fluorouracil (5-FU). Eur J Pharm Biopharm. 2012 May; 81(1):91–101.
  • Aminabhavi TM, Dharupaneedi SP. Production of chitosan-based hydrogels for biomedical applications. Chitosan Based Biomater. 2017;1:295–319.
  • Aminabhavi TM, Dharupaneedi SP, More UA. The role of nanotechnology and chitosan-based biomaterials for tissue engineering and therapeutic delivery. Chitosan Based Biomater. 2017;2:1–29.
  • Saha K, Butola BS, Joshi M. Drug release behavior of polyurethane/clay nanocomposite: film vs. nanofibrous web. J Appl Polym Sci. 2014;131(19). 10.1002/app.40824. n/a-n/a.
  • Saha K, Butola BS, Joshi M. Drug-loaded polyurethane/clay nanocomposite nanofibers for topical drug-delivery application. J Appl Polym Sci. 2014;131(10). 10.1002/app.40230. n/a-n/a.
  • Mahkam M, Abbaszad Rafi A, Mohammadzadeh Gheshlaghi L. Preparation of novel pH-sensitive nanocomposites based on ionic-liquid modified montmorillonite for colon specific drug delivery system. Polym Composites. 2016;37(1):182–187.
  • Lin J-J, Wei J-C, Juang T-Y, et al. Preparation of protein-silicate hybrids from polyamine intercalation of layered montmorillonite. Am Chem Soc. 2007;23(4):99–1995.
  • Assifaoui A, Huault L, Maissiat C, et al. Structural studies of adsorbed protein (betalactoglobulin) on natural clay (montmorillonite). RSC Adv. 2014;4(105):61096–61103.
  • Perezgasga L, Serrato Diza A, Mendoza AN, et al. Sites of adsorption of adenine, uracil, and their corresponding derivatives on sodium montmorillonite. Origins Life Evol Biosphere. 2005;35(2):91–110.
  • Aleanizy FS, Alqahtani F, Al Gohary O, et al. Determination and characterization of metronidazole–kaolin interaction. Saudi Pharm J. 2015;23(2):167–176.
  • Zhang Y, Long M, Huang P, et al. Intercalated 2D nanoclay for emerging drug delivery in cancer therapy. Nano Res. 2017;10(8):2633–2643.
  • Castellano M, Turturro A, Riani P, et al. Bulk and surface properties of commercial kaolins. Appl Clay Sci. 2010;48(3):446–454.
  • Tan D, Yuan P, Annabi-Bergaya F, et al. Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Microporous Mesoporous Mater. 2013;179:89–98.
  • Horváth E, Kristóf J, Frost RL, et al. Identification of superactive centers in thermally treated formamide-intercalated kaolinite. J Colloid Interface Sci. 2005;289(1):132–138.
  • Belver C, Munoz MAB, Vicente MA. Chemical activation of a kaolinite under acid and alkaline conditions. Chem Mater. 2002;14(5):2033–2043.
  • Zhang Y, Long M, Huang P, et al. Emerging integrated nanoclay-facilitated drug delivery system for papillary thyroid cancer therapy. Sci Rep. 2016 Sep 12;6:33335. .
  • Reddy OS, Subha MCS, Jithendra T, et al. Sodium alginate/ gelatin microbeads-intercalated with kaolin nanoclay for emerging drug delivery in wilson’s disease. Int J Appl Pharm. 2019:71–80. 10.22159/ijap.2019v11i5.34254.
  • Holesová S, Valásková M, Hlavácˇ D, et al. Antibacterial kaolinite urea chlorhexidine nanocomposites Experiment and molecular modelling. Appl Surf Sci. 2014;305(30):783–791.
  • Hamilton AR, Hutcheon GA, Roberts M, et al. Formulation and antibacterial profiles of clay–ciprofloxacin composites. Appl Clay Sci. 2014;87:129–135.
  • Lvov YM, DeVilliers MM, Fakhrullin RF. The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv. 2016 Jul;13(7):977–986.
  • Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Poly Int. 2010;59(5):574–582. . n/a-n/a.
  • Mohd Nizar M, Hamzah MSA, Abd Razak SI, et al. Thermal stability and surface wettability studies of polylactic acid/halloysite nanotube nanocomposite scaffold for tissue engineering studies. IOP Conf Ser Mater Sci Eng. 2018;318:01200.
  • Idumah CI, Hassan A, Ogbu J, et al. Recently emerging advancements in halloysite nanotubes polymer nanocomposites. Compos Interfaces. 2018;26(9):751–824.
  • Lazzara G, Cavallaro G, Panchal A, et al. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface Sci. 2018;35:42–50.
  • Bediako EG, Nyankson E, Dodoo-Arhin D, et al. Modified halloysite nanoclay as a vehicle for sustained drug delivery. Heliyon. 2018 Jul;4(7):e00689.
  • Liu M, Fakhrullin R, Novikov A, et al. Tubule nanoclay‐organic heterostructures for biomedical applications. Macromol Biosci. 2018;19(4):1800419.
  • Aloui H, Khwaldia K, Hamdi M, et al. Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA based nanocomposites. ACS Sustain Chem Eng. 2016;4(3):794–800.
  • Aminabhavi TM, Deshmukh AS. Polysaccharide-based hydrogels as biomaterials. Polymeric Hydrogels Smart Biomater. 2015;2(3).
  • Deshmukh AS, Aminabhavi TM. Pharmaceutical applications of various natural gums. Polysaccharides. 2013;92(2):1685–1699.
  • Sharif S, Abbas G, Hanif M, et al. Mucoadhesive micro-composites: chitosan coated halloysite nanotubes for sustained drug delivery. Colloids Surf B Biointerfaces. 2019 Dec 1;184:110527.
  • Dramou P, Fizir M, Taleb A, et al. Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohydr Polym. 2018 Oct 1;197:117–127.
  • Li LY, Zhou YM, Gao RY, et al. Naturally occurring nanotube with surface modification as biocompatible, target-specific nanocarrier for cancer phototherapy. Biomaterials. 2019 Jan;190-191:86–96. .
  • Monteiro JC, Garcia IM, Leitune VCB, et al. Halloysite nanotubes loaded with alkyl trimethyl ammonium bromide as antibacterial agent for root canal sealers. Dent Mater. 2019 May;35(5):789–796.
  • Abbott N, Patabendige A, Dolman D, et al. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010 01 01;37:13–25.
  • Lailach GE, Thompson TD, Brindley GW. Absorption of pyrimidines, purines, and nucleosides by Li-, Na-, Mg-, and Ca-montmorillonite(clay-organic studies XII). Clays Clay Miner. 1968;16(4):285–293.
  • Homayun B, Choi HJ. Halloysite nanotube-embedded microparticles for intestine-targeted co-delivery of biopharmaceuticals. Int J Pharm. 2020 Apr 15;579:119152..
  • López-Galindo A, Viseras C, Aguzzi C, et al. Pharmaceutical and cosmetic uses of fibrous clays. Developments in Palygorskite-Sepiolite Research. 2011;3:299–324.
  • Wu J, Ding S, Chen J, et al. Preparation and drug release properties of chitosan/organomodified palygorskite microspheres. Int J Biol Macromol. 2014 Jul;68:107–112.
  • Santana ACSGV, Soares Sobrinho JL, da Silva Filho EC, et al. Preparation and physicochemical characterization of binary composites palygorskite–chitosan for drug delivery. J Therm Anal Calorim. 2017;128(3):1327–1334.
  • Carazo E, Borrego-Sánchez A, García-Villén F, et al. Adsorption and characterization of palygorskite-isoniazid nanohybrids. Appl Clay Sci. 2018;160:180–185.
  • Santana A, Sobrinho JLS, Silva Filho ECD, et al. Obtaining the palygorskite:chitosan composite for modified release of 5-aminosalicylic acid. Mater Sci Eng C Mater Biol Appl. 2017 Apr 1;73:245–251.
  • Han S, Liu F, Wu J, et al. Targeting of fluorescent palygorskite polyethyleneimine nanocomposite to cancer cells. Appl Clay Sci. 2014;101:567–573.
  • Yang H, Wang W, Zhang J, et al. Preparation, characterization, and drug-release behaviors of a pH-sensitive composite hydrogel bead based on guar gum, attapulgite, and sodium alginate. Int J Polymeric Mater. 2013;62(7):369–376.
  • Olmo N, Lizarbe M, Gavilane JG. Biocompatibility and degradability of sepiolitte-collagen comple. Biomater Sci. 1987;8(1):67–69.
  • Wan C, Chen B. Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites. Nanoscale. 2011 Feb;3(2):693–700.
  • Borrego-Sánchez A, Carazo E, Aguzzi C, et al. Biopharmaceutical improvement of praziquantel by interaction with montmorillonite and sepiolite. Appl Clay Sci. 2018;160:173–179.
  • Maestrelli F, Cirri M, Garcia-Villen F, et al. Tablets of “Hydrochlorothiazide in cyclodextrin in nanoclay”: A new nanohybrid system with enhanced dissolution properties. Pharmaceutics. 2020 Jan 28;12(2):2.
  • Mura P, Maestrelli F, Aguzzi C, et al. Hybrid systems based on “drug - in cyclodextrin - in nanoclays” for improving oxaprozin dissolution properties. Int J Pharm. 2016 Jul 25;509(1–2):8–15.
  • Greene J, Baird AM, Brady L, et al. Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci. 2017;4:38.
  • Tsuneo Y, Toshio S, Kazuyuki K, et al. The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull Chemiclr Soc Japan. 1990;63(4):988–992.
  • Kresge CT, Leonowicz ME, Roth WJ. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(22):710–712.
  • Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel). 2017 Jul;7(7):189.
  • Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010 Aug 16;6(16):1794–1805.
  • Ricci-Junior E, de Oliveira de Siqueira LB, Rodrigues RAS, et al. Nanocarriers as phototherapeutic drug delivery system: appraisal of three different nanosystems in an in vivo and in vitro exploratory study. Photodiagnosis Photodyn Ther. 2018 Mar;21:43–49.
  • Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B. 2018 Mar;8(2):165–177.
  • Barkat A, Beg S, Panda SK, et al. Functionalized mesoporous silica nanoparticles in anticancer therapeutics. Semin Cancer Biol. 2019 Aug;57.
  • Garcia-Fernandez A, Aznar E, Martinez-Manez R, et al. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small. 2020 Jan;16(3):e1902242.
  • Bharti C, Nagaich U, Pal AK, et al. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig. 2015 Jul-Sep;5(3):124–133.
  • Uthappa UT, Brahmkhatri V, Sriram G, et al. Nature engineered diatom biosilica as drug delivery systems. J Control Release. 2018;281:70–83.
  • Bernardos A, Piacenza E, Sancenón F, et al. Mesoporous silica‐based materials with bactericidal properties. Small. 2019;15(24):1900669.
  • Malekmohammadi S, Hadadzadeh H, Amirghofran Z, et al. Preparation of folic acid-conjugated dendritic mesoporous silica nanoparticles for pH-controlled release and targeted delivery of a cyclometallated gold(III) complex as an antitumor agent. J Mol Liq. 2018;265:797–806.
  • Zhang J, Sun Y, Tian B, et al. Multifunctional mesoporous silica nanoparticles modified with tumor-shedable hyaluronic acid as carriers for doxorubicin. Colloids Surf B Biointerfaces. 2016 Aug 1;144:293–302.
  • Chen H, Zheng D, Liu J, et al. pH-Sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles. Int J Biol Macromol. 2016;85:596–603.
  • Lei W, Sun C, Jiang T, et al. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater Sci Eng C. 2019;105:103–110.
  • Li T, Geng Y, Zhang H, et al. A versatile nanoplatform for synergistic chemo-photothermal therapy and multimodal imaging against breast cancer. Expert Opin Drug Deliv. 2020;17(5):725–733.
  • Tomas H, Alves CS, Rodrigues J. Laponite(R): A key nanoplatform for biomedical applications? Nanomedicine. 2018 Oct;14(7):2407–2420.
  • Li J, Pan H, Qiao S, et al. The utilization of low molecular weight heparin-poloxamer associated Laponite nanoplatform for safe and efficient tumor therapy. Int J Biol Macromol. 2019 Aug 1;134:63–72.
  • Yang Y, Li J, Chen F, et al. Synthesis, formulation, and characterization of doxorubicin-loaded laponite/oligomeric hyaluronic acid-aminophenylboronic acid nanohybrids and cytological evaluation against MCF-7 breast cancer cells. AAPS PharmSciTech. 2019 Nov 20;21(1):5.
  • Ekici S, Tetik A. Development of polyampholyte hydrogels based on laponite for electrically stimulated drug release. Poly Int. 2015;64(3):335–343.
  • Lvov Y, Abdullayev E. Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci. 2013;38(10–11):1690–1719.
  • Rotoli BM, Guidi P, Bonelli B, et al. Imogolite: an aluminosilicate nanotube endowed with low cytotoxicity and genotoxicity. Chem Res Toxicol. 2014 Jul 21;27(7):1142–1154.
  • Brule S, Beckers E, Chaurand P, et al. Nanometer-long Ge-imogolite nanotubes cause sustained lung inflammation and fibrosis in rats. Part Fibre Toxicol. 2014;11(1):67.
  • Jiravanichanun N, Yamamoto K, Kato K, et al. Preparation and characterization of imogolite/DNA hybrid hydrogels. Biomacromolecules. 2012 Jan 9;13(1):276–281.
  • Inoue N, Otsuka H, Wada S-I, et al. (Inorganic nanofiber/enzyme) Hybrid hydrogel: preparation, characterization, and enzymatic activity of imogolite/pepsin conjugate. Chem Lett. 2006;35(2):194–195.
  • Ishikawa K, Akasaka T, Yawaka Y, et al. High functional expression of osteoblasts on imogolite, aluminosilicate nanotubes. J Biomed Nanotechnol. 2010 Feb;6(1):59–65.
  • Garea SA, Ghebaur A, Vasile E. Hybrid drug release systems based on dendrimers and montmorillonite. Materiale Plastice. 2013;50:8–11.
  • Li Z, Liu K, Sun P, et al. Poly(D, L-lactide-co-glycolide)/montmorillonite nanoparticles for improved oral delivery of exemestane. J Microencapsul. 2013;30(5):432–440.
  • Madusanka N, de Silva KM, Amaratunga G. A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media. Carbohydr Polym. 2015 Dec 10;134:695–699.
  • Bakre LG, Sarvaiya JI, Agrawal YK. Synthesis, characterization, and study of drug release properties of curcumin from polycaprolactone organomodified montmorillonite nanocomposite. J Pharm Innov. 2016;11(4):300–307.
  • Pappa C, Nanaki S, Giliopoulos D, et al. Nanostructured composites of sodium montmorillonite clay and PEO used in dissolution improvement of aprepitant drug by melt mixing. Appl Sci. 2018;8(5):5.
  • Liu KH, Liu TY, Chen SY, et al. Drug release behavior of chitosan-montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater. 2008 Jul;4(4):1038–1045.
  • Golubeva OY, Pavlova SV, Yakovlev AV. Adsorption and in vitro release of vitamin B1 by synthetic nanoclays with montmorillonite structure. Appl Clay Sci. 2015;112-113:10–16.
  • Kaur M, Datta M. Diclofenac sodium adsorption onto montmorillonite adsorption equilibrium studies and drug release kinetics. Adsorpt Sci Technol. 2014;32(5):365–387.
  • Feng SS, Mei L, Anitha P, et al. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials. 2009 Jul;30(19):3297–3306.
  • Bayaumy FEA, Darwish AS. Exfoliated Egyptian kaolin immobilized heteropolyoxotungstate nanocomposite as an innovative antischistosomal agent: in vivo and in vitro bioactive studies. Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:717–730.
  • Yang J, Wu Y, Shen Y, et al. Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes. ACS Appl Mater Interfaces. 2016;8(40):26578–26590.
  • Wu Y-P, Yang J, Gao H-Y, et al. Folate-conjugated halloysite nanotubes, an efficient drug carrier, deliver doxorubicin for targeted therapy of breast cancer. ACS Appl Nano Mater. 2018;1(2):595–608.
  • Li W, Liu D, Zhang H, et al. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomater. 2017 Jan 15;48:238–246.
  • Bulbul YE, Okur M, Demirtas-Korkmaz F, et al. Development of PCL/PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system. Appl Clay Sci. 2020;186:105430.
  • Rao KM, Kumar A, Suneetha M, et al. pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. Int J Biol Macromol. 2018 Jun;112:119–125.
  • Hossieni-Aghdam SJ, Foroughi-Nia B, Zare-Akbari Z, et al. Facile fabrication and characterization of a novel oral pH-sensitive drug delivery system based on CMC hydrogel and HNT-AT nanohybrid. Int J Biol Macromol. 2018 Feb;107(Pt B):2436–2449.
  • Gorrasi G, Attanasio G, Izzo L, et al. Controlled release mechanisms of sodium benzoate from a biodegradable polymer__and halloysite nanotubes composites. Poly Int. 2017;66(5):690–698.
  • Yahia Y, García-Villén F, Djelad A, et al. Crosslinked palygorskite-chitosan beads as diclofenac carriers. Appl Clay Sci. 2019;180:105169.
  • Li X, Zhong H, Li X, et al. Synthesis of attapulgite/N-isopropylacrylamide and its use in drug release. Mater Sci Eng C Mater Biol Appl. 2014 Dec;45:170–175.
  • Sironmani TA. Comparison of nanocarriers for gene delivery and nanosensing using montmorillonite, silver nanoparticles and multiwalled carbon nanotubes. Appl Clay Sci. 2015;103:55–61.
  • Gao J, Fan K, Jin Y, et al. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur J Pharm Sci. 2019 Dec 1;140:105070.
  • Wei Y, Gao L, Wang L, et al. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv. 2017 Nov;24(1):681–691.
  • Pan L, Shi J. Nuclear-targeted drug delivery system based onMesoporous silica nanoparticles for effective cancer therapy. International Conference on Nanoscience & Technology,China 2013(ChinaNANO 2013).
  • Zhang M, Liu J, Kuang Y, et al. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release. Int J Biol Macromol. 2017;98:691–700.
  • Kienzle A, Kurch S, Schloder J, et al.Dendritic mesoporous silica nanoparticles for pH-stimuli-responsive drug delivery of TNF-Alpha. Adv Healthc Mater. 2017 Jul;6:(13):1700012.
  • Xu X, Lü S, Wu C, et al. Curcumin polymer coated, self-fluorescent and stimuli-responsive multifunctional mesoporous silica nanoparticles for drug delivery. Microporous Mesoporous Mater. 2018;271:234–242.
  • Khoee S, Bafkary R, Fayyazi F. DOX delivery based on chitosan-capped graphene oxide-mesoporous silica nanohybride as pH-responsive nanocarriers. J Sol Gel Sci Techn. 2016;81(2):493–504.
  • Saroj S, Rajput SJ. Facile development, characterization, and evaluation of novel bicalutamide loaded pH-sensitive mesoporous silica nanoparticles for enhanced prostate cancer therapy. Drug Dev Ind Pharm. 2019 Apr;45(4):532–547.
  • Elbialy NS, Aboushoushah SF, Sofi BF, et al. Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy. Microporous Mesoporous Mater. 2020;291(109540):1387–1811.
  • Chen H, Chen Z, Kuang Y, et al.. Stepwise-acid-active organic/inorganic hybrid drug delivery system for cancer therapy. Colloids Surf B Biointerfaces. 2018 Jul 1;167:407–414.
  • Lu J, Luo B, Chen Z, et al.. Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy. Int J Biol Macromol. 2020 Mar 1;146:363–373.
  • Wang B, Zhang K, Wang J, et al.. Poly(amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Colloids Surf B Biointerfaces. 2020 May;189:110832.
  • Adhikari C, Mishra A, Nayak D, et al. Metal organic frameworks modified mesoporous silica nanoparticles (MSN): A nano-composite system to inhibit uncontrolled chemotherapeutic drug delivery from Bare-MSN. J Drug Delivery Sci Technol. 2018;47:1–11.
  • Chang D, Gao Y, Wang L, et al. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J Colloid Interface Sci. 2016;463:279–287.
  • Egodawatte S, Dominguez S, Larsen SC. Solvent effects in the development of a drug delivery system for 5-fluorouracil using magnetic mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2017;237:108–116.
  • Yu F, Wu H, Tang Y, et al.. Temperature-sensitive copolymer-coated fluorescent mesoporous silica nanoparticles as a reactive oxygen species activated drug delivery system. Int J Pharm. 2018 Jan 30;536(1):11–20.
  • Cho I-H, Shim MK, Jung B, et al. Heat shock responsive drug delivery system based on mesoporous silica nanoparticles coated with temperature sensitive gatekeeper. Microporous Mesoporous Mater. 2017;253:96–101.
  • Syazaliyana Azali N, Hidayatul Nazirah Kamarudin N, Rasyidah Abdul Rahim A, et al. Adsorption and release of 5-Fluorouracil (5FU) from mesoporous silica nanoparticles. Mater Today Proc. 2019;19:1722–1729.
  • Kumar B, Kulanthaivel S, Mondal A, et al.. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B Biointerfaces. 2017 Feb 1;150:352–361.
  • Gonzalez Porras MA, Durfee PN, Gregory AM, et al.. A novel approach for targeted delivery to motoneurons using cholera toxin-B modified protocells. J Neurosci Methods. 2016 Nov 1;273:160–174.
  • Liu X, Ding Y, Zhao B, et al.. In vitro and in vivo evaluation of puerarin-loaded PEGylated mesoporous silica nanoparticles. Drug Dev Ind Pharm. 2016 Dec;42(12):2031–2037.
  • Sapino S, Oliaro-Bosso S, Zonari D, et al.. Mesoporous silica nanoparticles as a promising skin delivery system for methotrexate. Int J Pharm. 2017 Sep 15;530(1–2):239–248.
  • Zhao Q, Wang S, Yang Y, et al.. Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzyme-triggered targeted drug delivery and bioimaging. Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:475–484.
  • Ghasemi S, Farsangi ZJ, Beitollahi A, et al. Synthesis of hollow mesoporous silica (HMS) nanoparticles as a candidate for sulfasalazine drug loading. Ceram Int. 2017;43(14):11225–11232.
  • Nair BP, Sindhu M, Nair PD. Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surf B Biointerfaces. 2016 Jul 1;143:423–430..
  • Ordikhani F, Dehghani M, Simchi A. Antibiotic-loaded chitosan–Laponite films for local drug delivery by titanium implants cell proliferation and drug release studies. Mater Med. 2015;26(12):269.
  • Shi H, Zhang R, Feng S, et al. Influence of laponite on the drug loading and release performance of LbL polyurethane/poly(acrylic acid) multilayers. J Appl Polym Sci. 2019;136(17):17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.