462
Views
20
CrossRef citations to date
0
Altmetric
Review

Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics?

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 715-736 | Received 18 Jun 2020, Accepted 14 Dec 2020, Published online: 26 Apr 2021

References

  • Ackerman S, Major structures and functions of the brain 1992.
  • Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. Jan 2015; 7(1): a020412.
  • Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia. 2012;53(6):1.
  • Daneman R. The blood-brain barrier in health and disease. Ann Neurol. Nov 2012; 72(5): 648–672.
  • Persidsky Y, Ramirez SH, Haorah J, et al. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. Sep 2006; 1(3): 223–236.
  • Kalantari K, Mostafavi E, Afifi AM, et al. Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale. 2020;12(4):2268–2291.
  • Harford-Wright E, Lewis K, Vink R. The potential for substance p antagonists as anti-cancer agents in brain tumours. Recent Patents on CNS Drug Discovery. Mar 2013; 8(1): 13–23.
  • P. A. T. E. PDQ Adult Treatment Editorial Board, Adult central nervous system tumors treatment (pdq®): health professional version. National Cancer Institute (US), 2002.
  • Robert Wood Johnson University Hospital, Treatment for brain tumors using the gamma knife.
  • Abbott NJ, Patabendige AAK, Dolman DEM, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 01 Jan 2010; 37(1): 13–25. Academic Press.
  • Blanchette M, Fortin D. Blood-brain barrier disruption in the treatment of brain tumors. Methods Mol Biol. 2011;686:447–463.
  • Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 1 Jan 2020; 20(1): 26–41. Nature Research.
  • Shergalis A, Bankhead A, Luesakul U, et al. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. Jul 2018; 70(3): 412–445. .
  • Aldape K, Brindle KM, Chesler L, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. Feb 2019; 1. DOI: 10.1038/s41571-019-0177-5.
  • Fortin D. The blood-brain barrier: its influence in the treatment of brain tumors metastases. Curr Cancer Drug Targets. 2012 Mar;12(3):247–259.
  • Weidle UH, Niewöhner J, Tiefenthaler G. The blood-brain barrier challenge for the treatment of brain cancer, secondary brain metastases, and neurological diseases. Cancer Genomics Proteomics. 2015 Jul;12(4):167–177.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. Jan 2019; 69(1): 7–34.
  • Brain Tumor Statistics American Brain Tumor Association.
  • Aghi M, Barker II FG. Benign adult brain tumors: an evidence-based medicine review in guiding neurosurgery by evidence. Vol. 19. Basel: KARGER; 2006. p. 80–96.
  • Black PM. Benign brain tumors. meningiomas, pituitary tumors, and acoustic neuromas. Neurol Clin. 1995 Nov;13(4):927–952.
  • Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. Aug 2018; 392(10145): 432–446.
  • Brain Tumors - Classifications, symptoms, diagnosis and treatments.
  • Collins VP. Brain tumours: classification and genes. J Neurol Neurosurg Psychiatry. Jun 2004; 75(2): 2–11.
  • Zacharaki EI, Wang S, Chawla S, et al. Classification of brain tumor type and grade using mri texture and shape in a machine learning scheme. Magn Reson Med. Dec 2009; 62(6): 1609–1618.
  • Herholz K, Langen K-J, Schiepers C, et al. Brain tumors. Semin Nucl Med. Nov 2012; 42(6): 356–370.
  • Tiwary S, Morales JE, Kwiatkowski SC, et al. Metastatic brain tumors disrupt the blood-brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter mfsd2a. Sci Rep. Dec 2018; 8(1): 8267.
  • Eichler AF, Chung E, Kodack DP, et al. The biology of brain metastases—translation to new therapies. Nat Rev Clin Oncol. Jun 2011; 8(6): 344–356.
  • DeAngelis LM. Brain tumors. N Engl J Med. Jan 2001; 344(2): 114–123.
  • Patchell RA. The management of brain metastases. Cancer treat rev. Dec 2003; 29(6): 533–540.
  • Boulton M, Bernstein M. Outpatient brain tumor surgery: innovation in surgical neurooncology. J Neurosurg. Apr 2008; 108(4): 649–654.
  • De la Garza-ramos R, Kerezoudis P, Tamargo RJ, et al. Surgical complications following malignant brain tumor surgery: an analysis of 2002–2011 data. Clin Neurol Neurosurg. Jan 2016; 140: 6–10. .
  • Suh JH, Barnett GH. Brachytherapy for brain tumor. Hematol Oncol Clin North Am. Jun 1999; 13(3): 635–650.
  • Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–199.
  • Huang C-Y, Ju D-T, Chang C-F, et al. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei). Dec 2017; 7(4): 23.
  • Nurgali K, Jagoe RT, Abalo R. Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245.
  • Novotny L, Szekeres T. Cancer therapy: new targets for chemotherapy. Hematology. May 2003; 8(3): 129–137.
  • Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancermedicalscience. Nov 2012; 6. ed16. DOI: 10.3332/ecancer.2012.ed16.
  • Padma VV. An overview of targeted cancer therapy. Biomedicine (Taipei). Dec 2015; 5(4): 19.
  • Koukourakis GV, Sotiropoulou-Lontou A. Targeted therapy with bevacizumab (avastin) for metastatic colorectal cancer. Clin Transl Oncol. Oct 2011; 13(10): 710–714.
  • Ricciuti B, Genova C, Crinò L, et al. Antitumor activity of larotrectinib in tumors harboring ntrk gene fusions: a short review on the current evidence. Onco Targets Ther. 2019;12:3171–3179.
  • Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open. Mar 2016; 1(2): e000023. .
  • Moiyadi AV, Shetty PM. Perioperative outcomes following surgery for brain tumors: objective assessment and risk factor evaluation. J Neurosci Rural Pract. Jan 2012; 3(1): 28–35.
  • Mahmoud O, Tunceroglu A, Chokshi R, et al. Overall survival advantage of chemotherapy and radiotherapy in the perioperative management of large extremity and trunk soft tissue sarcoma; a large database analysis. Radiother Oncol. Aug 2017; 124(2): 277–284.
  • Brown LC, Mutter RW, Halyard MY. Benefits, risks, and safety of external beam radiation therapy for breast cancer. Int J Womens Health. 2015;7:449–458.
  • Taugourdeau-Raymond S, Rouby F, Default A, et al. French Network of Pharmacovigilance Centers. Bevacizumab-induced serious side-effects: a review of the french pharmacovigilance database. Eur J Clin Pharmacol. Jul 2012; 68(7): 1103–1107.
  • Mostafavi E, Medina-Cruz D. Electroconductive nanobiomaterials for tissue engineering and regenerative medicine. Bioelectricity. 2020;2(2). DOI:10.1089/bioe.2020.0021.
  • Invernici G, Cristini S, Alessandri G, et al. Nanotechnology advances in brain tumors: the state of the art. Recent Pat Anticancer Drug Discov. 2011 Jan;6(1):58–69.
  • Khaitan D, Reddy PL, Ningaraj N. Targeting brain tumors with nanomedicines: overcoming blood brain barrier challenges. Curr Clin Pharmacol. Oct 2018; 13(2): 110–119.
  • Mostafavi E, Soltantabar P, Webster TJ. Nanotechnology and picotechnology: a new arena for translational medicine. Biomater Trans Med. 2019;1: 191–212. Academic Press.
  • Muthu MS, Singh S. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine. Jan 2009; 4(1): 105–118.
  • De Rosa G, Salzano G, Caraglia M, et al. Nanotechnologies: a strategy to overcome blood-brain barrier. Curr Drug Metab. 2011. DOI:10.2174/138920012798356943.
  • Sullivan DC, Ferrari M. Nanotechnology and tumor imaging: seizing an opportunity. Mol Imaging. 2004. DOI:10.1162/1535350042973526.
  • Mohajeri N, Mostafavi E, Zarghami N. The feasibility and usability of dna-dot bioconjugation to antibody for targeted in vitro cancer cell fluorescence imaging. J Photochem Photobiol B Biol. Aug 2020; 209: 111944.
  • Farrell D, Ptak K, Panaro NJ, et al. Nanotechnology-based cancer therapeutics - promise and challenge - lessons learned through the nci alliance for nanotechnology in cancer. Pharm Res. 2011. DOI:10.1007/s11095-010-0214-7.
  • Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. Jul 2006; 23(7): 1417–1450.
  • Akbarzadeh A, Khalilov R, Mostafavi E, et al. Role of dendrimers in advanced drug delivery and biomedical applications: a review. Exp Oncol. 2018 Oct;40(3):178–183.
  • Saravanan M, Vahidi H, Cruz DM, et al. Emerging antineoplastic biogenic gold nanomaterials for breast cancer therapeutics: a systematic review. Int J Nanomedicine. May 2020; 15: 3577–3595.
  • Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother. Jan 2018; 97: 1521–1537.
  • Soltantabar P, Calubaquib EL, Mostafavi E, et al. Enhancement of loading efficiency by coloading of doxorubicin and quercetin in thermoresponsive polymeric micelles. Biomacromolecules. Apr 2020; 21(4): 1427–1436.
  • Zhao Y, Ren W, Zhong T, et al. Tumor-specific ph-responsive peptide-modified ph-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J Control Release. Jan 2016; 222: 56–66.
  • Madhankumar AB, Slagle-Webb B, Mintz A, et al. Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol Cancer Ther. Dec 2006; 5(12): 3162–3169.
  • Zhao Y, Ren W, Zhong T, et al. Tumor-specific ph-responsive peptide-modified ph-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J Control Release. Jan 2016; 222: 56–66.
  • Wen C-J, Sung CT, Aljuffali IA, et al. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, peGylated and deformable liposomes. Nanotechnology. Aug 2013; 24(32): 325101.
  • Michael JS, Lee B-S, Zhang M, et al. Nanotechnology for treatment of glioblastoma multiforme. J Transl Intern Med. Sep 2018; 6(3): 128–133. .
  • Baek S-K, Makkouk AR, Krasieva T, et al. Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol. Sep 2011; 104(2): 439–448.
  • Hopkins S, Gottipati M, Montana V, et al. Effects of chemically-functionalized single-walled carbon nanotubes on the morphology and vitality of d54mg human glioblastoma cells. Neuroglia. Oct 2018; 1(2): 327–338.
  • Baek S-K, Makkouk AR, Krasieva T, et al. Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol. Sep 2011; 104(2): 439–448.
  • Hopkins S, Gottipati M, Montana V, et al. Effects of chemically-functionalized single-walled carbon nanotubes on the morphology and vitality of d54mg human glioblastoma cells. Neuroglia. Oct 2018; 1(2): 327–338.
  • Tedla G, Plotkin J, Dellinger A, et al. Design and testing of dual-targeted gd 3 n@c80-containing glioblastoma theranostics. J Nanomater. Mar 2019: 1–13. 2019. DOI: 10.1155/2019/1242930.
  • Yan H, Wang J, Yi P, et al. Imaging brain tumor by dendrimer-based optical/paramagnetic nanoprobe across the blood-brain barrier. Chem Commun. Jul 2011; 47(28): 8130.
  • Kircher MF, Mahmood U, King RS, et al. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003 Dec;63(23):8122–8125.
  • Yan H, Wang J, Yi P, et al. Imaging brain tumor by dendrimer-based optical/paramagnetic nanoprobe across the blood-brain barrier. Chem Commun. Jul 2011; 47(28): 8130.
  • Kircher MF, Mahmood U, King RS, et al. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003 Dec;63(23):8122–8125.
  • Zhou Q, Mu K, Jiang L, et al. Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging. Int J Nanomedicine. Mar 2015; 1805. DOI: 10.2147/IJN.S72910
  • Lu W, Melancon MP, Xiong C, et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. Oct 2011; 71(19): 6116–6121.
  • Stephen ZR, Kievit FM, Veiseh O, et al. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of o 6 -benzylguanine to brain tumors. ACS Nano. Oct 2014; 8(10): 10383–10395.
  • Jahangirian H, Ghasemian Lemraski E, Webster TJ, et al. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. Apr 2017; 12: 2957–2978.
  • Lomelí-Marroquín D, Cruz DM, Nieto-Argüello A, et al. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int J Nanomedicine. 2019;14:2171–2190.
  • Roy N, Gaur A, Jain A, et al. Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environ Toxicol Pharmacol. Nov 2013; 36(3): 807–812. Elsevier.
  • Durán N, Silveira CP, Durán M, et al. Silver nanoparticle protein corona and toxicity: a mini-review. J Nanobiotechnology. Sep 2015; 13(1): 55. BioMed Central Ltd.
  • Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. Aug 2015; 44(16): 5778–5792.
  • Ramrakhiani L, Ghosh S. Metallic nanoparticle synthesised by biological route: safer candidate for diverse applications. IET Nanobiotechnol. Jun 2018; 12(4): 392–404.
  • Medina-Cruz D, Mostafavi E, Vernet-Crua A, et al. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv. 2020; Taylor and Francis Ltd. DOI: 10.1080/17425247.2020.1727441.
  • Medina-Cruz D, Mostafavi E, Vernet-Crua A, et al. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv. 2020; Taylor and Francis Ltd. DOI: 10.1080/17425247.2020.1727441.
  • Medina-Cruz D, Mostafavi E, Vernet-Crua A, et al. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv. 2020; Taylor and Francis Ltd. DOI: 10.1080/17425247.2020.1727441.
  • Mishra P, Ray S, Sinha S, et al. Facile bio-synthesis of gold nanoparticles by using extract of hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem Eng J. Jan 2016; 105: 264–272.
  • Patra S, Mukherjee S, Barui AK, et al. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C. Aug 2015; 53: 298–309.
  • Mishra P, Ray S, Sinha S, et al. Facile bio-synthesis of gold nanoparticles by using extract of hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem Eng J. Jan 2016; 105: 264–272.
  • Singh P, Kim Y-J, Zhang D, et al. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. Jul 2016; 34(7): 588–599.
  • Horváth IT. Introduction: sustainable chemistry. Chem Rev. Jan 2018; 118(2): 369–371.
  • Erythropel HC, Zimmerman JB, de Winter TM, et al. The green chemistree: 20 years after taking root with the 12 principles. Green Chem. May 2018; 20(9): 1929–1961.
  • Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomed. 01 Apr 2010; 6(2): 257–262. Elsevier.
  • Fayaz AM, Balaji K, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med. 2010;6(1):103–109.
  • Weerathunge P, Pooja D, Singh M, et al. Transferrin-conjugated quasi-cubic SPIONs for cellular receptor profiling and detection of brain cancer. Sens Actuators B Chem. Oct 2019;297. DOI: 10.1016/j.snb.2019.126737.
  • Alphandéry E, Idbaih A, Adam C, et al. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J Control Release. Sep 2017; 262: 259–272.
  • Weerathunge P, Pooja D, Singh M, et al. Transferrin-conjugated quasi-cubic SPIONs for cellular receptor profiling and detection of brain cancer. Sens Actuators B Chem. Oct 2019;297. DOI: 10.1016/j.snb.2019.126737.
  • Alphandéry E, Idbaih A, Adam C, et al. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J Control Release. Sep 2017; 262: 259–272.
  • Revathy T, Jayasri MA, Suthindhiran K. Antimicrobial magnetosomes for topical antimicrobial therapy. Nanobiomater Antimicrobial Ther Appl Nanobiomater. 2016; 6; 67–101. William Andrew Publishing, Elsevier Inc
  • Mériaux S, Boucher M, Marty B, et al. Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Adv Healthc Mater. May 2015; 4(7): 1076–1083.
  • Raschdorf O, Schüler D, Uebe R. Preparation of bacterial magnetosomes for proteome analysis. Methods Mol Biol. 2018; 1841: 45–57. Humana Press Inc.
  • Xiong K, Wei W, Jin Y, et al. Biomimetic immuno-magnetosomes for high-performance enrichment of circulating tumor cells. Adv Mater. 2016;28(36):7929–7935.
  • Bixner O, Reimhult E. Controlled magnetosomes: embedding of magnetic nanoparticles into membranes of monodisperse lipid vesicles. J Colloid Interface Sci. Mar 2016; 466: 62–71.
  • Boucher M, Geffroy F, Prévéral S, et al. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials. Mar 2017; 121: 167–178.
  • Bixner O, Reimhult E. Controlled magnetosomes: embedding of magnetic nanoparticles into membranes of monodisperse lipid vesicles. J Colloid Interface Sci. Mar 2016; 466: 62–71.
  • Boucher M, Geffroy F, Prévéral S, et al. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials. Mar 2017; 121: 167–178.
  • Hafsi M. et al., RGD-functionalized magnetosomes are efficient tumor radioenhancers for x-rays and protons. Nanomed Nanotechnol Biol Med. Aug 2019; 102084. DOI: 10.1016/J.NANO.2019.102084.
  • Mannucci S, Tambalo S, Conti G, et al. Magnetosomes extracted from magnetospirillum gryphiswaldense as theranostic agents in an experimental model of glioblastoma. Contrast Media Mol Imaging 2018 Jul 2018; 1–12. DOI: 10.1155/2018/2198703.
  • Sangnier AP, Preveral S, Curcio A, et al. Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: photothermia is far more efficient than magnetic hyperthermia. J Control Release. Jun 2018; 279: 271–281.
  • Mannucci S, Tambalo S, Conti G, et al. Magnetosomes extracted from magnetospirillum gryphiswaldense as theranostic agents in an experimental model of glioblastoma. Contrast Media Mol Imaging 2018 Jul 2018; 1–12. DOI: 10.1155/2018/2198703.
  • Le Fèvre R, Durand-Dubief M, Chebbi I, et al. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma. Theranostics. 2017;7(18):4618–4631.
  • Sonvico F, Clementino A, Buttini F, et al. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics. Mar 2018; 10(1): 34.
  • Anshup T, Venkataraman JS, Subramaniam C, et al. Growth of gold nanoparticles in human cells. Langmuir. 2005;21(25):11562–11567.
  • Chen D, Zhao C, Ye J, et al. In situ biosynthesis of fluorescent platinum nanoclusters: toward self-bioimaging-guided cancer theranostics. ACS Appl Mater Interfaces. Aug 2015; 7(32): 18163–18169.
  • Cruz DM, Mostafavi E, Vernet-Crua A, et al. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. J Phys Mater. Mar 2020; DOI:10.1088/2515-7639/ab8186.
  • Chen D, Zhao C, Ye J, et al. In situ biosynthesis of fluorescent platinum nanoclusters: toward self-bioimaging-guided cancer theranostics. ACS Appl Mater Interfaces. Aug 2015; 7(32): 18163–18169.
  • Cruz DM, Mostafavi E, Vernet-Crua A, et al. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. J Phys Mater. Mar 2020; DOI:10.1088/2515-7639/ab8186.
  • Gillan M, Zander N. In-vitro Synthesis of Gold Nanoclusters in Neurons. US Army Research Laboratory Aberdeen Proving Ground United States; 2016
  • Lai L, Zhao C, Li X, et al. Fluorescent gold nanoclusters for in vivo target imaging of alzheimer’s disease. RSC Adv. Mar 2016; 6(36): 30081–30088.
  • Jeevanandam J, Pal K, Danquah MK. Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie. Feb 2019; 157: 38–47. Elsevier B.V.
  • Lin XN, Tian X, Li W, et al. Highly efficient glioma targeting of tat peptide-tta1 aptamer-polyephylene glycol-modified gelatin-siloxane nanoparticles. J Nanosci Nanotechnol. Apr 2018; 18(4): 2325–2329.
  • Lee C, Hwang HS, Lee S, et al. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv Mater. Apr 2017; 29(13): 1605563.
  • Lin XN, Tian X, Li W, et al. Highly efficient glioma targeting of tat peptide-tta1 aptamer-polyephylene glycol-modified gelatin-siloxane nanoparticles. J Nanosci Nanotechnol. Apr 2018; 18(4): 2325–2329.
  • Amani H, Mostafavi E, Alebouyeh MR, et al. Would colloidal gold nanocarriers present an effective diagnosis or treatment for ischemic stroke? Ignt J Nanomedicine. 2019;14:8013–8031.
  • Shevtsov M, Nikolaev B, Marchenko Y, et al. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomedicine. 2018;13:1471.
  • Lam P, Lin RD, Steinmetz NF. Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. J Mater Chem B. Sep 2018; 6(37): 5888–5895.
  • Shevtsov M, Nikolaev B, Marchenko Y, et al. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomedicine. 2018;13:1471.
  • Lam P, Lin RD, Steinmetz NF. Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. J Mater Chem B. Sep 2018; 6(37): 5888–5895.
  • Ochi R. Carbohydrates as components of supramolecular materials. Trends Glycosci Glycotechnol. 2018; 30( 176).Gakushin Publishing Company. DOI: 10.4052/tigg.1822.6E.
  • Leonel AG, Mansur HS, Mansur AA, et al. Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. Int J Biol Macromol. Jul 2019; 132: 677–691.
  • Hassan EE, Gallo JM. Targeting anticancer drugs to the brain. I: enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres. J Drug Target. 1993; 1(1):7–14.
  • Agrawal P, Singh RP, Kumari L, et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater Sci Eng C. May 2017; 74: 167–176.
  • Yemisci M, Caban S, Fernandez-Megia E, et al. Preparation and characterization of biocompatible chitosan nanoparticles for targeted brain delivery of peptides. Methods Mol Biol. 2018; 1727: 443–454. Humana Press Inc.
  • Agrawal P, Singh RP, Kumari L, et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater Sci Eng C. May 2017; 74: 167–176.
  • Yemisci M, Caban S, Fernandez-Megia E, et al. Preparation and characterization of biocompatible chitosan nanoparticles for targeted brain delivery of peptides. Methods Mol Biol. 2018; 1727: 443–454. Humana Press Inc.
  • Yu S, Xu X, Feng J, et al. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm. Apr 2019; 560: 282–293.
  • Xu Y, Asghar S, Yang L, et al. Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydr Polym. Feb 2017; 157: 419–428.
  • Xu Y, Asghar S, Yang L, et al. Nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG containing curcumin: in vitro evaluation and pharmacokinetics in rats. Int J Biol Macromol. Sep 2017; 102: 1083–1091.
  • Turabee MH, Jeong TH, Ramalingam P, et al. N,N,N-trimethyl chitosan embedded in situ pluronic F127 hydrogel for the treatment of brain tumor. Carbohydr Polym. Jan 2019; 203: 302–309.
  • Sharma AK, Gupta L, Sahu H, et al. Chitosan engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide. Pharm Res. Jan 2018; 35(1): 9.
  • Khan A, Aqil M, Imam SS, et al. Temozolomide loaded nano lipid based chitosan hydrogel for nose to brain delivery: characterization, nasal absorption, histopathology and cell line study. Int J Biol Macromol. Sep 2018; 116: 1260–1267.
  • Battogtokh G, Gotov O, Kang JH, et al. Glycol chitosan-coated near-infrared photosensitizer-encapsulated gold nanocages for glioblastoma phototherapy. Nanomed Nanotechnol Biol Med. Jun 2019; 18: 315–325.
  • Yu HS, Park H, Tran TH, et al. Poisonous caterpillar-inspired chitosan nanofiber enabling dual photothermal and photodynamic tumor ablation. Pharmaceutics. Jun 2019; 11(6): 258.
  • Suhas VK, Gupta PJM, Singh CR, et al. Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol. Sep 2016; 216: 1066–1076. Elsevier Ltd.
  • Carvalho SM, Leonel AG, Mansur AAP, et al. Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomater Sci. 2019. DOI:10.1039/c8bm01528g.
  • Karan A, Darder M, Kansakar U, et al. Integration of a copper-containing biohybrid (cuhars) with cellulose for subsequent degradation and biomedical control. Int J Environ Res Public Health. Apr 2018; 15(5): 844.
  • Carvalho IC, Mansur AAP, Carvalho SM, et al. L-cysteine and poly-L-arginine grafted carboxymethyl cellulose/Ag-In-S quantum dot fluorescent nanohybrids for in vitro bioimaging of brain cancer cells. Int J Biol Macromol. Jul 2019; 133: 739–753.
  • Abakumov MA, Nukolova NV, Sokolsky-Papkov M, et al. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomed Nanotechnol Biol Med. May 2015; 11(4): 825–833.
  • Liang J, Gao C, Zhu Y, et al. Natural brain penetration enhancer-modified albumin nanoparticles for glioma targeting delivery. ACS Appl Mater Interfaces. Sep 2018; 10(36): 30201–30213.
  • Abakumov MA, Nukolova NV, Sokolsky-Papkov M, et al. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomed Nanotechnol Biol Med. May 2015; 11(4): 825–833.
  • Zhang H, Wang T, Zheng Y, et al. Comparative toxicity and contrast enhancing assessments of Gd2O3@BSA and MnO2@BSA nanoparticles for MR imaging of brain glioma. Biochem Biophys Res Commun. May 2018; 499(3): 488–492.
  • Wang X, Tu M, Tian B, et al. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells. Anal Biochem. Nov 2016; 512: 8–17.
  • Li S, Amat D, Peng Z, et al. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale. Sep 2016; 8(37): 16662–16669.
  • Gao C, Liang J, Zhu Y, et al. Menthol-modified casein nanoparticles loading 10-hydroxycamptothecin for glioma targeting therapy. Acta Pharm Sin B. Jan 2019; DOI:10.1016/J.APSB.2019.01.006.
  • Li S, Amat D, Peng Z, et al. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale. Sep 2016; 8(37): 16662–16669.
  • Xu HL, ZhuGe DL, Chen PP, et al. Silk fibroin nanoparticles dyeing indocyanine green for imaging-guided photo-thermal therapy of glioblastoma. Drug Deliv. Jan 2018; 25(1): 364–375.
  • Lee TJ, Haque F, Vieweger M, et al. Functional assays for specific targeting and delivery of rna nanoparticles to brain tumor. New York, NY: Humana Press; 2015. 137–152.
  • Lee TJ, Haque F, Shu D, et al. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget. Jun 2015; 6(17): 14766–14776.
  • Lee TJ, Yoo JY, Shu D, et al. RNA nanoparticle-based targeted therapy for glioblastoma through inhibition of oncogenic miR-21. Mol Ther. Jul 2017; 25(7): 1544–1555.
  • Maksimović M, Omanović-Mikličanin E. 2017 Towards green nanotechnology: maximizing benefits and minimizing harm. In: Badnjevic A. (eds) CMBEBIH 2017 164–170. Springer, Singapore.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.